In this paper we shall prove two fixed point theorems for mapping $H\colon M\to S(M\subset S)$ where $(S,\mathcal F,t)$ is the random normed space $(\mathcal U,\mathcal F,T_m)$, $\mathcal U$ is the set of classes of random variables $\xi\colon\Omega\to X$ which are equal with probability one, $(\Omega,\mathcal K,P)$ is a complete probability measure space, $(X,\|\,\|)$ is a separable Banach space and $\mathcal F\colon X\to\Delta^+$ is defined by: \[ \mathcal F_\xi(x)=P\{\omega\midmegaımega,\|\xi(mega)\|<x\},\quad xı R \]