O. Hadžić and M. Budinčević

A CLASS OF T-NORMS IN THE FIXED POINT THEORY ON PM-SPACES

Abstract In this paper we shall prove some fixed and periodic point theorems for the mapping $H: S \to S$ where the triplet (S, \mathcal{F}, T) is a probabilistic Menger space with continuous T-norm T such that the family $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1, where:

$$T_n(x) = \underbrace{T(T(\ldots T(T(x, x), x), \ldots, x), \quad x \in [0, 1], n \in N}$$

1. In the following text we shall suppose that (S, \mathcal{F}, T) is a Menger space with continuous T-norm T. It is known, further, that if T-norm T is continuous then S is, in the (ε, λ) -topology, a metrisable topological space. The (ε, λ) -topology is introduced by the family:

$$\{U_v(\varepsilon,\lambda)\} \varepsilon > 0, \lambda \in (0,1), v \in S$$

where: $U_v(\varepsilon, \lambda) = \{u \mid F_{u,v}(\varepsilon) > 1 - \lambda\}$. Further, it is known that if T-norm T is continuous then:

$$I \times I = (\bigcup_{k \in K} J_k \times J_k) \cup C (\bigcup_{k \in K} J_k \times J_k) \qquad I = [0, 1]$$

where the set K is at most denumerable, for every $k \in K$ is J_k an open interval, $J_k \cap J_r \neq \emptyset$ for every $k \neq r$ and $T \mid J_k \times J_k = T_k$ is an Archimedean semigroup for every $k \in K$.

In [2] we have proved the following Theorem: Let (S, \mathcal{F}, T) be a Menger space with continuous T-norm T such that every semigroup $T_k(k \in K)$ is strict. If the family $\{T_n(x)\}_{n \in \mathbb{N}}$ is equicontinuous at the point x=1 then there exists a sequence $\{a_n\}_{n \in \mathbb{N}} \subset (0, 1)$ such that $\lim_{n \to \infty} a_n = 1$ and that the family $\{p_n\}_{n \in \mathbb{N}}$ of pseudometrics induces the (ε, λ) -topology, where:

$$\rho_n(x, y) = \sup \{t \mid F_{x, y}(t) \leq a_n\}, \text{ for every } n \in \mathbb{N}$$

and every $x, y \in S$.

Example: Let $\overline{T}(x,y)=x\cdot y$, for every $x,y\in[0,1]$ and let us define T-norm T in the following way:

$$T(x,y) = \begin{cases} 1 - 2^{-m} + 2^{-m-1} \overline{T} (2^{m+1} (x-1+2^{-m}), 2^{m+1} (y-1+2^{-m})), (x,y) \in J_m^2 \\ \min \{x,y\} & (x,y) \notin \bigcup_{m \in \mathbb{N} \cup \{0\}} J_m^2 \end{cases}$$

where $J_m = [1-2^{-m}, 1-2^{-m-1}], m=0, 1, 2, ... [2]$. Then $\{T_n(x)\}_{n \in \mathbb{N}}$ is an equicontinuous family.

Let us denote the set $\{a_1, a_2, \ldots\}$ by S.

Theorem 1 Let (S, \mathcal{F}, T) be a complete Menger space with T-norm T such that the family $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1 and T_k is strict for every $k\in\mathbb{N}$. Further, let M be a closed subset of S and $H:M\to M$ so that the following conditions are satisfied:

a) There exists $g: S \to S$ such that $g^n(a_k) \le b(k) < 1$, for every $n, k \in N$ ($g^n = g(g^{n-1})$), every $(x, y) \in M^2$ and every $\varepsilon > 0$:

$$F_{x,y}(\varepsilon)>g(a_k)\Rightarrow F_{Hx,Hy}(q_k\cdot\varepsilon)>a_k(q_k>0)$$

b) If the mapping $f: N \to N$ is defined by $a_{f(k)} = g(a_k)$ for every $k \in N$ then;

$$\sum_{n=1}^{\infty} (\prod_{s=0}^{n} q_f s_{(k)}) < \infty$$

Then there exists one and only one fixed point x^* of the mapping H and for every $x_0 \in M$:

$$x^* = \lim_{n \to \infty} H^n x_0$$

Proof: First, we shall prove that for every $n \in N$:

(1)
$$\rho_n(Hx, Hy) \leq q_n \rho_{f(n)}(x, y)$$

for every $x, y \in M$, where:

and:

$$\rho_n(x, y) = \sup \{t \mid F_{x, y}(t) \leq a_n\}$$

Suppose, on the contrary, that there exist $n \in N$ and $x, y \in M$ such that:

$$\rho_n(Hx, Hy) > q_n \rho_{f(n)}(x, y)$$

Then there exists t>0 such that:

 $q_n \rho_{f(n)}(x, y) < t$

From (2) and (3) it follows that:

$$(4) F_{Hx, Hy}(t) \leq a_n, F_{x,y}\left(\frac{t}{a_n}\right) > a_{f(n)} = g(a_n)$$

But, if we take in a) that $\varepsilon = \frac{t}{q_n}$, it follows that:

$$F_{Hx, Hy}\left(\frac{t}{q_n}q_n\right)>a_n$$

which is a contradiction in respect to (4). So inequality (1) is satisfied for every $n \in N$ and every $x, y \in M$.

Further, from the conditions:

$$g^{n}(s) \leq b(s) < 1$$
 for every $s \in S$ and $\lim_{n \to \infty} a_{n} = 1$

it follows that there exists for every $k \in \mathbb{N}$, $m(k) \in \mathbb{N}$ such that:

$$a_{m(k)} > b(a_k)$$

From (5) it follows that:

$$a_{fn(k)} < a_{m(k)}$$

and so:

$$\rho_{fn(k)}(x,y) \leq \rho_{m(k)}(x,y)$$

since $a_8 < a_r$ implies $\rho_8 \le \rho_r$ for every $r, s \in N$. Since:

$$\sum_{n=1}^{\infty} (\prod_{s=0}^{n} q_f s_{(k)}) < \infty$$

we can prove, similarly as in [3], that for every $x_0 \in M$ the sequence $\{H^n x_0\}_{n \in N}$ converges to the fixed point $x^* \in M$ of the mapping H. Also, it follows that x^* is the only fixed point of the mapping H.

Theorem 2 Let (S, \mathcal{F}, T) be a compact Menger space with continuous T-norm T such that the family $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1 and T_k is strict for every $k \in K$. Further, let H be such a mapping from S into S that there exist $n \in \mathbb{N}$ and t > 0 so that:

$$F_{x,y}(\varepsilon) > a_n \Rightarrow F_{Hx,Hy}(t) \geqslant F_{x,y}(t)$$
, for every $t>0$

If $F_{x,y}(\varepsilon) > a_n$ then there do not exist $m \in \mathbb{N}$ and t > 0 such that:

$$F_{Hx, Hy}(t)>a_m>F_{x, y}(t)$$

Proof: The proof is similar to the proof of Theorem 4.3 from [1]. Suppose that $F_{x,y}(\varepsilon) > a_n$. Then $\rho_n(x,y) < \varepsilon$ and let $m \in N$ and $\delta > 0$. If:

$$t = \rho_m(x, y) + \delta$$

then we have:

$$F_{Hx, Hy}(t) \geqslant F_{x, y}(t) > a_m$$

and so:

$$\rho_m(Hx, Hy) < t = \rho_m(x, y) + \delta$$

which implies, since δ is an arbitrary positive real number, that:

$$\rho_m(Hx, Hy) \leq \rho_m(x, y)$$
 for every $m \in N$.

So from Theorem 2.3 [1] it follows that for every $m \in N$:

(6)
$$\rho_m(Hx, Hy) = \rho_m(x, y)$$

Suppose now that for some $m \in N$ and t > 0:

$$F_{Hx, Hy}(t)>a_m>F_{x, y}(t)$$

Then $\rho_m(Hx, Hy) < t$ and $\rho_m(x, y) \ge t$ i.e.:

$$\rho_m(Hx, Hy) < \rho_m(x, y)$$

which is a contradiction with (6).

Corollary [1] Let (S, \mathcal{F}, \min) be a compact Menger space and $H: S \to S$ such that there exist $\varepsilon > 0$ and $\delta, \delta \in (0, 1)$, so that:

$$F_{x,y}(\varepsilon) > \delta \Rightarrow F_{Hx,Hy}(t) \geqslant F_{x,y}(t)$$
 for every $t > 0$

Then $F_{x,y}(\varepsilon) > \delta$ implies $F_{Hx,Hy}(t) = F_{x,y}(t)$, for every t > 0.

Proof: If t=min then for the sequence $\{a_n\}_{n\in\mathbb{N}}$ we can take any sequence of real numbers from the interval (0,1) such that $\lim_{n\to\infty} a_n=1$. So if we suppose that:

$$F_{x,y}(\varepsilon) > \delta$$
 and $F_{Hx,Hy}(t) > F_{x,y}(t)$

for some t>0, then there exists $\eta \in (0, 1)$ such that:

$$F_{Hx, Hy}(t) > \eta > F_{x, y}(t)$$

If we take that $a_1=\delta$ and $a_2=\mu$, we obtain a contradiction with Theorem 2. Similarly as in [1] it is easy to prove the following Theorem.

Theorem 3 Let $H: S \to S$ where (S, \mathcal{F}, T) is a compact Menger space with continuous T-norm T such that the family $\{T_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1 and T_k is strict for every $k \in K$. If there exists $m \in \mathbb{N}$ and $\varepsilon > 0$ such that:

$$F_{x,y}(\varepsilon) > a_m \Rightarrow (\exists \delta > 0) (\forall t \in R_+) (F_{Hx,Hy}(t-\delta) \geqslant F_{x,y}(t))$$

then the set of the periodic point of the mapping H is nonempty.

Now we shall prove a fixed point theorem of Krasnoselski's type in a random normed space.

The triplet (S, \mathcal{F}, T) is a random normed space if S is a vector space, T is a T-norm stronger than T-norm $T_m(T_m(x, y) = \max\{x+y-1, 0\})$ and the mapping $\mathcal{F}: S \Leftrightarrow \Delta^+$ has the following properties:

1.
$$F_p = H \Leftrightarrow p = 0$$
 where $H(x) = \begin{cases} 1 & x > 0 \\ 0 & x \leq 0 \end{cases}$

2. For every $p \in S$, every x>0 and every $\lambda \in \mathcal{K} \setminus \{0\}$, where \mathcal{K} is the scalar field:

$$F_{\lambda p}(x) = F_p\left(\frac{x}{|\lambda|}\right)$$

3. For every $x, y \in S$ and every $\varepsilon_1, \varepsilon_2 > 0$:

$$F_{x+y}(\varepsilon_1+\varepsilon_2)\geqslant T(F_x(\varepsilon_1), F_y(\varepsilon_2))$$

Theorem 4 Let (S, \mathcal{F}, T) be a complete random normed space with T-norm T as in Theorem 1, M be a closed and convex subset of S, $H: M \rightarrow S$ such that all the conditions of Theorem 1 are satisfied, $G: M \rightarrow S$ be a compact mapping and $G(M)+H(M)\subset M$. Then there exists at least one fixed point of the mapping H+G.

Proof: The random normed space (S, \mathcal{F}, T) is, in the (ε, λ) -topology, a locally convex topological vector space with the family of seminorms $\{p_n\}_{n\in\mathbb{N}}$ where:

$$p_n(x) = \sup\{t \mid F_x(t) \leq a_n\}$$

for every $n \in N$ and every $x \in S$. So we can apply Theorem 3 from [3]. It is easy to see that all the conditions of Theorem 3 [3] are satisfied and so:

Fix
$$(H+G) \neq \emptyset$$

REFERENCES

- [1] G. L. Cain and R. H. Kasriel, Fixed and periodic points of local contraction mappings on probabilistic metric spaces, Math. Systems Theory, 9 (1976), 289-297
- [2] O. Hadžić and M. Budinčević, A fixed point theorem on probabilistic metric spaces, Colloquia Mathematica Societatis Janos Bolyai (to appear)
- [3] O. Hadžić and B. Stanković, Some theorems on the fixed point in locally convex spaces, Publ. Inst. Math., T 10(24), (1970), 9-19

O. Hadžić i M. Budinčević

JEDNA KLASA T-NORMI U TEORIJI NEPOKRETNE TAČKE NAD PM-PROSTORIMA

Rezime

U ovom radu su dokazane neke teoreme o nepokretnoj tački kao i teorema o periodičnoj tački za preslikavanje $H:S \to S$, gde je trojka (S, \mathcal{F}, T) verovatnosni Mengerov prostor sa neprekidnom T-normom T tako da je familija $\{T_n(x)\}_n \in N$ podjednako neprekidna u tački x=1, gde je:

$$T^{n}(x) = \underbrace{T(T(\ldots T(T(x,x),x),\ldots,x), x \in [0,1], n \in N}$$

Dobijeni rezultati uopštavaju teoreme do kojih su došli Cain i Kasriel u radu navedenom pod [1].