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Abstract. The object of the present paper is to study almost Ricci
solitons and gradient almost Ricci solitons in 3-dimensional non-cosym-
plectic normal almost contact metric manifolds.

AMS Mathematics Subject Classification (2010): 53C15; 53C25

Key words and phrases: normal almost contact metric manifold; Ricci
soliton; gradient Ricci soliton; almost Ricci soliton; gradient almost Ricci
soliton; η-Einstein manifold

1. Introduction

The study of almost Ricci soliton was introduced by Pigola et. al. [16],
where essentially they modified the definition of a Ricci soliton by adding the
condition on the parameter λ to be a variable function. More precisely, we say
that a Riemannian manifold (Mn, g) is an almost Ricci soliton if there exist a
complete vector field V and a smooth soliton function λ : Mn −→ R satisfying

(1.1) Ric+
1

2
£V g = λg,

where Ric and £ stand, respectively, for the Ricci tensor and Lie derivative.
We shall refer to this equation as the fundamental equation of the almost
Ricci soliton (Mn, g, V, λ). It will be called expanding, steady or shrinking,
respectively, if λ < 0, λ = 0 or λ > 0. Otherwise it will be called indefinite.
When the vector field V is gradient of a smooth function f : Mn −→ R,
the manifold will be called a gradient almost Ricci soliton. In this case the
preceding equation becomes

(1.2) Ric+∇2f = λg,
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where ∇2f stands for the Hessian of f . Sometimes the classical theory of
tensorial calculus is more convenient to make computations. Then, we can
write the fundamental equation in this language as follows:

(1.3) Rij +∇i∇jf = λgij .

Moreover, when either the vector field X is trivial, or the potential f is
constant, the almost Ricci soliton will be called trivial, otherwise it will be
a non-trivial almost Ricci soliton. We notice that when n ≥ 3 and X is a
Killing vector field, an almost Ricci soliton will be a Ricci soliton, since in this
case we have an Einstein manifold, from which we can apply Schur’s lemma to
deduce that λ is constant. Taking into account that the soliton function λ is not
necessarily constant, certainly comparison with soliton theory will be modified.
In particular, the rigidity result contained in Theorem 1.3 of [16] indicates that
almost Ricci solitons should reveal a reasonably broad generalization of the
fruitful concept of a classical soliton. In fact, we refer the reader to [16] to see
some of these changes.

Among the results whose purpose is to better understand the geometry of
almost Ricci soliton, we mention here that Barros and Ribeiro Jr. proved in
[3] that a compact gradient almost Ricci soliton with non-trivial conformal
vector field is isometric to a Euclidean sphere. In the same paper they proved
an integral formula for compact case, which was used to prove several rigidity
results, for more details see [3].

The existence of a Ricci almost soliton has been confirmed by Pigola et.
al. [16] on a certain class of warped product manifolds. Some characterization
of Ricci almost soliton on a compact Riemannian manifold can be found in
([1],[3],[2]). It is interesting to note that if the potential vector field V of
the Ricci almost soliton (M, g, V, λ) is Killing then the soliton becomes trivial,
provided the dimension of M > 2. Moreover, if V is conformal then Mn

is isometric to Euclidean sphere Sn. Thus the Ricci almost soliton can be
considered as a generalization of Einstein metric as well as Ricci soliton.

In [9], authors studied Ricci solitons and gradient Ricci solitons on 3-
dimensional normal almost contact metric manifolds. In [12] authors studied
compact Ricci solitons. Beside these, A. Ghosh [13] studied K-contact and
Sasakian manifolds whose metric is a gradient almost Ricci soliton. Conditions
of K-contact and Sasakian manifolds are stronger than normal almost contact
metric manifolds in the sense that the 1-form η of normal almost contact metric
manifolds are not contact form. So, in this paper we like to study almost Ricci
solitons and gradient almost Ricci solitons on 3-dimensional normal almost
contact metric manifolds which is weaker than K-contact and Sasakian.

The present paper is organized as follows:
After preliminaries in Section 2, in Section 3 we study almost Ricci solitons
in 3-dimensinal non-cosymplectic normal almost contact metric manifolds and
prove that if in such manifolds the metric g admits an almost Ricci soliton
and V is pointwise collinear with ξ, then either the manifold is Sasakian or
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V is constant multiple of ξ and the manifold is an η-Einstein manifold, pro-
vided α, β =constant. In the converse case we prove that if a 3-dimensional
non-cosymplectic normal a.c.m., with α, β =constant, is η-Einstein of the form
S = γg + δη ⊗ η then an almost Ricci soliton (M, g, ξ, λ) reduces to a Ricci
soliton (M, g, ξ, γ + δ). Beside these in this section we also prove that if a
3-dimensional non-cosymplectic normal almost contact metric manifold admits
an almost Ricci soliton (g, ξ, λ), then the manifold is of constant scalar curva-
ture. This section concludes with some interesting corollaries and a remark.
Finally, Section 4 deals with the study of gradient almost Ricci solition (f, ξ, λ)
in a 3-dimensional non-cosymplectic normal almost contact metric manifold
and we prove that in such a manifold λ = (α2 − β2)f holds or the manifold
becomes Sasakian.

2. Preliminaries

Let M be an almost contact manifold and (φ, ξ, η) its almost contact struc-
ture. This means, M is an odd-dimensional differentiable manifold and φ, ξ, η
are tensor fields on M of types (1, 1), (1, 0) and (0, 1) respectively, such that

(2.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0.

Let R be the real line and t a coordinate on R. Define an almost complex
structure J on M × R by

(2.2) J(X,λ
d

dt
) = (φX − λξ, η(X)

d

dt
),

where the pair (X,λ d
dt ) denotes a tangent vector on M × R, X and λ d

dt
being tangent to M and R respectively.

M and (φ, ξ, η) are said to be normal if the structure J is integrable ([5],[6]).
The necessary and sufficient condition for (φ, ξ, η) to be normal is

(2.3) [φ, φ] + 2dη ⊗ ξ = 0,

where the pair [φ, φ] is the Nijenhuis tensor of φ defined by

(2.4) [φ, φ](X,Y ) = [φX, φY ] + φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ],

for any X,Y ∈ χ(M); χ(M) being the Lie algebra of vector fields on M .
We say that the contact form η has rank r = 2s if (dη)s 6= 0 and η∧(dη)s = 0

and has rank r = 2s+ 1 if η ∧ (dη)s 6= 0 and (dη)s+1 = 0. We also say r is the
rank of the structure (φ, ξ, η).

A Riemannian metric g on M satisfying the condition

(2.5) g(φX, φY ) = g(X,Y )− η(X)η(Y ),
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for any X,Y ∈ χ(M), is said to be compatible with the structure (φ, ξ, η).
If g is such a metric, then the quadruple (φ, ξ, η, g) is called an almost contact
metric structure on M and M is an almost contact metric manifold. On such
a manifold we also have

(2.6) η(X) = g(X, ξ),

for any X ∈ χ(M) and we can always define the 2-form Φ by

(2.7) Φ(Y,Z) = g(Y, φZ),

where Y, Z ∈ χ(M).
A normal almost contact metric structure (φ, ξ, η, g) satisfying additionally

the condition dη = φ is called Sasakian. Of course, any such structure on M
has rank 3. Also a three dimensional smooth manifold is said to be a contact
metric manifold if η ∧ dη = 0 and a normal contact metric manifold is said to
be Sasakian [5]. Moreover a normal almost contact metric structure satisfying
the condition dΦ = 0 is said to be quasi-Sasakian [4].

In [14], Olszak studied the curvature properties of normal almost contact
manifolds of dimension three with several examples. A non-trivial example of
three dimensional normal almost contact metric manifold has been given in [7].
Normal almost contact metric manifolds of dimension three have been studied
by several authors such as ([9],[8],[11],[10]) and many others.

For a normal almost contact metric structure (φ, ξ, η, g) on M , we have [14]

(2.8) (∇Xφ)(Y ) = g(φ∇Xξ, Y )− η(Y )φ∇Xξ,

(2.9) ∇Xξ = α[X − η(X)ξ]− βφX,

where 2α = divξ and 2β = tr(φ∇ξ), divξ is the divergent of ξ defined by
divξ = trace{X −→ ∇Xξ} and tr(φ∇ξ) = trace{X −→ φ∇Xξ}. Using (2.9)
in (2.8) we get

(2.10) (∇Xφ)(Y ) = α[g(φX, Y )ξ − η(Y )φX] + β[g(X,Y )ξ − η(Y )X].

Also in this manifold the following relations hold:

R(X,Y )ξ = [Y α+ (α2 − β2)η(Y )]φ2X

−[Xα+ (α2 − β2)η(X)]φ2Y(2.11)

+[Y β + 2αβη(Y )]φX

−[Xβ + 2αβη(X)]φY,

S(X, ξ) = −Xα− (φX)β(2.12)

−[ξα+ 2(α2 − β2)]η(X),
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(2.13) ξβ + 2αβ = 0,

where R denotes the curvature tensor and S is the Ricci tensor.

(2.14) (∇Xη)(Y ) = αg(φX, φY )− βg(φX, Y ).

On the other hand, the curvature tensor in a three dimensional Riemannian
manifold always satisfies

R(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY(2.15)

−r
2

[g(Y, Z)X − g(X,Z)Y ],

where r is the scalar curvature of the manifold.
By (2.11), (2.12) and (2.15) we can derive

S(Y, Z) = (
r

2
+ ξα+ α2 − β2)g(φY, φZ)

−η(Y )(Zα+ (φZ)β)− η(Z)(Y α+ (φY )β)(2.16)

−2(α2 − β2)η(Y )η(Z).

From (2.13) it follows that if α, β =constant, then the manifold is either β-
Sasakian or α-Kenmotsu [18] or cosymplectic [5].

Also we know that a 3-dimensional normal almost contact metric manifold
is quasi-Sasakian if and only if α = 0 ([14],[15]).

An almost contact metric manifold is said to be η-Einstein if its Ricci tensor
S is of the form

(2.17) S = λg + µη ⊗ η,

where λ and µ are smooth functions on the manifold.

3. Almost Ricci Soliton

In this section we consider almost Ricci solitons on 3-dimensional normal
almost contact metric manifolds (M,φ, ξ, η, g) with α, β =constants. In partic-
ular, let the potential vector field V be point-wise collinear with ξ i.e., V = bξ,
where b is a function on M . Then from (1.1) we have

(3.1) g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X,Y ) = 2λg(X,Y ).

Using (2.6) and (2.9) in (3.1), we get

2αb[g(X,Y )− η(X)η(Y )] + (Xb)η(Y ) + (Y b)η(X)(3.2)

+2S(X,Y ) = 2λg(X,Y ).

Putting Y = ξ in (3.2) and using (2.1), (2.6) and (2.12) yields
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(3.3) (Xb) + (ξb)η(X)− 4(α2 − β2)η(X) = 2λη(X).

Putting X = ξ in (3.3) and using (2.1) we obtain

(3.4) ξb = 2(α2 − β2) + λ.

Putting the value of ξb in (3.3) yields

(3.5) db = [λ+ 2(α2 − β2)]η.

Applying d on (3.5) and using d2 = 0, we get

(3.6) [λ+ 2(α2 − β2)]dη + (dλ)η = 0.

Taking wedge product of (3.6) with η, we have

(3.7) [λ+ 2(α2 − β2)]η ∧ dη = 0.

Then either η ∧ dη = 0 i.e., the manifold is Sasakian or

(3.8) λ+ 2(α2 − β2) = 0.

Using (3.8) in (3.5) gives db = 0 i.e., b =constant. Therefore from (3.2) we
have

(3.9) S(X,Y ) = (λ− αb)g(X,Y ) + αbη(X)η(Y ).

In view of (3.9) we state the following:

Theorem 3.1. If in a 3-dimensional non-cosymplectic normal almost contact
metric manifold the metric g admits almost Ricci soliton and V is pointwise
collinear with ξ, then either the manifold is Sasakian or V is constant multiple
of ξ and the manifold is η-Einstein, provided α, β =constant.

Conversely, let M be an η-Einstein 3-dimensional non-cosymplectic normal
almost contact metric manifold with α, β =constant. Then

(3.10) S(X,Y ) = γg(X,Y ) + δη(X)η(Y ),

where γ and δ are certain smooth functions defined on M .
In view of (3.10) we have
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(£ξg)(X,Y ) + 2S(X,Y )− 2λg(X,Y )(3.11)

= 2(α+ γ − λ)g(X,Y )− 2(α− δ)η(X)η(Y ).

From (3.11), it follows that M admits an almost Ricci soliton (g, ξ, λ) if
α + γ − λ = 0 and δ = α =constant. Again putting X = Y = ξ in (3.10)
and using (2.1) and (2.12) for X = ξ yields γ = −2(α2 − β2) − α =constant.
Therefore λ = γ + δ =constant. Hence we state the following:

Theorem 3.2. If a 3-dimensional non-cosymplectic normal a.c.m. manifold
with α, β =constant is η-Einstein of the form S = γg + δη ⊗ η then a Ricci
almost soliton (M, g, ξ, λ) reduces to a Ricci soliton (M, g, ξ, γ + δ).

Now let V = ξ. Then (3.1) reduces to

(3.12) (£ξg)(X,Y ) + 2S(X,Y ) = 2λg(X,Y ).

Now, in view of (2.9) we have

(3.13) (£ξg)(X,Y ) = 2α{g(X,Y )− η(X)η(Y ).

In view of (2.16) for α, β =constants and (3.13) we have

A(X,Y ) = (£ξg)(X,Y ) + 2S(X,Y )(3.14)

= [r + 2(α2 − β2 + α)]g(X,Y )

−[r + 2{3(α2 − β2) + α}]η(X)η(Y ).

Using (3.14) in (3.12), we obtain

[r + 2(α2 − β2 + α)− 2λ]g(X,Y )(3.15)

−[r + 2{3(α2 − β2) + α}]η(X)η(Y ) = 0.

Putting X = Y = ξ in (3.15) and using (2.1), we obtain

(3.16) λ = −2(α2 − β2).

Since we consider α, β =constants, hence λ =constant. Therefore the al-
most Ricci soliton becomes a Ricci soliton. Hence we state the following:

Proposition 3.1. If a 3-dimensional non-cosymplectic normal almost contact
metric manifold with α, β =constant admits an almost Ricci soliton then the
manifold admits a Ricci soliton.

In [9] the authors proved that a 3-dimensional non-cosymplectic normal
almost contact metric manifold admitting a Ricci soliton (g, ξ, λ) is of constant
scalar curvature. Hence we state the following:
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Theorem 3.3. If a 3-dimensional non-cosymplectic normal almost contact
metric manifold admits an almost Ricci soliton (g, ξ, λ), then then the manifold
is of constant scalar curvature.

Again, we know that [2] non-trivial compact almost Ricci solitons with
constant scalar curvature are gradient. Therefore we state the following:

Corollary 3.1. A 3-dimensional non-cosymplectic normal almost contact met-
ric manifold admitting the almost Ricci soliton (M, g, ξ, λ) is necessarily admits
gradient Ricci soliton.

In [17], author proved that a compact Ricci soliton of constant curvature is
Einstein. Hence in view of Theorem 3.2 and Theorem 3.3 we state the following:

Corollary 3.2. If a 3-dimensional non-cosymplectic normal almost contact
metric manifold with α, β =constant admits a compact almost Ricci soliton
(M, g, ξ, λ), then the manifold is Einstein.

Again, in view of (3.16) we state the following:

Remark 3.1. If a 3-dimensional non-cosymplectic normal almost contact met-
ric manifold admits the almost Ricci soliton (g, ξ, λ), then the almost Ricci
soliton is shrinking, steady and expanding when α > β, α = β and α < β
respectively, provided α, β =constant.

4. Gradient Almost Ricci Soliton

This section is devoted to the study 3-dimensional normal almost contact
metric manifolds admitting gradient almost Ricci soliton. For a gradient almost
Ricci soliton, we have

(4.1) ∇YDf = λY −QY,

where D denotes the gradient operator of g.
Differentiating (4.1) covariantly in the direction of X yields

(4.2) ∇X∇YDf = dλ(X)Y + λ∇XY − (∇XQ)Y.

Similarly, we get

(4.3) ∇Y∇XDf = dλ(Y )X + λ∇YX − (∇YQ)X.

and

(4.4) ∇[X,Y ]Df = λ[X,Y ]−Q[X,Y ].

In view of (4.2),(4.3) and (4.4), we have

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df(4.5)

= (∇YQ)X − (∇XQ)Y − (Y λ)X + (XλY ).
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For α, β =constants, we get from (2.16)

(4.6) QY = (
r

2
+ α2 − β2)Y − (

r

2
− α2 + β2)η(Y )ξ.

Differentiating (4.6) covariantly in the direction of X and using (2.9) and
(2.14), we get

(∇XQ)Y = (
r

2
+ α2 − β2)∇XY −

dr(X)

2
φ2X(4.7)

−(
r

2
− α2 + β2)[αg(X,Y )ξ − 2αη(X)η(Y )ξ

+2αη(Y )X − βg(φX, Y )ξ − βη(Y )φX].

Replacing X by ξ in (4.7) and using (2.9), we obtain

(4.8) (∇XQ)ξ = 2(α2 − β2)[α{X − η(X)ξ} − βφX].

In view of (4.5) and (4.8), we have

(4.9) g(R(X,Y )Df, ξ) = 4β(α2 − β2)g(φX, Y )− (Y λ)η(X) + (Xλ)η(Y ).

Replacing Y by ξ in (4.9) and using (2.1), we have

(4.10) g(R(X, ξ)Df, ξ) = −Xλ+ (ξλ)η(X).

Putting Y = ξ in (2.11) and using in (4.9), we obtain

(4.11) (α2 − β2)df − dλ = [(α2 − β2)ξf − (ξλ)]η.

Operating (4.11) by d and using the Poincare lemma d2 ≡ 0, we get

(4.12) d[(α2 − β2)(ξf)− (ξλ)]η ∧ dη = 0.

Then either η ∧ dη = 0 i.e., the manifold is Sasakian or

(4.13) (α2 − β2)f − λ = constant.

In view of above discussion we state the following:

Theorem 4.1. If a 3-dimensional normal almost contact metric manifold ad-
mits gradient almost Ricci soliton (f, ξ, λ) then either the manifold is Sasakian
or λ = (α2 − β2)f .
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