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SEMILOCAL CONVERGENCE ANALYSIS AND
COMPARISON OF ALTERNATIVE

COMPUTATIONAL EFFICIENCY OF THE
SIXTH-ORDER METHOD IN BANACH SPACES1

Jai Prakash Jaiswal234

Abstract. The purpose of the this paper is to discuss the semilo-
cal convergence analysis of the sixth-order method for solving nonlinear
equations in Banach spaces by using recurrence relations approach. The
existence and uniqueness results have been derived, followed by error
bound. The alternative computational efficiency of the considered al-
gorithm with identical as well as unlike order schemes is also analyzed.
Lastly, theoretical results have been verified by discussing the numerical
example.
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1. Introduction

There are several types of convergence results are used to approximate so-
lutions of nonlinear equations. The first, which we call a local convergence
theorem, begins with the assumption that a particular solution x∗ exists, and
then asserts that there is a neighborhood U of x∗ such that for all initial vectors
in U the iterates generated by the process are well defined and converge to x∗.
The second type of convergence theorem, which is called semilocal, does not
require knowledge of the existence of a solution, but states that, starting from
initial vectors for which some stiff conditions are satisfied, convergence to some
solutions x∗ is guaranteed. Moreover, theorems of this type usually include
computable estimates for the error xn − x∗, a possibility not afforded by the
local convergence theorems.

Newton’s method, which has quadratic rate of convergence, is one of the
well established methods for solving nonlinear equations of the form Λ(x) = 0.
The semilocal convergence of Newton’s method in Banach spaces was estab-
lished by Kantorovich in [8]. The convergence of the sequence obtained by the
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iterative expression is derived from the convergence of majorizing sequences.
In [11], Rall has suggested a different technique for the semilocal convergence
of these methods, which is based on recurrence relations. It is worth men-
tioning that higher order convergence requires computation of derivatives of
higher order which are very expansive in general. But higher order methods
have their importance as in some applications involving stiff systems of equa-
tions faster convergence is required. It is obvious that, in order to increase the
order of convergence, the operational cost must increase simultaneously. The
main challenge in numerical analysis is to find the equilibrium between the
convergence speed and operational cost. In other words, a scheme is better if
it simultaneously improves the order and the efficiency index. For obtaining
better efficiency, many higher order methods like third-order [1, 10], fourth-
order [7, 15], fifth-order [2, 3] and sixth-order [13, 14] etc. are discussed in the
literature. In this study, we discuss the semilocal convergence analysis of the
sixth-order method proposed by Cordero et al. in [4], followed by its computa-
tional efficiency analysis in the sense of Grau et al. [6]. The method in Banach
spaces is given by

zk = xk − 2

3
ΓkΛ(xk),

yk = xk − 1

2
[3Λ′(zk)− Λ′(xk)]

−1[3Λ′(zk) + Λ′(xk)]ΓkΛ(xk),

xk+1 = yk − 2[3Λ′(zk)− Λ′(xk)]
−1Λ(yk),(1.1)

where Γk = Λ′(xk)
−1.

In this paper, we study the semilocal convergence of the existing sixth-order
scheme using the recurrence relations technique. For this, first we establish the
system of recurrence relations and then prove the convergence result, followed
by its error estimate. We also perform a comparative study of computational
efficiency in the case of nonlinear systems, in which we compare the presented
method with several previously existing schemes. Some of those previously ex-
isting schemes used for comparison are of the same convergence order, and some
are of different convergence order. At last, numerical example is considered in
order to verify the theoretical discussions.

2. Preliminary Results

Suppose B1 and B2 are two Banach spaces and x0 ∈ D. Let the nonlinear
operator Λ : D ⊆ B1 → B2 be third-order Fréchet differentiable, where D is an
open subset of B1. Consider the hypotheses
(R1)||Γ0Λ(x0)|| ≤ λ,
(R2)||Γ0|| ≤ ζ,
(R3)||Λ′′(x)|| ≤ K1, x ∈ D,
(R4)||Λ′′′(x)|| ≤ K2, x ∈ D,
(R5) ∃ a positive real number K3 such that

||Λ′′′(x)− Λ′′′(y)|| ≤ K3||x− y||,∀ x, y ∈ D.(2.1)
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Initially, in the coming lemma we start with the some approximations of the
nonlinear operator Λ, which will be used in the successive results.

Lemma 2.1. [7] Suppose the nonlinear operator Λ : D ⊆ B1 → B2 be contin-
uously third-order Fréchet differentiable, then

Λ(yk)

=

∫ 1

0

Λ′′(rk + r(yk − rk))(1− r)dr(yk − rk)
2

+

∫ 1

0

[
Λ′′(xk + r(rk − xk))(1− r)− 1

2
Λ′′
(
xk +

2

3
r(rk − xk)

)]
dr

(rk − xk)
2

+

∫ 1

0

[
Λ′′(xk + r(rk − xk))− Λ′′

(
xk +

2

3
r(rk − xk)

)]
dr(rk − xk)

[Λ′(xk)− 3Λ′(zk)]
−1

∫ 1

0

Λ′′
(
xk +

2

3
r(rk − xk)

)
dr(rk − xk)

2,(2.2)

where rk = xk − ΓkΛ(xk).

Lemma 2.2. Suppose the hypotheses of Lemma 2.1 hold, then

Λ(xk+1)

=

{∫ 1

0

[
Λ′′
(
xk +

2

3
r(rk − xk)

)
− Λ′′(xk + r(rk − xk))

]
dr(rk − xk)

−
∫ 1

0

[Λ′(yk + r(xk+1 − yk))− Λ′(rk)]dr

} [
I +

3

2
H(xk)

]−1

ΓkΛ(yk),(2.3)

where H(xk) = Γk[Λ
′(zk)− Λ′(xk)].

Proof. Form Taylor expansion, one can deduce

Λ(xk+1) = Λ(yk) + Λ′(rk)(xk+1 − yk)

+

∫ 1

0

[Λ′(yk + r(xk+1 − yk))− Λ′(rk)]dr(xk+1 − yk).(2.4)

By an application of the last sub-step of the considered scheme (1.1), we can
write

Λ(yk) + Λ′(rk)(xk+1 − yk)

= Λ(yk)− Λ′(rk)

[
I +

3

2
H(xk)

]−1

ΓkΛ(yk)

=

[
{Λ′(xk)− Λ′(rk)}+

3

2
Λ′(xk)H(xk)

] [
I +

3

2
H(xk)

]−1

ΓkΛ(yk)

=

{∫ 1

0

[
Λ′′
(
xk +

2

3
r(rk − xk)

)
− Λ′′(xk + r(rk − xk))

]
dr(rk − xk)

}
[
I +

3

2
H(xk)

]−1

ΓkΛ(yk).(2.5)
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Putting the expression (2.5) in the relation (2.4) followed by the final sub-step
of the method (1.1), one can attain the expression (2.3).

Now we consider the below mentioned functions. Let us denote

f1(r) =
r2 − 2r + 2

2(1− r)2
,(2.6)

f2(r) =
1

1− rg(r)
,(2.7)

g(r, s, t) =
r3

8(1− r)2
+

rs

12(1− r)
+

17

216
t,(2.8)

f3(r, s, t) =
g(r, s, t)

(1− r)

[
r2

2(1− r)
+

s

6
+

r

2(1− r)
g(r, s, t)

]
.(2.9)

Denote f∗(r) = f1(r)r− 1. Because f∗(0) = −1 and f∗(1) = +∞, hence f∗(r)
contains at least one zero in (0, 1). Let ρ be the lowest positive zero f∗(r) = 0.
Now, we are going to mention a few properties of f1, f2, f3, which are given by
relations (2.6), (2.7) and (2.9), respectively.

Lemma 2.3. Let the functions f1, f2 and f3 be given by equations (2.6), (2.7)
and (2.9), respectively, then:
(i) f1(r) and f2(r) are increasing and also both are greater than unity for
r ∈ (0, ρ),
(ii) f3(r, s, t) is increasing for r ∈ (0, ρ), s > 0, t > 0.

Proof. The proof is straightforward.

Now, we represent

λ0 = λ,

ζ0 = ζ,

α0 = K1ζλ,

β0 = K2ζλ
2,

χ0 = K3ζλ
3,

ς = 1/f2(α0),

ϱ = f2
2 (α0)f3(α0, β0, χ0),

ϱ =
f1(α0)

1− f2(α0)f3(α0, β0, χ0)
.(2.10)

Additionally, we recursively define below the sequences for k ≥ 0

ξk+1 = ξkh(ak),(2.11)
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λk+1 = λkf2(ak)f3(αk, βk, χk),(2.12)

αk+1 = αkf2(ak)
2f3(αk, βk, χk),(2.13)

βk+1 = βkf2(ak)
3f2

3 (αk, βk, χk),(2.14)

χk+1 = χkf2(ak)
4f3

3 (αk, βk, χk).(2.15)

Lemma 2.4. Let the functions f1, f2 and f3 be given by equations (2.6), (2.7)
and (2.9), respectively. If 0 < α0 < ρ and

f2(α0)
2f3(α0, β0, χ0) < 1,(2.16)

then the following observations are true:
(i) f2(αk) > 1 and f2(αk)f3(αk, βk, χk) < 1 for k ≥ 0,
(ii) the sequences {λk}, {αk}, {βk}, {γk} and {f2(αk)f3(αk, βk, χk)} are de-
creasing,
(iii) f1(αk)ak < 1 and f2(αk)

2f3(αk, βk, χk) < 1 for k ≥ 0.

Proof. By the virtue of Lemma 2.3 and equations (2.12)-(2.16), it can be quickly
proved that the results hold for k = 0, and then by using mathematical induc-
tion it can be easily shown that it also holds for all k ≥ 1.

Lemma 2.5. Let the functions f1, f2 and f3 be given by equations (2.6), (2.7)
and (2.9), respectively. Suppose θ ∈ (0, 1), then f1(θr) < f1(r), f2(θr) < f2(r)
and f3(θr, θ

2s, θ3t) < θ5f3(r, s, t) for r ∈ (0, ρ).

Proof. The lemma immediately follows by the virtue of equations (2.6)-(2.9)
and fact that θ ∈ (0, 1) and r ∈ (0, ρ).

Lemma 2.6. Suppose the hypotheses of Lemma 2.4 are true, then

f2(αk)f3(αk, βk, χk) ≤ ςϱ6
k

, k ≥ 0,(2.17)

and

k∏
i=0

f2(αi)f3(αi, βi, χi) ≤ ςk+1ϱ

(
6k+1−1

5

)
.(2.18)

Proof. Since
α1 = α0f2(α0)

2f3(α0, β0, χ0) = ϱα0,

β1 = β0f2(α0)
3f2

3 (α0, β0, χ0) < ϱ2β0 and

χ1 = χ0f2(α0)
4f3

3 (α0, β0, χ0) < ϱ3χ0

we can write

f2(α1)f3(α1, β1, χ1) < f2(ϱα0)f3(ϱα0, ϱ
2β0, ϱ

3χ0)

< ϱ5f2(α0)f3(α0, β0, χ0) = ϱ6
1

.
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Assume f2(αi)f3(αi, βi, χi) ≤ ςϱ6
i

, i ≥ 1. By virtue of the Lemma 2.4, we can
write

f2(αi+1)f3(αi+1, βi+1, χi+1)

< f2(αi)f3(αif
2
2 (αi)f3(αi, βi, χi), βif

3
2 (αi)f

2
3 (αi, βi, χi), χif

4
2 (αi)f

3
3 (αi, βi, χi))

< f2(αi)
5{f2(αi)f3(αi, βi, χi)}6 < f2(αi)

5{ςϱ6
i

}6 = ςϱ6
i+1

.

Hence f2(αk)f3(αk, βk, χk) ≤ ςϱ6
k

is true for all k ≥ 0. By an application of
inequality (2.17), we attain

k∏
i=0

f2(αi)f3(αi, βi, χi) ≤
k∏

i=0

ςϱ6
k

≤ ςk+1ϱ
∑k

i=0 6i ≤ ςk+1ϱ

(
6k+1−1

5

)
,

which completes the proof.

Lemma 2.7. Suppose the hypotheses of Lemma 2.4 are true, then the sequence
{λk} satisfies the inequality

λk ≤ λςkϱ
6k−1

5 , k ≥ 0(2.19)

and hence the sequence {λk} converges to zero. Moreover, for any k ≥ 0, m ≥ 1
it satisfies

k+m∏
i=k

λi ≤ λςkϱ
6k−1

5

1− ςm+1ϱ
6k(6m+4)

5

1− ςϱ6k

 .(2.20)

Proof. In view of the relation (2.12) and inequality (2.17), we obtain

λk = λk−1f2(αk−1)f3(αk−1, βk−1, χk−1)

= λ

k−1∏
i=0

f2(αi)f3(αi, βi, χi)

≤ ςkϱ

(
6k−1

5

)
.

Because ς, ϱ < 1, it implies that λk → 0 as k → ∞. Indicate

σ =

k+m∑
i=k

ςiϱ
6i

5 , where k ≥ 0,m ≥ 1.

The above expression can be also edited as

σ ≤ ςiϱ
6i

5 + ϱ6
i

(
k+m∑
i=k+1

ςiϱ
6i−1

5

)

= ςiϱ
6i

5 + ςϱ6
i
(
σ − ςk+mϱ

6k+m

5

)
.
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After manipulation, the above expression assumes the form

σ ≤ ςkϱ
6k

5

1− ςm+1ϱ
6k(6m+4)

5

1− ςϱ6k

 .

And hence

k+m∑
i=k

λi ≤ λ

(
k+m∑
i=k

ςkϱ
6k−1

5

)

≤ λςkϱ
6k−1

5

1− ςm+1ϱ
6k(6m+4)

5

1− ςϱ6k

 .

And thus
∑∞

i=0 λi exists.

3. Recurrence relations for the scheme

First, we denote T(x, r) = {y ∈ B1 : ||y − x|| < r} and T(x, r) = {y ∈ B1 :
||y− x|| ≤ r}. In this section, we are going to derive some recurrence relations
for the considered scheme (1.1), keeping in mind that the hypothesis assumed
in the earlier sections must hold.

When k = 0, the existence of Γ0 implies the existence z0, r0 and w0. Also,
we have

||z0 − x0|| ≤
2

3
λ0,(3.1)

||r0 − x0|| ≤ λ0.(3.2)

and

||w0 − x0|| =
1

2
||Γ0Λ(x0)|| ≤

1

2
λ0,(3.3)

where w0 = x0 − 1
2Γ0Λ(x0). Hence z0, r0 and w0 ∈ T(x0, kλ). If we represent

H(x0) = Γ0[Λ
′(z0)− Λ′(x0)], then

||H(x0)|| ≤
2

3
α0.(3.4)

Hence in view of the Banach Lemma and the fact that α0 < 1, [I + 3
2H(x0)]

−1

exists and satisfies

||
[
I +

3

2
H(x0)

]−1

|| ≤ 1

1− α0
.(3.5)

Therefore

||y0 − w0|| ≤
1

2(1− α0)
λ0(3.6)
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and hence

||y0 − x0|| ≤
2− α0

2(1− α0)
λ0.(3.7)

It can be quickly calculated that

||Λ(y0)|| ≤
α0

2(1− α0)

λ0

ζ0
.(3.8)

The last sub-step of the scheme (1.1) shows that

||x1 − y0|| ≤
ζ

1− α0
||Λ(y0)||.(3.9)

By virtue of the triangle inequality and equations (3.7)-(3.9), the above expres-
sion becomes

||x1 − x0|| ≤ f1(α0)λ0.(3.10)

This implies that x1 ∈ T(x0, kλ). Now

||I − Γ0Λ
′(x1)|| ≤ ||Γ0||||Λ′(x0)− Λ′(x1)||

≤ α0f1(α0) < 1.

Thus, the existence of Γ1 = [Λ′(x1)]
−1 is confirmed by the Banach Lemma and

also

||Γ1|| ≤ ζ0
1− α0f1(α0)

= f2(α0)ζ0 = ζ1.(3.11)

Using the equations proved in Lemmas 2.1 and 2.2, we can derive

||Λ(y0)|| ≤ g(α0, β0, χ0)
λ0

ζ0
,(3.12)

and

||Λ(xk+1)|| ≤ f3(α0, β0, χ0)
λ0

ζ0
.(3.13)

And thus

||r1 − x1|| = ||Γ1Λ(x1)|| ≤ f2(α0)f3(α0, β0, χ0)λ0 = λ1.(3.14)

Also, because f1(α0) > 1 and using the triangle inequality, we get

||r1 − x0|| ≤ kλ.(3.15)

which indicates r1, z1, w1 ∈ T(x0, kλ). Moreover, we have

K1||Γ1|| ||Γ1Λ(x1)|| ≤ f2
2 (α0)f3(α0, β0, χ0)α0 = α1,(3.16)
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K2||Γ1|| ||Γ1Λ(x1)||2 ≤ f3
2 (α0)f

2
3 (α0, β0, χ0)β0 = β1,(3.17)

K3||Γ1|| ||Γ1Λ(x1)||3 ≤ f4
2 (α0)f

3
3 (α0, β0, χ0)χ0 = χ1,(3.18)

By using the mathematical induction, we can derive the system of recurrence
relations, which are listed in the lemma below:

Lemma 3.1. Suppose the hypotheses of Lemma 2.4 are true and also the con-
ditions (R1)− (R5) hold, then the following relations hold ∀k ≥ 0:

(i)There exists Γk = [Λ′(xk)]
−1and ||Γk|| ≤ ζk,

(ii)||ΓkΛ(xk)|| ≤ λk,

(iii)K1||Γk|| ||ΓkΛ(xk)|| ≤ αk,

(iv)K2||Γk|| ||ΓkΛ(xk)||2 ≤ βk,

(v)K3||Γk|| ||ΓkΛ(xk)||3 ≤ χk,

(vi)||xk+1 − xk|| ≤ f1(αk)λk.

(vii)||xk+1 − x0|| ≤ kλ.(3.19)

Proof. The proof of (i)− (vi) is straightforward. We prove only the part (vii).
By the relation (vi) and Lemma 2.7, we have

||xk+1 − x0|| ≤
k∑

i=0

||xi+1 − xi||

≤ f1(α0)λ

(
1− ςk+1ϱ

6k+4
5

1− f2(α0)f3(α0, β0, χ0)

)
≤ kλ.

4. Semilocal convergence

In this part, we will prove the main result, whose statement is as follows:

Theorem 4.1. Suppose the nonlinear operator Λ : D ⊆ B1 → B2 is continu-
ously third-order Fréchet differentiable on D. Assume that x0 ∈ Ω and all the
conditions (R1) − (R5) hold. Assume that inequality (2.16) is fulfilled; f1, f2
and f3 are defined by (2.6), (2.7) and (2.9), respectively, and T(x0, kλ) ⊆ D.
Then initiating from x0, the sequence {xk} developed from the scheme (1.1)
converges to a zero x∗ of Λ(x) with xk, x

∗ ∈ B(x0, kλ) and x∗ is an exclusive
solution of Λ(x) = 0 in T(x0,

2
K1ζ

− kλ) ∩D. Furthermore, its error bound is
given by

||xk − x∗|| ≤ f1(α0)λς
kϱ

6k−1
5

(
1

1− ςϱ6k

)
.(4.1)
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Proof. From the earlier section results, it is obvious that the sequence {xk} is
well defined in T(x0, kλ) . Now since

||xk+m − xk|| ≤
k+m−1∑

i=k

||xi+1 − xi||

≤ f1(α0)λς
kϱ

6k−1
5

1− ςmϱ
6k(6m−1+4)

5

1− ςϱ6k

 .(4.2)

This inequality implies that {xk} is a Cauchy sequence. Hence there exists an
x∗ such that limk→∞xk = x∗. Let k = 0 and m → ∞ in the relation (4.2), we
get

||x∗ − x0|| ≤ kλ.(4.3)

This confirms that x∗ ∈ T(x0, kλ). Now, it will be shown that x∗ is a zero of
Λ(x) = 0. Because

||Γ0|| ||Λ(xk)|| ≤ ||Γk|| ||Λ(xk)||.(4.4)

By letting k → ∞ in the inequality (4.4) and imposing the continuity of Λ in
D, we obtain Λ(x∗) = 0. At last, we check the uniqueness of x∗ as a solution
of the equation Λ(x) = 0 in T(x0,

2
K1ζ

− kλ) ∩D. First, it is clear that

2

K1ζ
− kλ =

(
2

α0
− k

)
λ >

1

α0
λ > kλ

by the fact that k < 1/α0 and thus x∗ ∈ T(x0, kλ) ⊆ T(x0,
2

K1ζ
− kλ) ∩ D.

Suppose that z∗ is another solution of Λ(x) = 0 in T(x0,
2

K1ζ
− kλ) ∩ D. By

Taylor’s expansion, we obtain

0 = Λ(z∗)− Λ(x∗) =

∫ 1

0

F ′((1− r)x∗ + rz∗)dr(z∗ − x∗).(4.5)

Now, since

||Γ0|| ||
∫ 1

0

[Λ′((1− r)x∗ + rz∗)− Λ′(x0)]dr||

≤ K1ζ

2

[
kλ+

2

K1ζ
− kλ

]
= 1,

which implies that
∫ 1

0
Λ′((1 − r)x∗ + rz∗)dr is invertible and thus z∗ = x∗.

Furthermore, taking m → ∞ in the relation (4.2), we get the inequality (4.1)
and it can be also written as

||xk − x∗|| ≤ f1(α0)λ

ϱ
1
5 (1− f2(α0)f3(α0, β0, χ0))

(ϱ
1
5 )6

k

,(4.6)

which confirms that the scheme (1.1) has at least six R-order of convergence.
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5. Alternative Computational Efficiency

For analyzing efficiency of any considered iterative scheme for nonlinear
systems, commonly used measures are the so called classical efficiency index
initiated by Ostrowski [9] and the computational efficiency index suggested by
Traub [12]. Recently Grau et al. [6] revisited computational efficiency concept.
In this portion, we are going to compare Grau’s alternative computational ef-
ficiency of the presented method with schemes of the same order, as well as
schemes of different orders, whose semilocal convergence was previously dis-
cussed in the literature. After comparison, we observed that the presented
method has better computational efficiency compared to schemes of the same
order and of lower orders, which does not happen always in the case of nonlin-
ear systems and that is the motivation behind considering this scheme in the
present study.

The computational cost for a system of nonlinear systems of m variables is
given by [6]

C(µ0, µ1,m) = µ0a0m+ µ1a1m
2 + P (m),(5.1)

where a0 and a1 represent the number of scalar functions of Λ and Λ′ respec-
tively, P (m) is the number of product per iteration and µ0 and µ1 are the ratios
between products and evaluations required to express the value of C(µ0, µ1,m)
in term of products. The expression for P (m) is given by

P (m)

=
m(2p1m

2 + (3p1(k + 1) + 6p2)m+ 6p0 + p1(3k − 5) + 6p2(k − 1))

6
.(5.2)

where p0, p1 and p2 denote the number of scalar products, the number of
complete resolutions of the linear system and the number of resolution of two
triangular systems per iteration, respectively, while k is the number of equiv-
alent products for one division. The efficiency index (one can see [5]) of an
iterative method is defined by E = d1/C , where d is the convergence order and
C is the computational cost per iteration. In order to compare the alterna-
tive computational efficiency of the presented method (1.1) denoted by (M61),
consider sixth-order method by Wang et al. [13] denoted by (M62), fifth-order
method by Chen et al. [2] denoted by (M53) and fourth-order method by
Hernández and Salanova [7] denoted by (M44). Method M62 is given by

uk = xk − ΓkΛ(xk),

yk = xk +
2

3
(uk − xk),

zk = xk − [6Λ′(yk)− 2Λ′(xk)]
−1[3Λ′(yk) + Λ′(xk)]ΓkΛ(xk),

xk+1 = zk −
[
3

2
Λ′(yk)

−1 − 1

2
Γk

]
Λ(zk).(5.3)
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M53 is written as

uk = xk − ΓkΛ(xk),

yk = xk +
1

2
(uk − xk),

zk = xk − [Λ′(yk)]
−1Λ(xk),

xk+1 = zk − [3Λ′(yk)− 2Λ′(xk)]
−1Λ′(yk)ΓkΛ(zk)(5.4)

and lastly Method M44 is defined as

yk = xk − ΓkΛ(xk),

zk = xk +
2

3
(yk − xk),

xk+1 = yk − 3

4

[
I +

3

2
H(xk)

]−1

H(xk)(yk − xk).(5.5)

Denoting the efficiency indices of the methods Mdi (d = 6, 5, 4 and i =
1, 2, 3, 4) by Edi and computational cost by Cdi, then taking into account the
above considerations, we obtain
C61 = m(4m2 + (12µ1 + 6k + 8)m+ 12µ0 + 18k + 2)/6 and E61 = 61/C61,
C62 = m(6m2 + (12µ1 + 9k + 11)m+ 12µ0 + 21k + 3)/6 and E62 = 61/C62,
C53 = m(6m2 + (12µ1 + 9k + 10)m+ 12µ0 + 15k − 3)/6 and E53 = 61/C53,
C44 = m(4m2 + (12µ1 + 6k + 7)m+ 6µ0 + 12k + 2)/6 and E44 = 61/C44.

By virtue of the above values, we can state the following theorem:

Theorem 5.1. For all m ≥ 2, µ0 > 0, µ1 > 0 and k ≥ 1 we have
(i) E61 > E62,
(ii) E61 > E53,
(iii) E61 > E44.
Otherwise efficiency comparison depends upon m, µ0, µ1 and k.

Now we plot the graph for the results of the Theorem 5.1 for the particular
triplet (µ0, µ1, k) = (1, 1, 1). In the graph dotted lines represent method M61
and continuous lines represent method M61; red are for M62; green for M53
and pink for M44, respectively.

6. Numerical Results

In this portion, we start with the nonlinear integral equation Λ(x) = 0,
where

Λ(x)(s) = x(s)− 4

3
+

1

2

∫ 1

0

s cos(x(r))dr,(6.1)

where s ∈ [0, 1], x ∈ D = T(0, 2) ⊂ B1 and B1 = C[0, 1] with the max-norm,
and it is given by

||x|| = max
s∈[0,1]

|x(s)|.
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Figure 1: Plots for E-values of M61, M62, M53 and M44 for m = 2, 3, ..., 10.

Figure 2: Plots for E-values of M61, M62, M53 and M44 for m = 12, 14, ..., 20.

Figure 3: Plots for E-values of M61, M62, M53 and M44 for m = 21, 22, ..., 30.
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In view of the equation (6.1), we can easily calculate

Λ′(x)y(s) = y(s)− 1

2

∫ 1

0

s sin(x(r))y(r)dr, y ∈ D,

Λ′′(x)yz(s) = −1

2

∫ 1

0

s cos(x(r))y(r)z(r)dr, y, z ∈ D,

Λ′′′(x)yzw(s) = −1

2

∫ 1

0

s cos(x(r))y(r)z(r)w(r)dr, y, z, w ∈ D.

Obviously

||Λ′′(x)|| ≤ 1

2
= K1, x ∈ D,

||Λ′′′(x)|| ≤ 1

2
= K2, x ∈ D,

and with with K3 = 1/2

||Λ′′′(x)− Λ′′′(y)|| ≤ 1

2
||x− y||, x, y ∈ D.

If we assume x0 = 4/3, then

||Λ(x0)|| ≤
1

2
cos

4

3

and

||I − Λ′(x0)|| ≤
1

2
sin

4

3
.

By virtue of the above inequalities, one can find

||Γ0|| ≤ ζ = 1.94541, ||Γ0Λ(x0)|| ≤ λ = 0.228817, α0 = 0.222571,

β0 = 0.0509278, χ0 = 0.0116531.

Now

f∗(α0) = α0f1(α0)− 1 = −0.705 < 0.

and

f2
2 (α0)f3(α0, β0, χ0) = 0.000469 < 1.

The above relations verified that hypotheses of the Theorem 4.1 hold. The
recurrence relations for the method (1.1) are mentioned in the Table 1. More-
over, the solution x∗ ∈ B(x0,Kλ) = T(4/3, 0.30380...) ⊂ D and it is unique in
T(4/3, 1.4486...) ∩D.
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Table 1: Results of recurrence relations
k λk ζk αk βk χk f2(αk)f3(αk, βk, χk)
0 0.229 1.945 0.223 0.051 0.012 0.001
1 7.553e-5 2.761 1.043e-4 7.877e-9 5.950e-13 1.735e-21
2 1.311e-25 2.761 1.810e-25 2.372e-50 3.110e-75 2.731e-125
3 3.580-150 2.761 4.942e-150 1.770e-299 6.332e-499 4.148e-748

7. Concluding Remarks

In the present article, we have discussed the semilocal convergence analysis
of the sixth order iterative method for solving nonlinear equation in Banach
spaces. The analysis was done using recurrence relation technique. The ex-
istence and uniqueness theorem was established along with its error bound.
The comparison of the alternative computational efficiency was also done with
algorithms of the similar convergence order, as well as algorithms of different
convergence order. Finally, a numerical example has been presented to validate
the theoretical discussions.
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An introduction.

[6] Grau-Sánchez, M., Grau, A., and Noguera, M. On the computational
efficiency index and some iterative methods for solving systems of nonlinear
equations. J. Comput. Appl. Math. 236, 6 (2011), 1259–1266.

[7] Hernández, M. A., and Salanova, M. A. Sufficient conditions for semilocal
convergence of a fourth order multipoint iterative method for solving equations
in Banach spaces. Southwest J. Pure Appl. Math., 1 (1999), 29–40.

[8] Kantorovich, L. V., and Akilov, G. P. Functional analysis, second ed.
Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by
Howard L. Silcock.



16 J. P. Jaiswal

[9] Ostrowski, A. M. Solution of equations and systems of equations. Second
edition. Pure and Applied Mathematics, Vol. 9. Academic Press, New York-
London, 1966.

[10] Parida, P. K., and Gupta, D. K. Recurrence relations for a Newton-like
method in Banach spaces. J. Comput. Appl. Math. 206, 2 (2007), 873–887.

[11] Rall, L. B. Computational solution of nonlinear operator equations. Robert E.
Krieger Publishing Co., Inc., Huntington, N.Y., 1979. Corrected reprint of the
1969 original.

[12] Traub, J. F. Iterative Methods for the Solution of Equations. Chelsea Publish-
ing Company, New York, 1982.

[13] Wang, X., Kou, J., and Gu, C. Semilocal convergence of a sixth-order Jarratt
method in Banach spaces. Numer. Algorithms 57, 4 (2011), 441–456.

[14] Zheng, L., and Gu, C. Semilocal convergence of a sixth-order method in
Banach spaces. Numer. Algorithms 61, 3 (2012), 413–427.

[15] Zheng, L., and Gu, C. Fourth-order convergence theorem by using majorizing
functions for super-Halley method in Banach spaces. Int. J. Comput. Math. 90,
2 (2013), 423–434.

Received by the editors February 25, 2016
First published online January 23, 2019


	Introduction
	Preliminary Results
	Recurrence relations for the scheme
	Semilocal convergence
	Alternative Computational Efficiency
	Numerical Results
	Concluding Remarks

