Olga Hadžić

FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN RANDOM NORMED SPACES

Abstract In this paper we shall prove two fixed point theorems for multivalued mappings in random normed spaces. Theorem 1 is a generalization of the fixed point theorem from [1].

1. The notion of random normed space was introduced in [12] and in [1] and [5] some fixed point theorems in random normed spaces were proved. First, we shall give some definitions and notations.

Let Δ be the set of all distribution functions. A triplet (X, \mathcal{F}, t) of a real or complex linear space X, a mapping $\mathcal{F}: X \to \Delta$ and a T-norm $t \ge T_m$ $(T_m(u, v) = \max\{u+v-1, 0\}$, for every $u, v \in [0, 1]$), is called a random normed space iff it satisfies the following conditions in which F_p denotes the distribution function $\mathcal{F}(p)$:

- (a) $F_p(0)=0$, for all p in X.
- (b) $F_p=H$ iff p=0 X, were:

$$H(u) = \begin{cases} 1 & u > 0 \\ 0 & u \leq 0 \end{cases}$$

(c) If λ is a nonzero scalar then:

$$F_{\lambda p}(u) = F_p\left(\frac{u}{|\lambda|}\right)$$

for all p in X and for all $u \in R$

(d) $F_{p+q}(u+v) \ge t$ $(F_p(u), F_q(v))$, for all p, q in X and for all u>0, v>0. The (ε, λ) -topology on X is defined to be a topology on X determined by

the family of neighbourhoods:

$$\{U_v(\varepsilon,\lambda) \mid \varepsilon > 0, \lambda \in (0,1)\}$$

of each $v \in S$, where:

$$U_v(\varepsilon, \lambda) = \{u \mid F_{u-v}(\varepsilon) > 1 - \lambda\}$$

Let A be a subset of X. The function D_A on R defined by:

$$D_A(u) = \sup \inf F_{p-q}(v)$$

 $v < u \ p, \ q \in A$

is called the probabilistic diameter of A [2]. The set A is said to be a probabilistic bounded if [2]:

$$\sup_{u\in R} D_A(u) = 1$$

Kuratowski's function for a probabilistic bounded subset A of X is the function α_A on R defined by:

 $\alpha_A(u) = \sup \{ \varepsilon > 0 \text{, there is a finite cover } \mathcal{A} \text{ of } A \text{ such that } D_B(u) \geqslant \varepsilon, \text{ for all } B \in \mathcal{A} \}$

The following are proved in [2]:

- 1. $\alpha_A \in \Delta$ for every probabilistic bounded subset A of X
- 2. If A is a probabilistic bounded subset of X then:

$$\alpha_A(u) \geqslant D_A(u)$$
, for all $u \in R$

- 3. If B is a probabilistic bounded subset of X and A is a nonempty subset of B then $\alpha_A(u) \geqslant \alpha_B(u)$, for all $u \in R$
- 4. If A and B are probabilistic bounded subsets of X then for all $u \in R$:

$$\alpha_A \cup_B (u) = \min \{\alpha_A (u), \alpha_B (u)\}$$

5. If A is a probabilistic bounded subset of X then:

$$\alpha_{\overline{A}}(u) = \alpha_{A}(u)$$
, for all $u \in R$

where \overline{A} denotes the closure of A under the (ε, λ) -topology on X.

- 6. A probabilistic bounded subset A of X is a probabilistic precompact if and only if $\alpha_A = H$.
- 7. If (X, \mathcal{F}, t) is a random normed space with T-norm $t=\min$ then:

$$\alpha_A = \alpha_{co} A$$

If $K \subset X$, we shall denote by 2^K the family of all nonempty subsets C of K.

DEFINITION 1 [9] Let X be a Hausdorff topological linear space and $M \subset X$. The set M is said to be admissible iff for every compact subset K of M and every neighbourhood V of zero in X there exists a continuous mapping $h:K \to M$ such that:

- (a) dim (span $(h(K)) < \infty$
- (b) $x-hx \in V$, for every $x \in K$

DEFINITION 2 [4] A mapping $f:K\to 2^K$ $(K\subset X)$ has the almost continuous selection property iff for every neighbourhood V of zero in X there exists a continuous mapping $g_V:K\to K$ such that:

$$g_V(x) \in (f(x)+V) \cap cof(K)$$
 for every $x \in K$

Now we shall prove a generalization of fixed point theorem from [1].

THEOREM 1 Let (X,\mathcal{F},t) be a random normed space with continuous T-norm t, A be a probabilistic bounded, closed and convex subset of X and $f:A\to 2^A$ be a closed mapping with the almost continuous selection property on every convex and compact subset of A and such that the following condition is satisfied:

For every $M \subset A$ such that $\alpha_{\overline{cof}(M)} \leq \alpha_M$ we have that M is relatively compact and for every $M \subset A$ the relation:

$$M = \overline{co} f(M)$$

implies that M is admissible.

Then there exists at least one element $x \in A$ such that:

$$x \in f(x)$$

Proof: First, we shall show that there exists a nonempty set $K \subset A$ such that $K \subset f(K)$. Let us remark that if t is continuous then X is, in the (ε, λ) -topology, a linear topological space.

Let p be an arbitrary element from A and let us define the sequence $\{p_n\}_{n\in\mathbb{N}\cup\{0\}}$ in the following way:

$$p_0=p$$
, $p_n \in f(p_{n-1})$, for every $n \in N$.

Now we shall prove that K is the set of all the limit points of the set A_p where:

$$A_{v} \stackrel{\text{def.}}{=} \{ p_{n} \mid n \in N \}$$

Suppose that A_p is not a relatively compact set. Then we have:

$$\alpha \overline{co}_{f(A_p)} > \alpha_{A_p}$$

On the other hand, from (1) it follows that $A_p \subset \{p_1\} \cup f(A_p)$ and so:

$$\alpha_{A_p} \geqslant \min \{\alpha_{\{p_1\}}, \alpha_{f(A_p)}\} = \alpha_{f(A_p)} \geqslant \alpha_{cof} \alpha_{(A_p)}$$

which is a contradiction. So we have that the set \overline{A}_p is compact and $K \neq \emptyset$. Let us prove that $K \subset f(K)$. Suppose that $q \in K$. Then there exists a sequence $\{q_n\}_{n \in N} \subset A_p$ such that:

$$\lim_{n\to\infty}q_n=q$$

since X is a metrisable topological space. Let $q_n = p_{m_n}$, for every $n \in N$. Then $\{p_{m_n-1}\}_{n\in N} \subset A_p$ and since the set A_p is relatively compact there exists a subsequence $\{n_k\}_{k\in N} \subset N$ such that:

$$\lim_{k\to\infty} p_{mn_k-1}=q^2\in K$$

Further from (2) it follows that $\lim_{k\to\infty} p_{mn_k} = q$ and using the fact that $p_{mn_k} \in f(p_{mn_k-1})$, for every $k \in N$, we conclude that $q \in f(q')$ because the mapping f is closed. So we have that $K \subset f(K) \subset \overline{co} f(K)$. As in [4], let us define the family \mathcal{C} in the following way: $\mathcal{C} = \{Q \mid Q \subseteq A, K \subseteq Q, Q = \overline{co} Q, f(Q) \subset Q\}$.

Then $A \in \mathcal{C}$ and so $\mathcal{C} \neq \emptyset$ and similarly as in [4], it follows that there exists $C \neq \emptyset$, $C \in \mathcal{C}$ such that $C = \overline{co} f(C)$. From this we conclude that C is a convex, compact and admissible subset of A.

Further, the mapping $f \mid C:C \rightarrow C$ has the almost continuous selection property. So for every neighbourhood V of zero in X there exists a continuous mapping $g_V: C \rightarrow C$ such that:

$$g_V(x) \in f(x) + V$$
, for every $x \in C$

From Theorem 1 in [9], it follows that there exists $x_V \in C$ such that: $x_V = g_V(x_V)$ and so:

$$(4) x_V \in f(x_V) + V$$

From (4), as in [4], it is easy to prove, since C is compact, that there exists $x \in C$ such that $x \in f(x)$.

In the following Corollary we shall use the notation:

$$\Phi_n(t,x) = \underbrace{t(t(\ldots t(t(x,x),x),\ldots),x)}, \quad n \in \mathbb{N}, \quad x \in [0,1]$$

COROLLARY 1 Let (X, \mathcal{F}, t) be a random normed space with T-norm t such that the family $\{\Phi_n(t, x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1. Further, let A be a probabilistic bounded, closed and convex subset of X and $f: A \to 2^n$ be a closed mapping which has the almost continuous selection property on every convex and compact subset of A. If:

For every $M \subset A: \alpha_{\overline{cof}(M)} \leq \alpha_M$ implies that M is compact then there exists at least one element $x \in A$ such that $x \in f(x)$.

Proof: In [6] it is proved that X is, in the (ε, λ) topology, a locally convex topological linear space, since the family $\{\Phi_n(t, x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1. In a locally convex space every convex subset is admissible and so all the conditions of the Theorem are satisfied which completes the proof.

COROLLARY 2 Let (X, \mathcal{F}, \min) be a random normed space, A be a probabilistic bounded, closed and convex subset of X and $f: A \to 2^A$ be a closed mapping which has the almost continuous selection property. If:

For every $M \subset A : \alpha_{f(M)} \leq \alpha_M$ implies that M is compact then there exists at least one element $x \in A$ such that $x \in f(x)$.

Proof: If $t=\min$, then the family $\{\Phi_n(t, x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1 since in this case:

 $\Phi_n(t, x) = x$, for every $n \in N$ and every $x \in [0,1]$. Further, if $t = \min$ then $\alpha_A' = \alpha_{\overline{co}A}'$ for every $A' \subset A$ and so all the conditions of Corollary 1 are satisfied.

Let us denote by 2_c^A the family of all convex subsets of A.

COROLLARY 3 Let (X,\mathcal{F},t) be a random normed space with T-norm t such that the family $\{\Phi_n(t,x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1. Further, let A be a probabilistic bounded, closed and convex subset of X and $f:A\to 2_c^A$ be a lower semicontinuous, closed mapping such that the following condition is satisfied:

For every $M \subset A$, $\alpha_{\overline{cof}(M)} \leq \alpha_M$ implies that M is compact. Then there exists at least one element $x \in A$ such that $x \in f(x)$.

Proof: In [11] it is proved that the mapping f has the almost continuous selection property on A and so all the conditions of Corollary 1 are satisfied.

Similarly, we can prove the following Corollary.

COROLLARY 4 Let (X, \mathcal{F}, \min) be a random normed space, A be a probabilistic bounded, closed and convex subset of X and $f: A \rightarrow 2^A_c$ be a lower semicontinuous, closed mapping such that the following condition is satisfied:

For every $M \subset A$, $\alpha_{f(M)} \leq \alpha_M$ implies that \overline{M} is compact. Then there exists at least one element $x \in A$ such that $x \in f(x)$.

Remark: In [8] is given a nontrivial example of T-norm t ($t\neq$ min) such that the family $\{\Phi_n(t,x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1.

2. In [5] the following fixed point theorem is given.

THEOREM A Let (S, \mathcal{F}, t) be a complete random normed space with continuous T-norm t, A be a closed subset of S and $H: A \rightarrow A$ be a continuous mapping such that the following two conditions are satisfied:

- 1. For every $x \in A$ there exists $n(x) \in N$ such that for every $y \in A$, $F_{H^{n(x)}x-H^{n(x)}y}(q\varepsilon) \geqslant F_{x-y}(\varepsilon)$, for every $\varepsilon > 0$ where $q \in (0,1)$.
 - 2. There exists $x_0 \in A$ such that $\sup_{x_0} G_{x_0}(\varepsilon) = 1$, where:

$$G_{x_0}(\varepsilon) = \inf \{ F_{H^{\varepsilon}_{x_0 - x_0}}(\varepsilon) \mid s \in N \}, \text{ for every } \varepsilon > 0.$$

Then Fix $H=\{x\}$, where $x=\lim x_n, x_n=H^{n(x_{n-1})}x_{n-1}, n\in \mathbb{N}$.

Let us denote by $\mathcal{R}(M)$ the family of all nonempty and convex subsets of M where M is a subset of a topological vector space.

THEOREM B [3] Let E be a Hausdorff topological vector space, M be a nonempty, convex and compact subset of E, $\Phi: M \to \mathcal{R}(M)$ be an upper semicontinuous mapping such that for every $y \in M$ the set:

$$\Phi^{-1}(y) = \{x \mid y \in \Phi(x)\}$$

is open. Then there exists at least one fixed point of the mapping Φ .

Now we shall prove a fixed point theorem for mapping $H+\Phi$ where H is a singlevalued and Φ is a multivalued mapping.

THEOREM 2 Let (S, \mathcal{F}, t) be a complete random normed space with continuous T-norm t, M be a nonempty, convex and compact subset of S, H be a linear mapping from S into S, $\Phi: M \to \mathcal{R}(S)$ be an upper semicontinuous mapping such that $HM + \Phi M \subseteq M$ and that the following conditions are satisfied:

- (i) One of the following two conditions is satisfied:
 - a) For every $x \in M$ there exists $n(x) \in N$ such that for every $y \in M$ and every $\varepsilon > 0$:

$$F_{H}^{n(x)}(x) = H^{n(x)}(q\varepsilon) \geqslant F_{x-y}(\varepsilon)$$
, where $q \in (0,1)$.

b) There exists $n \in N$ such that:

$$F_{H}n_{x-H}n_{y}(\varepsilon) \geqslant F_{x-y}(\varepsilon)$$
, for every $x, y \in M$ and every $\varepsilon > 0$.

(ii) For every $y \in S$ is the set $\Phi^{-1}(y)$ open.

Then there exists at least one fixed point of the mapping $H+\Phi$.

Proof: For every $y \in \overline{\Phi(M)}$, we shall define the mapping $G_y: M \to M$ in the following way:

$$G_y(x) = Hx + y$$
, for every $y \in \overline{\Phi(M)}$

Since:

$$G_y^n u = H^n u + \sum_{k=0}^{n-1} H^k y$$
, for every $n \in \mathbb{N}$, $u \in M$, $y \in \overline{\Phi(M)}$

we have that for every $x \in M$, every $y \in \overline{\Phi(M)}$ and $\varepsilon > 0$ (i) a) implies:

$$F_{G_v^{n(x)}(x)-G_v^{n(x)}(u)}(q\varepsilon) \geqslant F_{x-u}(\varepsilon)$$
, for every $u \in M$

for every $(x_1, x_2, \varepsilon) \in M \times M \times (0, \infty)$. First, we shall suppose that $k \in (0,1)$. Since T-norm t is continuous, S is a Hausdorff topological linear space and so it follows that the compact set M is bounded in the (ε, λ) -topology. We shall show that for every $y \in \Phi(M)$ all the conditions of Theorem A are satisfied. Let V be an arbitrary neighbourhood of zero in S in the (ε, λ) -topology. Then there exists $\delta > 0$ such that $M \subseteq \delta V$. Let us suppose that:

$$V = \{x \mid F_x(\varepsilon) > 1 - \lambda\}$$

Then from $\frac{x}{\delta} \in V$, for every $x \in M$, it follows that:

$$F_{\frac{x}{8}}(\varepsilon) > 1 - \lambda$$
, for every $x \in M$

and so:

$$F_x(\delta \varepsilon) > 1 - \lambda$$
 for every $x \in M$

From this we conclude that for every $x_0 \in M$:

$$\sup_{\bullet} G_{x_o}(\varepsilon) = 1, \text{ for every } y \in \Phi(M)$$

where $G_{x_0,y}(\varepsilon) = \inf \{ F_{G_y^s(x_0) - x_0}(\varepsilon) \mid s \in N \}$

every $y \in \overline{\Phi(M)}$ there exists one and only one element $Ry \in M$ such that:

$$Ry = HRy + y$$

Since the set M is compact it is easy to prove that the mapping $R: \overline{\Phi(M)} \to M$ is continuous, similarly as in [7]. Now we shall define the mapping $R^*: M \to 2^M$ in the following way:

$$R^*x = \bigcup Ry$$
, for every $x \in M$

The mapping R^* is obviously upper semicontinuous since Φ is upper semicontinuous and R is continuous. It remains to prove that R^*x is a convex set, for every $x \in M$. Since the mapping H is affine, it follows that for every $x \in M$ and every α , $\beta \ge 0$ such that $\alpha + \beta = 1$ we have:

(5)
$$R(\alpha y_1 + \beta y_2) = \alpha R y_1 + \beta R y_2$$
, for every $y_1, y_2 \in \Phi x$

Since Φ^* is convex, it is easy to show that R^*x is convex using relation (5). Since the mapping R is a one to one mapping there exists $R^{-1}:R(\Phi(M))\to\Phi(M)$. Further $(R^*)^{-1}y=\{x\mid y\in R^*x\}$ and we shall prove that:

$$(R^*)^{-1}y = \Phi^{-1}(R^{-1}y)$$

Suppose that $x \in (R^*)^{-1}y$. Then $y \in R^*x$ which means that:

$$y \in \bigcup Rz$$

So there exists $z \in \Phi x$ such that y = Rz, $z \in \Phi x$. Then:

$$R^{-1}y = z \in \Phi x$$

and so:

$$x\in\Phi^{-1}\left(R^{-1}y\right)$$

Suppose now that $x \in \Phi^{-1}(R^{-1}y)$. Then $R^{-1}y \in \Phi x$ i. e. $R^{-1}y = z$, $z \in \Phi x$. This implies that y = Rz, $z \in \Phi x$ and so $y \in R^*x$, which means that $x \in (R^*)^{-1}y$. Since $\Phi^{-1}y$ is open for every $y \in S$, we conclude that $\text{Fix } (R^*) \neq \emptyset$. Since $\text{Fix } (R^*) \subseteq \text{Fix } (H + \Phi)$, it follows that for $k \in (0,1)$ is $\text{Fix } (H + \Phi) \neq \emptyset$. Now, suppose (i) b). For every $n \in N$ we shall define the mappings H_n and Φ_n in the following way:

$$H_n x = \lambda_n H x$$
, $\Phi_n x = \lambda_n \Phi(x) + (1 - \lambda_n) x_0$, for every $x \in M$

where $\{\lambda_n\}_{n\in n} \subseteq (0,1)$ and $\lim_{n\to\infty} \lambda_n = 1$. Then for every $m \in N$ and every $x \in M$, $H_m^n x = \lambda_m^n H^n x$ and so:

$$F_{H_{mx-H_{my}}^{n}}(\lambda_{m}^{n}\,\varepsilon)\!=\!F_{\lambda_{m(H}^{n}n_{x-H}^{n}n_{y)}}(\lambda_{m}^{n}\,\varepsilon)\!=\!F_{H}^{n}_{x-H}^{n}_{y}\left(\varepsilon\right)\!\geqslant\!F_{x-y}\left(\varepsilon\right)$$

Since:

$$H_nM + \Phi_nM = \lambda_n (HM + \Phi M) + (1 - \lambda_n) x_0 \subset M$$

and:

$$\Phi_{n}^{-1} y = \{x \mid y \in \Phi_{n}x\} = \{x \mid y \in \lambda_{n}\Phi x + (1 - \lambda_{n}) x_{0}\} =$$

$$= \{x \mid \frac{y - (1 - \lambda_{n}) x_{0}}{\lambda_{n}} \in \Phi x\} = \Phi^{-1} \left(\frac{y - (1 - \lambda_{n}) x_{0}}{\lambda_{n}}\right)$$

there exists, for every $n \in N$, $x_n \in M$ such that $x_n \in H_n x_n + \Phi_n x_n$ This means that there exists $y_n \in \Phi x_n$ so that:

$$x_n = \lambda_n H x_n + \lambda_n y_n + (1 - \lambda_n) x_0$$

Then we have:

$$\lim_{n \to \infty} x_n - Hx_n - y_n = \lim_{n \to \infty} (\lambda_n - 1) Hx_n + (\lambda_n - 1) y_n + (1 - \lambda_n) x_0 = \lim_{n \to \infty} (\lambda_n - 1) (Hx_n + y_n) + (1 - \lambda_n) x_0 = 0$$

since $Hx_n+y_n\subseteq M$ and is bounded. Since M is compact there exists a subsequence $\{n_k\}_{k\in N}$ such that:

$$\lim_{k\to\infty} Hx_{n_k} + y_{n_k} = y^*$$

and so $\lim x_{n_k}=y^*$. Since $y_{n_k} \in \Phi x_{n_k}$ and:

$$\lim_{k\to\infty}y_{n_k}=y^*-Hy^*$$

we have that $y^* - Hy^* \in \Phi y^*$, which means that $y^* \in Fix(\Phi + H)$ and the proof is complete.

REFERENCES

- 1. G. Bocsan: On some fixed point theorems in random normed spaces, Univ. din Timisoara, Seminarul de teoria functiilor si matematici aplicate, A. Spatii metrice probabiliste, 18, 1974
- G. Bocsan and G. Constantin, The Kuratowski Function and Some Applications to the Probabilistic Metric Spaces, Atti Acad. Naz. Lincei, 55, Fasc. 3-4, (1973), 236-240
- F. E. Browder, Fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301
- 4. J. Daneš, Some fixed point theorems, CMUC, 9, 2(1968), 228-235
- O. Hadžić, Fixed point for mappings on probabilistic locally convex spaces, Bull. Math. Soc. Sci. Math. RSR, T 22 (70), N 3., 1978, 287-292
- O. Hadžić, On the (ε, λ) topology of probabilistic locally convex spaces, Glasnik matematički, Vol. 13 (33) (1979), 293-297
- 7. O. Hadžić, Some fixed point theorems for multivalued mappings in topological vector spaces, Glasnik matematički vol. 14 (33) 1980, 113-120
- 8. O. Hadžić and M. Stojaković, On the existence of a solution to the system x = H(x,y), y = K(x,y) in random normed spaces, Zbornik radova Prirodno-matematičkog fakulteta u Novom Sadu, knjiga 1979, 43-48
- 9. S. Hahn and K. F. Pötter, Über Fixpunkte kompakter Abbildungen in topologischen Vektorräumen, Studia Math., 50, (1974), 1-16
- V. Istratescu, Introducere in teoria spatiilor metrice probabiliste cu applicatii, Editura Tehnica, Bucuresti, 1974
- 11. E. Michael, Continous selections, I, Ann. Math., 63 (1956), 361-382
- 12. A. N. Šerstnev, The notion of random normed spaces, DAN SSSR, 149 (2), (1963), 280-283

Olga Hadžić

TEOREME O NEPOKRETNOJ TAČKI ZA VIŠEZNAČNA PRESLIKAVANJA U SLUČAJNIM NORMIRANIM PROSTORIMA

U ovom radu su dokazane sledeće dve teoreme.

TEOREMA 1 Neka je (X,\mathcal{F},t) slučajan normirani prostor sa neprekidnom T--normom t, A verovatnosno ograničen, zatvoren i konveksan podskup od X i $f:A\to 2^A$ zatvoreno preslikavanje sa osobinom gotovo neprekidne selekcije nad svakim konveksnim i kompaktnim podskupom od A i tako da je sledeći uslov zadovoljen: Za svako $M \subseteq A$ tako da je $\alpha \subseteq f(M) \subseteq \alpha M$ sledi da je M relativno kompaktan i za svako $M \subseteq A$ relacija $M = \bigcap f(M)$ implicira da je M dopustiv. Tada postoji bar jedan elemenat $x \in A$ takav da je:

 $x \in f(x)$

TEOREMA 2 Neka je (S,\mathcal{F},t) kompletan normirani prostor sa neprekidnom T-normom t, M je neprazan, konveksan i kompaktan podskup od S, H linearno preslikavanje S u S, $\Phi:M\to\mathcal{R}(S)$ od gore poluneprekidno preslikavanje tako da je $H(M)+\Phi(M)\subseteq M$ i zadovoljeni su sledeći uslovi:

- (i) Jedan od sledeća dva uslova je zadovoljen:
 - a) Za svako $x \in M$ postoji $n(x) \in N$ tako da je za svako $y \in M$ i svako $\varepsilon > 0$:

$$F_{H^{n(x)}_{x-H^{n(x)}_{y}}}(\varepsilon) \geqslant F_{x-y}(\varepsilon)$$
, gde je $q \in (0,1)$

b) Postoji n∈N tako da je:

$$F_{H^{n}x-H^{n}y}(\varepsilon)\geqslant F_{x-y}(\varepsilon)$$
 za svako $x, y\in M$ i svako $\varepsilon>0$

(ii) Za svako $y \in S$ skup $\Phi^{-1}(y)$ je otvoren.

Tada postoji bar jedna nepokretna tačka preslikavanja $H+\Phi$.