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FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS
IN RANDOM NORMED SPACES

Abstract In this paper we shall prove two fixed point theorems for multi-
valued mappings in random normed spaces. Theorem 1 is a generalization of
the fixed point theorem from [1].

1. The notion of random normed space was introduced in [12] and in [1]
and [5] some fixed point theorems in random normed spaces were proved. First,
we shall give some definitions and notations.

Let A be the set of all distribution functions. A triplet (X, 7%, t) of a real
or complex linear space X, a mapping 7 :X—» A and a T-norm ¢ 2Tm (Tm (4, v)=
=max {u+v—1, 0}, for every u, v €[0, 1]), is called a random normed space iff
it satisfies the following conditions in which F, denotes the distribution function
F (p):

(@) Fp(0)=0, for all p in X.

(b) Fp=H iff p=0 X, were:
1 u>0

H(u)=[ 0 u<0

(c) If A is a nonzero scalar then:

Fup(w)= Fp[ I l]
for all p in X and for all ue R

(d) Fprtitv) =t (Fp (w), Fy (v)), for all p, ¢ in X and for all >0, v>0.

The (e, A)-topology on X is defined to be a topology on X determined by
the family of neighbourhoods:

{Us (&, N |60, A€ (0, 1)}
of each v € S, where:

Uy (e, N)={u | Fuyp(e)>1—2}
Let A be a subset of X. The function D4 on R defined by:
D4 (u)=sup inf Fp¢(v)
o<u p, qge A
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is called the probabilistic diameter of A [2]. The set A is said to be a probabilistic
bounded if [2]:

sup D4 (u)=1

ueR

Kuratowski’s function for a probabilistic bounded subset 4 of X is the function
o4 on R defined by:

a4 (u)=sup {¢>0, there is a finite cover o# of A4 such that Dp (u)>¢, for all
BeA

The following are proved in [2]:
1. x4€ A for every probabilistic bounded subset 4 of X
2. If A is a probabilistic bounded subset of X then:

o4 (W) =Da (u), for all ue R

3. If B is a probabilistic bounded subset of X and A is a nonempty subset
of B then a4 (x)>ap (), for all ue R

4. If A and B are probabilistic bounded subsets of X then for all ue R:
«aup (¥)=min {oq (4), a5 ()}

5. If A is a probabilistic bounded subset of X then:
og (W)=o4 (w), for all ue R

where A denotes the closure of A under the (g, A)-topology on X.

6. A probabilistic bounded subset A of X is a probabilistic precompact if
and only if ay=H.

7. If (X, F, t) is a random normed space with T-norm r=min then:
xy=0%co 4
If Kc X, we shall denote by 2K the family of all nonempty subsets C of XK.

DEFINITION 1 [9]) Let X be a Hausdorff topological linear space and Mc X.
The set M is said to be admissible iff for every compact subset K of M and every neighbo-
urhood V of zero in X there exists a continuous mapping h:K—M such that:

(a) dim (span (k (K))<oo
(b) x—hxeV, for every xe K

DEFINITION 2 {4] 4 mapping f:K—2E (K< X) has the almost continuous
selection property iff for every neighbourhood V of zero in X there exists a continuous
mapping gv: K—K such that:

gv (x) € (f (x)4+V)eof (K) for every xe K

Now we shall prove a generalization of fixed point theorem from [1].
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THEOREM 1 Let (X, F, t) be a random normed space with continuous T-norm
t, A be a probabilistic bounded, closed and convex subset of X and f: A—24 be a closed
mapping with the almost continuous selection property on every convex and compact
subset of A and such that the following condition is satisfied:

For every Mc A such that ogor () <oy we have that M 1is relatively com-
pact and for every M < A the relation:

M=co f (M)
implies that M is admissible.
Then there exists at least one element x € A such that:
xef (x)

Proof: First, we shall show that there exists a nonempty set K= A such
that Kcf (K). Let us remark that if ¢ is continuous then X is, in the (g, A)-topo-
logy, a linear topological space.

Let p be an arbitrary element from A and let us define the sequence
{pn}nenuoy in the following way:

po=p, pn€f(pn-1), for every neN.

Now we shall prove that K is the set of all the limit points of the set Ay where:
(1) A,,‘ﬁ{pnlneN}

Suppose that A, is not a relatively compact set. Then we have:

Qcof(4p) = %dp
On the other hand, from (1) it follows that Ap<{p1}uf (4p) and so:
o, >N {e(p,)s %14y } =0f(4p) Z%eof (4p)

which is a contradiction. So we have that the set Ay is compact and K#§. Let
us prove that Kcf(K). Suppose that ge K. Then there exists a sequence
{gn}nen = Ap such that:

2) lim go=¢
N0

since X is a metrisable topological space. Let ¢gn=pm,, for every neN. Then
{Pma-1}nen = Ap and since the set A4, is relatively compact there exists a subse-
quence {ni}renv =N such that:

(3) k]jm pﬂiﬂk—1=q, € K
Further from (2) it follows that lim pm,,—q and using the fact that pyy, € f (Pmn-1)s
]

for every ke N, we conclude that g €f(¢") because the mapping f is closed. So
we have that K<f (K) < co f (K). As in [4], let us define the family € in the follo-
wing way: C={Q | Q< 4,K=Q,0=1c0Q,f(Q)=Q}.

Then A e andso €40 and similarly as in [4], it follows that theré exists
C+#@, Cel such that C=co f(C). From this we conclude that C is a convex,
compact and admissible subset of 4.
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Further, the mapping f| C:C—C has the almost continuous selection pro-
perty. So for every neighbourhood V of zero in X there exists a continuous mapping
gv:C—C such that:

gr(x)ef(x)+V, for every xeC

From Theorem 1 in [9], it follows that there exists xy € C such that: xv=gy (xy)
and so:

) xvef(w)+V
From (4), as in [4], it is easy to prove, since C is compact, that there exists x € C
such thar x e f (x).
In the following Corollary we shall use the notation:
D, (6, x)=t(e(...t( (x5 %) x)y...) %), ne N, x € [0,1]
N

n-times

COROLLARY 1 Let (X, F,t) be a random normed space with T-norm t such
that the family {®y (t, x)}nen is equicontinuous at the point x=1. Further, let A
be a probabilistic bounded, closed and convex subset of X and f: A—24 be a closed
mapping which has the almost continuous selaction property on every convex and com-
pact subset of A. If:

For every McA:amran <oy tmplies that M is compact then there exists
at teact one element x € A such that x ¢ f (x).

Proof: In [6] it is proved that X is, in the (s, A) topology, a locally con-
vex topological linear space, since the family{®, (¢, x)}nen is equicontinuous at
the point x=1. In a locally convex space every convex subset is admissibl= and so
all the conditions of the Theorem are satisfied which completes the proof.

COROLLARY 2 Let (X, F, min) be a random normed space, A be a proba-
bilistic bourded, closed and convex subset of X and f: A—24 be a closed mapping which
has the almost continuous selection property. If:

For every M < A:oayon <o tmplies that M is compact then there exists at least
one element x € A such that: x € f \x).

Proof: If t=min, then the family {®, (¢, x)}nen is equicontinuous at the
point x=1 since in this case:

D, (2, x)=x, for every ne N and every xe [0,1]. Further, if t=min then
o4’ =004’ for every A’ = A and so all the conditions of Corollary 1 are satisfied.
Let us denote by 24 the family of all convex subsets of A.

COROLLARY 3 Let (X, F,t) be a random normed space with T-norm t
such that the family {®n (¢, x)}nen is equicontir uous at the point x=1. Further, let
A be a probabilistic bounded, closed and convex subset of X and f: A—24 be a lower
semicontintious, closed mapping such that the following condition is satisfied:

For every Mc A, ogor (ay <on tmplies that M is compact. Then there exists
at least one element x € A such thar x e f (x).

Proof: In [11] it is proved that the mapping f has the almost continuous
selection property on A and so all the conditions of Corollary 1 are satisfied.

Similarly, we can prove the following Corollary.
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COROLLARY 4 Let (X, F, min) be a random normed space, A be a probabi-
listic bounded, closed and comvex subset of X and f: A—24 be a lower semicontinuous,
closed mapping such that the following condition is _satz'sfied :

For every Mc A, apany <am implies that M is compact. Then there exists
at least one element x € A such that x e f {x).

Remark: In [8] is given a nontrivial example of T-norm ¢ (¢5£min) such
that the family {®n (2, x)}aen is equicontinuous at the point x=1.

2. In [5] the following fixed point theorem is given.

THEOREM A Let (S, F, t) be a complete random normed space with conti-
nuous T-norm t, A be a closed subset of S and H: A—A be a continuous mapping
such that the following rwo conditions are sarisfied:

1. For every xe€A there exists n(x)eN such that for e¢very yeA,
Fyn@),_pgn@,, (g€) > Fo—y (), for every >0 where ge(0,1). .

2. There exists xo€ A such that sup Gg,(c)=1, where:

L

Gz, (e)=inf {Fye, . () |s €N}, for every e>0. :
Then Fix H={x}, where x=1im xn, x4 =H"#D x41, neN.

00
Let us denote by R (M) the family of all nonempty and convex subsets of
M where M is a subset of a topological vector space.

THEOREM B [3] Let E be a Hausdorff topological vector space, M be a non-
empty, convex and compact subset of E, ®: M—R (M) be an upper semicontinuous
mapping such that for every y € M the set:

O (y)={xlye © (%)}
is open. Then there exists at least one fixed point of the mapping D.
Now we shall prove a fixed point theorem for mapping H+® where H is
a singlevalued and ® is a multivalued mapping.

THEOREM 2 Ler (S, F,t) be a complete random normed space with conti-
nuous T-norm t, M be a nonempty, convex and compact subser of S, H be a linear
mapping from S into S, ©: MR (S) be an upper semicontinuous mapping such that
HM+OMc M and that the following conditions are satisfied :

(i) One of the following two conditions is satisfied:

a) For every xc€M there exists n(x)e N such that for every ye M and
every e>0:
Fyn@ n(z)y(qe)ZFH (e), where qe(0,1).
b) There exists ne N such that:

Fyn,_yny (€)= Fo—y (e), for every x, ye M and every e>0.

Z
(ii) For every y € S is the set ®-1(y) open.
Then there extsts at least ovne fixed point of the mapping H-®.

Proof: For every y e ® (M), we shall define the mapping Gy:M—M in
the following way:

Gy (x)=Hx-+y, for every ye ®(M)
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Since:
n—1

Gy u=H" u+ )y H*y, for every neN, ueM, yed>(M)
k=0

we have that for every xeM, every ye ® (M) and >0 (i) a) implies:
Fpa) gy_(@ y (q6) 2 Fa-u(e), for every ue M

for every (x1, x2, €) € M X M x (0, o). First, we shall suppose that ke (0,1). Since
T-norm ¢ is continuous, S is a Hausdotff topological linear space and so it follows
that the compact set M is bounded in the (¢, A)-topology. We shall show that for
every y € O (M) all the conditions of Theorem A are satisfied. Let V be an arbit-
rary neighbourhood of zero in § in the (g, A)-topology. Then there exists 8>0
such that M < 3V. Let us suppose that:

V={x|Fz(e)>1—2}
Then from—;c—e V, for every xe M, it follows that:
Fz(e)>1—), for every xeM
R .

and so:
Fz(8e)>1—A for every xeM

From this we conclude that for every xp e M:
sup Gz, (€)=1, for every ye ® (M)

where Gz,,y (€)=inf {F, (o) 2, (&) |s€N}
every y € @ (M) there exists one and only one element Ry € M such that:
Ry=HRy+y

Since the set M is compact it is easy to prove that the mapping R:® (M)-M
is continuous, similarly as in [7]. Now we shall define the mapping R*: M —2M
in the following way:

R*x=uURy, for every xeM
vedz

The mapping R* is obviously upper semicontinuous since ¢ is upper semicon-
tinuous and R is continuous. It remains to prove that R*x is a convex set, for every
x e M. Since the mapping H is affine, it follows that for every x € M and every
o, 3220 such that «{f=1 we have:

) R (ey1+Pys)=aRy14+BRys, for every 1, yae Ox

Since P* is convex, it is easy to show that R*x is convex using relation (5). Since
the mapping R is a one to one mapping there exists R71:R(® (M))->d (M).
Further (R*)"ly={x | y € R*x} and we shall prove that:

(R*)yly=0-1(R1y)
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Suppose that x € (R*)-1y. Then y € R*x which means that:

y€euURe
. zedzx
So the'-e exists ze @ x such that y=Rz, 2 Ox. Then:
Rly=z2e Ox
and so:
xe O1(RY)

Suppose now that x € ®-1(R-1ly). Then Rlye ®x i.e. R-ly=2, ze ®x, This
nnphes that y=Rz, z € ®x and so y € R*x, which means that x € (R*)~ly. Since
®-ly is open for every y € S, we conclude that Fix (R*)#8. Since Fix (R*)c
c Fix (H4 ®), it follows that for ke (0,1) is Fix (H4®)+#0. Now, suppose
(i) b). For every ne N we shall define the mappings H, and ®, in the
following way:

Hpyx=3Hx, ©Opx=2,@ (x)+(1—2n)x0, for every xe M
where {)\,.},.e,.g(ogl) and lim An=1. Then for every meN and every xeM,
Hix=7H"x and so: e

Epn o ity O €)=F 1 yny_pn (A, € =Faz-p"y ()2 Fz-y (€)

HaMA @M=y (HM+®M)+(1—2y) xoc M

Since:

and:
Ol y={x1ye Onx}={x|y € M Px+(1—2s) x0} =
={x y—(1—2) %0 € (I)x}=(l)“1 (y_(l_)‘ﬂ) X0 ]
An An

there exists, for every ne N, x, € M such that x, € Hpxy+ Qpxp
This means that there exists y, € ®x, so that:

xn':)men‘{“)\nyn‘{“(l _7\15) X0

Then we have:
En xn—Hxn—yn=”lim (Aa—1) Hxz+-(a—1) ya-+-(1—2z) x0=
" =”lin°: (An—1) (Hxn+y2)+(1—2n) x0=0
since Hxp+yn S Mand is b:unded. Since M is compact there exists a subsequence

{ni}ren such thart:
lim Hxpy +Yn=y*
k-0

and so lim xp,=y*. Since yp, € Px,, and:
k>0

Lim yp,=y*— Hy*

koo

we have that y*— Hy* € ®y*, which means that y* € Fix (04 H) and the proof
is complete.
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Qlga Hadlié

TEOREME O NEPOKRETNOJ TACKI ZA VISEZNACNA
PRESLIKAVANJA U SLUCAJNIM NORMIRANIM PROSTORIMA

U ovom radu su dokazane sledeée dve teoreme.

TEOREMA 1 Neka je (X, F, t) sluéajan normirani prostor sa neprekidnom T —-normom t, A vero-
vatnosno ograniéen, zatvoren i konveksan podskup od X i f:A—24 zatvoreno preslikavanje sa oso-
binom gotovo neprekidne selekcije nad svakim konveksnim 1 kompaktnim podskupom od A i tako da
Jje slededi uslov zadovoljen: Za svako M C A rako da je aco 5 (ap<opq sledi da je M relativno kompak
tan i za svako MCA relaciia M= f (M) implicira da je M dopustiv. Tada postofi bar jedan
elemenat x€ A takav da je:

xef(x)

TEOREMA 2 Neka je (S,F,t) kompletan normirani prostor sa neprekidnom T-normom t, M je
neprazan, konveksan i kompaktan podskup od S, H linearno preslikavanje S u S, © :M—R(S) od
gore poluneprekidno preshikavanje tako da je H(M)+® (M)SM i zadovoljeni su slede& wuslovi:
(i) Jedan od sledeéa dva uslova je zadovoljen:
a) Za svako xe M postoji n(x)e N tako da je za svako ye M i svako e>0:

Fyn@),  n@(€)=Fz_y (€), gde je g€ (0,1)
b) Postoji ne N tako da je:
Fan_Hny(s)ZFz_y (e) za svako x, ye M i svako ¢>0
(i) Zg svako vy € S skup O~ (¥) je orvoren.

Tada postoji bar jedna nepokretna talka preslikavanja H-D.



