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A NOTE ON COMPUTING BAYESIAN TOLERANCE
INTERVALS IN EXPONENTIAL DISTRIBUTION

BASED ON k-RECORD VALUES

S.M.T.K. MirMostafaee12 and M. Naghizadeh Qomi3

Abstract. The problem of finding tolerance intervals receives much
attention in research and is widely applied in industry. A tolerance in-
terval is a random interval that covers a proportion of the considered
products with a specified confidence level. In this paper, we obtain equi-
tailed two-sided Bayesian tolerance intervals based on k-record values.
We compare the lengths of the proposed Bayesian tolerance intervals for
different values of the parameters of the prior distribution in an illustra-
tive example. Finally, some concluding remarks are given.
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1. Introduction

Tolerance intervals (TIs) have applications to many applied scientific fields
especially quality control when the quality of products must be checked. In a
production process, a producer may be interested in finding an interval that
contains a specified (usually large) proportion of products with a determined
confidence level. The producer knows that a specified proportion of the prod-
ucts must be accepted in the sense that the quality characteristics of the prod-
ucts must conform to the lower and upper specification limits, otherwise a great
loss may be made. In fact, if the obtained tolerance limits (TLs) are inside the
specification limits, then it can be concluded, with a determined confidence
level, that at least a specified proportion of the products conforms to the con-
sidered criteria. We note that confidence intervals (CIs) possess information
about the unknown parameters of a population while TIs provide information
about the population units.

Wilks [20] was among the first papers on TIs. Wald and Wolfowitz [18],
Weissberg and Beatty [19], Howe [9] and Krishnamoorthy et al. [11] worked
on TIs for the normal distribution. Hall [8] and Tang and Chang [17] focused
on finding TIs for logistic and inverse Gaussian distributions, respectively. Kr-
ishnamoorthy and Mondal [12] presented a method that improves tolerance
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regions for the multivariate normal distributions. Mbodj and Mathew [13]
discussed approximate elliptical tolerance regions for multivariate normal pop-
ulations. Goodman and Madansky [7] and Engelhardt and Bain [5] worked on
TIs and TLs for the exponential distribution. Fernández [6] extended the work
of [7] using Bayesian approaches. Jiong and Xiangzhong [4] obtained two-sided
TIs based on complete samples for the exponential distribution. MirMostafaee
et al. [14] discussed TLs for minimal repairs of a series system with Rayleigh
distributed components.

When we deal with sequential experiments, an observation which is larger
(or smaller) than its previous observations may be of interest. Such an obser-
vation is called an upper (lower) record value. Record data are of importance
since in many sequential experiments, only the record values are recorded and
the complete sample is not available. Such experiments may include athletic
events, geophysics surveys and reliability and quality control experiments. Sup-
pose that {Xi : i ≥ 1} constitutes a sequence of random variables, then Xj is
an upper record if its value is larger than all its previous observations, in other
words, if Xj > max{X1, · · ·Xj−1}, j ≥ 2. The first observation of the sequence
is also the first (trivial) record according to the definition of records. Lower
records are defined similarly.

However, as [1] pointed out, the record data are rare in practical situations
and a sample of size n may yield only log n records. This problem can be fixed
by considering k-records instead, see for example [1]. Upper k-record values
are defined as an extension of upper record values and they constitute the k-th
largest values yet seen in a sequence of observations.

Let us denote the m-th upper k-record time by T k
m, then T k

1 = k and for
m ≥ 2

T k
m = min{j : j > T k

m−1, Xj > XTk
m−1−k+1:Tk

m−1
},

where Xi:m stands for the i-th order statistic from a sample of size m. Then the
m-th upper k-record, denoted by Rm(k), is defined as Rm(k) = T k

m − k + 1 : T k
m

for m = 1, 2 3, · · · . For k = 1, the ordinary records are recovered. The lower
k-records can be defined similarly.

Let R1(k), R2(k), · · · , Rm(k) be a sequence of upper k-records from an ar-
bitrary continuous distribution with probability density function (pdf) f and
cumulative distribution function (cdf) F . Then the joint pdf of R1(k), R2(k),
. . . , Rm(k) is

(1.1) fR1(k),R2(k),··· ,Rm(k)
(x1, · · · , xm) = km[1− F (xm)]k

m∏
i=1

f(xi)

1− F (xi)
,

for x1 < x2 < · · · < xm.
The marginal pdf of the m-th upper k-record value, Rm(k), is given by

(1.2) fRm(k)
(x) =

km

(m− 1)!
[1− F (xm)]k−1[− log(1− F (x))]m−1f(x).

Interested readers may consult [2] for more details regarding k-records and
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their applications. From now on, we will use the word “k-records” instead of
“upper k-records” for the sake of convenience.

We say that a random variable X has an exponential distribution with
parameter θ if its pdf can be expressed as

(1.3) f(x|θ) = 1

θ
exp

(
−x

θ

)
, x > 0, θ > 0.

Recently, Naghizadeh and Kiapour [15] discussed the problem of finding short-
est TIs for the exponential distribution based on record data using an approach
suggested by [16]. Kiapour and Naghizadeh [10] extended the work of [15]using
Bayesian methods. In this paper, we wish to apply another approach to finding
Bayesian TIs. This approach is due to [7] and will be detailed later in Section
2. The rest of the paper is arranged as follows. The main results are given in
Section 2. A real data example is presented in Section 3 to illustrate the results
developed in Section 2. Finally, the paper ends with some remarks.

2. Main results

Let {Xi : i ≥ 1} be a sequence of independent and identically distributed
(iid) random variables coming from the exponential distribution with parameter
θ and the pdf given in (1.3). Moreover, suppose that R = (R1(k), R2(k),
. . . ,Rm(k)) is the set of the first m k-records extracted from the sequence {Xi :
i ≥ 1} and r = (r1, r2, · · · , rm) is the observed set of R. Then from (1.1), the
likelihood function for θ, given R = r, is given by

L(θ|r) =
(
k

θ

)m

exp

(
−k rm

θ

)
, 0 < r1 < r2 < · · · < rm, θ > 0.

Upon differentiating the likelihood function and equating the result with zero,

the maximum likelihood estimator (MLE) of θ is obtained as θ̂ =
k Rm(k)

m
.

Note that from (1.2), the pdf of Rm(k) is given by

fRm(k)
(rm) =

1

Γ(m) (θ/k)m
rm−1
m e−

rm
θ/k , rm > 0.

ThusRm(k) ∼ Gamma(m, θ/k) and consequently the quantity 2m θ̂
θ = 2

θ/kRm(k)

possesses a chi square distribution with 2m degrees of freedom.
Now, let us take the conjugate prior inverse gamma distribution,

IGamma(a, b), with pdf

(2.1) π(θ) =
ba exp(−b/θ)

Γ(a)θa+1
, a, b, θ > 0,

as the prior distribution for θ. The hyperparameters a and b are positive
numbers that can be determined from prior knowledge about θ. For example,
one can derive the hyperparameters from the prior mode, prior mean (provided
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that b > 1) and/or prior standard deviation (provided that b > 2) of θ, which

are M(θ) = a
b+1 , E(θ) = a

b−1 and D(θ) = E(θ)√
b−1

, respectively.

The posterior distribution of θ given the k-record values, r, becomes

(2.2) π(θ|r) =
(mθ̂ + b)a+m exp(− b+mθ̂

θ )

Γ(a+m)θa+m+1
, θ > 0.

In other words, θ|R = r has an inverse gamma distribution with parameters

a + m and b + mθ̂. The posterior mode is then equal to θ̂mod = b+mθ̂
a+m+1 =

kRm(k)+b

a+m+1 which can be considered as the generalized MLE of θ.
The random interval (L, U) ≡ (L(R), U(R)) is a two-sided β-content

Bayesian TI with confidence level 1− α if

Pr[F (U)− F (L) ≥ β|R] = 1− α,(2.3)

where F is the considered cdf (here F is the cdf of exponential distribution) and
α, β ∈ (0, 1). In fact, (L, U) which satisfies (2.3), contains at least a proportion
β of the population with confidence 1 − α. We consider equi-tailed two-sided
Bayesian TIs of the form (L(R), U(R)) = (c1θ̂mod, c2θ̂mod) where θ̂mod is the
mode of the posterior distribution and c1, c2 ≥ 0 are called tolerance factors.
For finding the factors c1 and c2, we take the limit as a, b → 0 in (2.1) which
is equivalent to the Jeffrey’s prior with the following density

π(θ) ∝
√
I(θ) ∝ 1

θ
, θ > 0,

where I(θ) is the Fisher information. Then, by imposing the equal-tailedness
condition (see [7]), i.e. Prθ̂(X < L) = Prθ̂(X > U), we arrive at the following
expression ∫ c1θ̂mod

0

1

θ̂
exp

(
−x

θ̂

)
dx =

∫ ∞

c2θ̂mod

1

θ̂
exp

(
−x

θ̂

)
dx,

which is equivalent to

1− exp

(
−c1

θ̂mod

θ̂

)
= exp

(
−c2

θ̂mod

θ̂

)
.(2.4)

From (2.4) and by noting the fact that θ̂mod =
mθ̂

m+ 1
when a = b = 0, we

obtain

c2 = −m+ 1

m
ln

[
1− exp

(
− m

m+ 1
c1

)]
.(2.5)

It is clear that c2 is a decreasing function of c1. From (2.3), we have

Pr
[
F (c2θ̂mod)− F (c1θ̂mod) ≥ β

∣∣R] = 1− α,



A note on computing Bayesian tolerance intervals 27

where F is the cdf of the exponential distribution. Therefore, we have

Pr

[
exp

(
−c1

θ̂mod

θ

)
− exp

(
−c2

θ̂mod

θ

)
≥ β

∣∣∣∣R
]
= 1− α.

By considering Z =
θ̂mod

θ
and from (2.5), we get

(2.6) Pr

exp(−c1 Z)−
{
1− exp

(
− mc1
m+ 1

)}− (m+1)Z
m

≥ β

∣∣∣∣R
 = 1− α.

Let

g(c1, z) = exp(−c1 z)−
{
1− exp

(
− mc1
m+ 1

)}− (m+1)z
m

,

then g(c1, z) is a unimodal positive function with respect to z and attains its
unique maximum value when z = z0 where

z0 =
ln c1 − ln

[
− ln

(
1− exp

(
− mc1

m+1

))]
c1 +

m
m+1 ln

(
1− exp

(
− mc1

m+1

))
Therefore from (2.6), we have

(2.7) Pr [z1 < Z < z2|R] = 1− α,

where

(2.8) g(c1, zi) = β, i = 1, 2.

Note that

2(a+m+ 1)Z = 2(a+m+ 1)
θ̂mod

θ

= 2(a+m+ 1)
(mθ̂ + b)/(a+m+ 1)

θ

=
2(mθ̂ + b)

θ
.

As θ|R ∼ IGamma(a+m,mθ̂+b), we simply find out that 2(a+m+1)Z|R ∼
χ2(2(a+m)) where χ2(v) stands for the chi square distribution with v degrees
of freedom. Thus equation (2.7) becomes equivalent to the following equation

(2.9)

∫ z2

z1

(a+m+ 1)a+m

Γ(a+m)
za+m−1 exp{−(a+m+ 1)z}dz = 1− α.

The tolerance factor c1 is obtained by solving the non-linear equations (2.8) and
(2.9) through choosing suitable initial values for c1, z1 and z2. The tolerance
factor c2 is then obtained from (2.4).

Table 1 contains the Bayesian tolerance factors c1 and c2 for selected values
of m,β, a and 1− α = 0.95. From Table 1, we find out that



28 S.M.T.K. MirMostafaee, M. Naghizadeh Qomi

• For a fixed value of m, as a increases, c1 increases and c2 decreases.

• For a = 0, as m increases, c1 increases and c2 decreases, whereas for
a ̸= 0, as m increases, both c1 and c2 decrease.

Table 1: The Bayesian tolerance factors c1 and c2 for 1 − α = 0.95 and selected

values of m, β, a.
β = 0.7 β = 0.8 β = 0.9 β = 0.95

m a c1 c2 c1 c2 c1 c2 c1 c2

2 0 0.0017 10.16 1.7 × 10−4 13.58 3.5 × 10−6 19.43 7.1 × 10−8 25.29
10 0.203 3.09 0.12 3.79 0.05 4.98 0.02 6.19
20 0.23 2.90 0.14 3.53 0.07 4.60 0.03 5.67
50 0.25 2.79 0.16 3.39 0.08 4.41 0.04 5.43

3 0 0.015 5.94 0.0035 7.89 2.8 × 10−4 11.26 2.2 × 10−5 14.65
10 0.16 2.83 0.1003 3.49 0.04 4.65 0.016 5.82
20 0.19 2.63 0.12 3.22 0.05 4.22 0.026 5.22
50 0.21 2.51 0.14 3.04 0.07 3.96 0.034 4.87

4 0 0.034 4.52 0.0108 3.34 0.0014 8.44 1.9 × 10−4 10.96
10 0.15 2.70 0.088 3.08 0.035 4.47 0.014 5.61
20 0.17 2.52 0.11 2.90 0.049 4.06 0.022 5.04
50 0.19 2.39 0.12 4.99 0.06 3.79 0.03 4.67

5 0 0.05 3.83 0.018 4.99 0.003 7.04 0.0005 9.13
10 0.14 2.61 0.083 3.24 0.032 4.34 0.0127 5.45
20 0.16 2.44 0.102 3.006 0.044 3.96 0.019 4.93
50 0.18 2.32 0.119 2.82 0.056 3.69 0.027 4.56

6 0 0.06 3.44 0.02 4.44 0.005 6.22 0.001 8.04
10 0.13 2.55 0.07 3.16 0.031 4.24 0.0121 5.33
20 0.15 2.4 0.09 2.94 0.042 3.89 0.018 4.85
50 0.17 2.27 0.113 2.77 0.053 3.63 0.025 4.48

3. A real data example

Consider the following data concerning the times (in minutes) between 24
consecutive telephone calls to a company’s switchboard:

1.34 0.14 0.33 1.68 1.86 1.31 0.83 0.33 2.20 0.62 3.20 1.38

0.96 0.28 0.44 0.59 0.25 0.51 1.61 1.85 0.47 0.41 1.46 0.09.

These data are presented by [3]. The Kolmogorov-Smirnov (K-S) test is used for
checking the adequacy of the exponential distribution with the mean θ = 1.0059
for the above data. The K-S test statistic is obtained to be D = 0.1489 with
a corresponding significant p-value 0.6618. This implies that the exponential
distribution fits the data well. The observed k-records extracted from the
data are presented in Table 2. The Bayesian tolerance intervals for the case
1−α = 0.95, β ∈ {0.9, 0.95} and selected values of a, b, k and m are computed
and summarized in Tables 3 and 4. For example, the (0.95, 0.90)-Bayesian
tolerance interval based on the observed 2-record values and by considering the
Jeffrey’s prior, is obtained to be (0.0005, 0.65). Then, we can state with 95%
confidence that at least 90% of the times between consecutive telephone calls
to this company’s switchboard will be between 0.0005 and 0.65.

From Tables 3 and 4, we observe that the lengths of Bayesian TIs for a
fixed value of m and a = b = 0 are larger than the other cases. Also, for a fixed
value of fixed m, the lengths of the TIs decrease as a increases.
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Table 2: The k-record values extracted from the real data of the example.
m

k 1 2 3 4 5 6
1 1.34 1.68 1.86 2.20 3.20
2 0.14 0.33 1.34 1.68 1.86 2.2
3 0.14 0.33 1.34 1.68 1.86

Table 3: Bayesian tolerance intervals for 1− α = 0.95, β = 0.9 and selected values
of a, b, k and m.

m
k (a, b) 2 3 4 5 6

1 (0,0) (1.9 × 10−6, 10.88) (1.2 × 10−4, 5.13) (0.0006,3.71) (0.001,3.73)
(10,1) (0.01,1.03) (0.008,0.95) (0.007,0.95) (0.008,1.14)
(20,1) (0.008,0.53) (0.006,0.5) (0.006,0.52) (0.007,0.64)
(50,1) (0.004,0.22) (0.003,0.21) (0.004,0.22) (0.004,0.28)

2 (0,0) (7 × 10−6, 4.27) (0.0001,7.52) (0.0009,5.67) (0.002,4.34) (0.0005,0.65)
(10,1) (0.06,0.64) (0.01,1.22) (0.01,1.3) (0.009,1.28) (0.01,1.34)
(20,1) (0.005,0.33) (0.008,0.64) (0.008,0.71) (0.008,0.72) (0.008,0.77)
(50,1) (0.003,0.14) (0.005,0.27) (0.005,0.3) (0.004,0.31) (0.005,0.34)

3 (0,0) (10−5, 6.41) (0.0003,11.32) (0.001,8.5) (0.005,10.91)
(10,1) (0.008,0.76) (0.01,1.67) (0.01,1.8) (0.02,2.79)
(20,1) (0.006,0.4) (0.01,0.88) (0.01,0.98) (0.02,1.79)
(50,1) (0.003,0.16) (0.006,0.37) (0.007,0.42) (0.009,0.68)

Table 4: Bayesian tolerance intervals for 1− α = 0.95, β = 0.95 and selected values
of a, b, k and m.

m
k (a, b) 2 3 4 5 6

1 (0,0) (4 × 10−8, 14.62) (10−5, 6.68) (0.0008,4.82) (0.002,4.84)
(10,1) (0.004,1.27) (0.003,1.19) (0.003,1.2) (0.003,1.43)
(20,1) (0.003,0.66) (0.003,0.62) (0.002,0.64) (0.003,0.8)
(50,1) (0.002,0.27) (0.002,0.26) (0.001,0.27) (0.002,0.34)

2 (0,0) (10−7, 5.56) (0.0004,9.79) (0.0001,7.36) (0.003,5.63) (0.0001,0.84)
(10,1) (0.003,0.79) (0.004,1.53) (0.004,1.63) (0.003,1.6) (0.004,1.69)
(20,1) (0.002,0.41) (0.004,1.8) (0.004,0.88) (0.003,0.89) (0.004,0.97)
(50,1) (0.001,0.17) (0.002,0.33) (0.003,0.37) (0.002,0.38) (0.002,0.42)

3 (0,0) (2 × 10−8, 8.34) (2 × 10−5, 14.72) (0.0001,11.05) (0.008,14.51)
(10,1) (0.003,0.95) (0.006,2.09) (0.005,2.26) (0.008,3.51)
(20,1) (0.003,0.49) (0.005,1.09) (0.005,1.22) (0.007,1.95)
(50,1) (0.002,0.2) (0.003,0.45) (0.003,0.51) (0.005,0.83)
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4. Discussion

In the present paper, we compute two-sided equal-tailed Bayesian toler-
ance intervals for exponential distribution based on k-record values. Tolerance
factors are computed by solving a system of three nonlinear equations using
the Newton’s method via Mathematica version 7. The lengths of the Bayesian
tolerance intervals are compared for different values of the parameter of the
prior distribution in a real data example. The results show that the Bayesian
tolerance intervals with a large value of a have small lengths when m is kept
fixed. Also, the Bayesian tolerance intervals constructed based on Jeffrey’s
priors have larger lengths than those based on informative gamma priors.
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