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ON ALMOST PSEUDO m-PROJECTIVELY
SYMMETRIC MANIFOLDS
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Abstract. The object of the present paper is to study almost pseudo
m-projectively symmetric manifolds. Some geometric properties of al-
most pseudo m-projectively symmetric manifolds have been studied un-
der certain curvature conditions. Finally the existence of almost pseudo
m-projectively symmetric manifolds is shown by examples.
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1. Introduction

In 1926, Cartan [4] studied certain class of Riemannian spaces and he intro-
duced the notion of a symmetric space. Accoding to Cartan, an n-dimensional
Riemannian manifold M is said to be locally symmetric if it has constant cur-
vature, i.e if the curvature tensor satisfies Rp;jx,; = 0, where ‘' denotes the
covariant differentiation with respect to the metric tensor and Ry;;i are the
components of the curvature tensor. Later, symmetric manifolds have been
studied by many authors such as: recurrent manifolds introduced by Walker
[23], conformally symmetric manifolds by Chaki and Gupta [6], conformally
recurrent manifolds by Adati and Miyazawa [I], pseudo symmetric manifolds
introduced by Chaki [5], almost pseudo symmetric and almost pseudo confor-
mally symmetric manifolds by De and Gazi [11], 12] etc.

The notion of weakly symmetric manifolds was introduced by Tamassy and
Binh [22] in 1989. A non-flat Riemannian manifold (M™,g), (n > 2) is called
weakly symmetric if the curvature tensor R of type (1,3) satisfies the condition:

VxR(Y,Z)W = A(X)R(Y, Z)W + B(Y)R(X, Z)W + D(Z)R(Y, X)W
E(W)R(Y,Z2)X + g(R(Y, Z)W, X)P,

where V denotes the Levi-Civita connection on (M™, g) and A, B, D, E and P
are 1-forms and a vector field respectively which are non-zero simultaneously.
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Such a manifold is denoted by (W.S),,. Weakly symmetric manifolds have been
studied by several authors ([3], [10], [2], [T7], [I8] and many others).

In 1987, Chaki [5] studied a type of non-flat Riemannian manifold whose
curvature tensor satisfies

(L.1)  Rnijrg = 2N Rnijr + AnRiijr + NiRuijr + NjRuak + M Rniji,

where )\; is a non-zero covariant vector. A manifold whose curvature tensor
satisfies the above equation is called a pseudo symmetric manifold [5]. It is to be
noted that was already obtained by Sen and Chaki [20] when they studied
certain kind of a conformally flat Riemannian space. A pseudo symmetric
manifold is denoted by (PS),,.

In index-free notation equation is given by

(VxR)(Y,Z)W = 2A(X)R(Y,Z)W + A(Y)R(X, Z)W + A(Z)R(Y, X)W
(1.2) + AW)R(Y,Z)X + g(R(Y, Z)W, X)P,

where R is a Riemannian curvature tensor of type (1,3), V denotes the Levi-
Civita connection, A is a non-zero 1-form and P is a vector field defined by

9(X, P) = A(X),

for all X.

In 2008 De and Gazi [11] introduced a type of Riemannian manifold which
is a generalization of pseudo symmetric manifolds. Such manifold is called an
almost pseudo symmetric manifold and is denoted by (APS),. A Riemannian
manifold(M", g), (n > 2) is said to be almost pseudo symmetric [11] if its
curvature tensor R of type (0,4) satisfies the condition:

(VxR)(Y,Z,U,V) = [A(X) + B(X)|R(Y, Z,U,V)
+A(Y)R(X,Z,U,V) + A(Z)R(Y, X,U,V)
(1.3) +AU)R(Y, Z, X, V) + A(V)R(Y, Z,U, X),

where A, B are non-zero 1-forms defined by
g(Xv P) = A(X)vg(X7Q) = B(X)v

for all vector fields X. In the papers ([12], [I3]) it was mentioned that (PS),
is a particular case of an (APS),, but(WS), is not a particular case of an
(APS),.

In 1971, Pokhariyal and Mishra [16] introduced a new curvature tensor of
type (1,3) in an n-dimensional Riemannian manifold (M™,g), n > 2 denoted
by M and defined by

1
2(n—1)
(1.4) +g(Z, U)LY — g(Y,U)LZ],

M(Y,Z)U = R(Y, Z)U — [S(Z,U)Y — S(Y,U)Z
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where R and L denote the Riemannian curvature tensor of type (1,3) and the
Ricci operator defined by g(LX,Y) = S(X,Y), respectively. Such a tensor
M is known as an m-projective curvature tensor. The m-projective curvature
tensor have been studied by J.P. Singh [21], S.K. Chaubey and R.H. Ojha [§],
S.K. Chaubey [7], and many others.

From we can define a (0,4) type m-projective curvature tensor M as
follows:

M(Y,Z,UV)=R(Y,ZUYV) [S(Z,U)g(Y,V)

S 2(n—1)
(1.5) =S(Y,U)g(Z2,V)+5(Y,V)g(Z,U) = S(Z,V)g(Y,U)],

where R denotes the Riemannian curvature tensor of type (0,4) defined by

R(Y> Z,U,V) = g(R(Y, Z>U’ V),

and

M(Y,Z,UV)=g(M(Y,Z)U,V),
where R is the Riemannian curvature tensor of type (1,3) and S denotes the
Ricci tensor of type (0,2) respectively.

The m-projective curvature tensor satisfies the properties of the Riemannian
curvature tensor. The object of the present paper is to study a type of non-flat
Riemannian manifold (M™, g), (n > 2) whose m-projective curvature tensor M
of type (0,4) satisfies the condition:

(VxM)(Y,2,U,V) = [A(X) + B(X)|M(Y,Z,U,V)
+A(Y)M(X, Z,U, V) + A(Z)M(Y, X, U, V)
(1.6) FA(UYM(Y, Z, X, V) + A(V)M(Y, Z,U, X).

Such a manifold shall be called an almost pseudo m-projectively symmet-
ric manifold and an n-dimensional manifold of this kind shall be denoted by
(APMPS),,. In a recent paper De and Mallick [9] studied almost pseudo con-
circularly symmetric manifolds and Prajjwal Pal [15] studied almost pseudo
conharmonically symmetric manifolds. Motivated by the above studies, in the
present paper we have studied a type of non-flat Riemannian manifold.

This paper is organized as follows: After preliminaries in Section 2, we
obtain a necessary and sufficient condition for constant scalar curvature of a
(APMPS),, (n > 2). In Section 4 we study (APMPS),, (n > 2) satisfying
Codazzi type of Ricci tensor. The next section is devoted to the study of Ein-
stein (APMPS),,. In Section 6, we study Ricci symmetric (APMPS),, (n >
2) and we proved that the scalar curvature of a Ricci symmetric (APM PS),, is
constant. Finally, non-trivial examples of (APM PS),, have been constructed.

2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and the scalar curavture
respectively and L denotes the symmetric tensor of type (1,1) corresponding
to the Ricci tensor S, that is,
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g(LX,Y) = S(X,Y).

In this section, some formulas useful while studying (APMPS),, are de-
rived. Let {e;} be an orthonormal basis of the tangent space at each point of
the manifold, where 1 <7 < n. From we can easily verify that the tensor
M satisfies the following property

M(Y,Z)U = —-M(Z,Y)U,
(2.1) M(Y,Z)U + M(Z,U)Y + M(U,Y)Z = 0.

From (1.5)and(2.1)) it follows that

(i) M(Y,Z,UYV)=—-M(ZY,UV),
(i) M(Y,Z,U,V)=—M(,Z,V,U),
(iii) M(Y,Z,UV)=MU,V,Y,Z),
(2.2) (iv) M(Y,Z,UV)+M(ZUY,V)+ MU,Y,ZV) =0.

Also from the equation ([1.5)) we have

n

(2.3) > MY, Z,eie;) =0=> Mei,e;,UV)

i=1 i=1

and

> M(e;, 2,Use;) = i M(Z,e;,e;,U)
i =1

(2.4) = o pS@ - ez,

where r = Y ¢;5(e;, €;) is the scalar curvature.
i=1

3. (APMPS),, (n>2) with constant scalar curvature

From (T.5) we have,
(VxM)(Y,Z,UV)=(VxR)(Y,Z UYV)
5= (VXS Z D)V V) = (TxS) (V- V)g(Z.V)
(3.1) LV S)(Y,V)g(Z,U) — (VS)(Z, V)g(Y, D).

From (1.6 and (3.1])) we obtain
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(VxR)(Y, Z,U,V) = [A(X) + BEX)|M(Y, Z,U,V)

YAY)M(X, Z,U,V) + A(Z)M(Y, X, U, V) + AU)M(Y, Z, X, V)
AWV)M(Y, Z,U.X) + ﬁ (Vx8)(Z.0)g(Y, V)

B2V xS) (Y. U)g(Z, V) + (VxS) (Y, V)g(Z,U) — (VxS)(Z,V)g(Y.U)).

Contracting (3.2) over Y and V we get

(VxS)(Z.V) = 505 (A0 + BOI[S(Z,0) = 9(2,U)
+HA(M(X, Z)U) + z(n”_ FA@IS(XU) - %g(X, U)]

AU)[S(Z, X) - %g(Z,X)] + A(M(X,U)Z)

[(n = 2)(Vx5)(2,U) + dr(X)g(Z,U)].

Since n > 2, the above expression implies that

(3.4) A(LX) — %A(X) =0.

We have Bianchi’s second identity for (0,4) Riemannian curvature tensor R as
follows:

BSVxR)(Y,Z, U, V) + (VyR)(Z, X, U, V) + (VzR)(X,Y,U,V) = 0.

Using (3.2]) and (3.5]) we get
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[—A(X) + B(X)|M(Y, Z,U,V) + [-A(Y) + B(Y)|M(Z, X,U,V
H-A(Z) + B(Z)|M(X,Y,U,V

)

)

FAU)[M(Y, Z,X,V) + M(Z,X,Y,V) + M(X,Y, Z,V)]
+A(V)[M(Y, 2,U,X) + M(Z,X,U,Y) + M(X,Y,U, Z)]

+ = (T2 D)) = (VxS)(V.0)g(2.V)
HTXS)Y,V)g(Z,U) — (VxS)(Z,V)g(¥, )
HTYS)(X,U)g(Z.V) ~ (Vy $)(Z0)g(X. V)

Ty )2 V)a(X.0) ~ (T $)(X.V)g(2.1)

HTZ8)(Y, U)g(X, V) = (V28)(X, U)g(Y, V)

(36) HYZ8)(X, V)g(Y,U) ~ (V28)(¥, V)g(X,0)] =0

Making use of (2.2) in the equation (3.6) we get

[—AX)+ B(X)|M(Y,Z,UV)+ [-AY)+BY)|M(Z,X,U, V)
+[-A(2) + BM(X,Y,0,V)
+ = (T2 D)) = (Vx8)(V.0)g(2.V)
HTXS)Y,V)9(Z,U) — (VxS)(Z,V)g(¥,U)
HI K DAEY) - (T 9@ )
Ty )2 V)a(X.0) - (T $)(X.V)g(2.1)
O DM V) — (TS, Dty >
(37) HTZ8)(X, V)g(Y,U) — (V28)(¥, V)g(X,U)] =

Contracting (3.7)) over Y and V we get

n[—A(X) + B(X)][S(Z,U) —%gZU]
+2(n - 1)[-A(M (Z X)U) + (M( X)U)]

—n[-A(2) + B(Z)|[S(X,U) = ~g(X,U)]
+( ){(VXS)(Z U)—(VzS9)(X,U)}
(3.8) += {dr V9(Z,U) — dr(2)g(X, U)} 0

Again contracting (3.8]) over Z and U we get

(3.2n[A(LX) — %A(X)] —2n[B(LX) — %B(X)] + (n— 2)dr(X) = 0.

Combining the equations (3.4) and (3.9), we obtain
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(3.10) B(LX) — %B(X) -

Thus we can state the following:

Theorem 3.1. The scalar curvature r of an almost pseudo m-projectively sym-
metric manifold is constant if and only if

(3.11) B(LX) — %B(X) =0

holds for all vector fields.

4. (APMPS),, (n > 2) with Codazzi type of Ricci tensor

In 1978, Gray [I4] introduced two classes of Riemannian manifolds. The
class A consisting of all Riemannian manifolds whose Ricci tensor S satisfies,

(VxS)(Y, 2) + (Vy5)(Z, X) + (Vz5)(X,Y) =0,

and the class B consisting of all Riemannian manifolds whose Ricci tensor is a
Codazzi tensor, that is,

(VxS)(Y,Z) — (VyS)(X, Z) = 0.

Suppose that the Ricci tensor of the (APM PS),, is a Codazzi type tensor, that
is,

(4.1) (VxS)(Y, 2) = (Vy S)(X, 2).
Now from we get
(VXM)(K Z,U, V) = (VXR)(Ya Z, U>V)

—ﬁ[(vx&(l U)g(Y,V) = (Vx9)(Y,U)g(Z,V)
(4.2) H(VxS)(Y,V)g(2,U) = (VxS)(Z,V)g(Y,U)].
By we obtain

(VxM)(Y,Z,U, V) + (VyM)(Z,X,U,V) + (V7 M)(X,Y,U,V)
=[(VxR)(Y, Z, U V)+ (VyR)(Z,X,U,V) + (VzR)(X,Y,U,V)]

[VXS Z,U)g(Y,V) —
+HVxS)(Y,V)g(Z,U) -
) —
)

( Y, U)
(VXS>( ,V)g(Y,U
+H(VyS)(X,U)g(2,V) = (Vy5)(Z,U)g(X
+(Vy5)(Z,V)g(X,U) = (VyS)(X, V)
+(Vz9)(Y,U)g(X,V) = (Vs)(X,U)g
(4.3) HVZ)(X, V)g(Y.U) = (V28)(Y,V)g(X,U)].
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Using (4.1)) and (3.5)) in (4.3 we get
U@ xM)(Y, Z, U, V) + (VyM)(Z, X, U, V) + (VZz2M)(X,Y,U,V) =
Hence we have the following theorem.

Theorem 4.1. In an (APMPS),, (n > 2) satisfying Codazzi type of Ricci
tensor, the m-projective curvature tensor satisfies Bianchi’s second identity.
5. Einstein (APMPS),, (n > 2)

If a (APMPS),, (n > 2) is an Einstein manifold, then the Ricci tensor
satisfies

(5.1) S(Y.Z) = ~g(V. 2).
Therefore,

(5.2) (VxS)(Y,Z) =0,
and

(5.3) dr(X) = 0.

Using (5.1]) and (5.2]) we get from (|1.5))

(5.4) (VxM)(Y,Z,U V)= (VxR)Y,Z,UV),
which yields

[A(X) + B(X)|M(Y, Z,U,V) + AY)M(X, Z,U,V)
FA(Z)M(Y,X,U, V) + AUYM(Y, Z,X,V)
TAV)M(Y, Z,U,X) = [A(X) + B(X)|R(Y, Z,U,V)
)

+AY)R(X,Z,UV)+ A(Z)R(Y, X, U,V
(5.5) +AU)R(Y, Z, X, V)+ AV)R(Y, Z, U, X).
In light of the equation (5.1]), the equation (1.5 assumes the following form

M(Y,Z,UV)=R(Y,Z,UYV)— [9(Z,U)g(Y, V)

n(n—1)
(5.6) —g(Y,U)g(Z,V)].

Now using (5.6) in (5.5)) we get

{AX) + B(X)Hg(2,U)g(Y, V) —g(Y,U)g(Z,

+AY ){9(Z,U)g(X,V) - g
+A(Z){9(X,U)g (YV
+A(U){g( X)g(y, vV
+A(WV){9(Z,U)g(Y, X) — g

n(n -1

) —
) —g(Y,
(Y,U)g(Z,X)} =0,
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which implies

rl{AX) + B(X)Hy(Z,U)g(Y, V) = g(Y,
+AY){9(Z,U)g(X,V) — g
TA(Z){g(X,U)g(Y, V) —
+AU)9(Z, X)g(Y, V)

(5.7) +AV){g(Z,U)g(Y, X) = g(

Now contracting (5.7) over Y and V we get

r((n — D[A(X) + B(X)]g(2,U) + A(X
—A(Z)g(X,U) + (n— 1)[A(
X)

which implies

r[{(n+1)AX) + (n — 1)B(X)}g(Z,U)
(5.8) +(n — 2{A(2)g(X,U) + A(U)g(Z, X)}] = 0.

Again contracting (5.8) over Z and U we get

rn(n + 1) A(X) +n(n — 1)B(X) + 2(n — 2)A(X)] = 0,
which, in turn implies
r(n— 1)[(n + 4)A(X) + nB(X)] = 0,
which implies
(5.9) r[(n+ 4)A(X) + nB(X)] = 0.

Again contracting (5.8) over Z and X, we get

r[(n+1)AU)+ (n—1)BU) + (n—2)AU) +n(n —2)AU)] =0,
which implies
(5.10) r[(n+ 1)A(U) + B(U)] = 0.

Replacing U by X we get

(5.11) rl(n + 1)A(X) + B(X)] = 0.

Again contracting (5.8) over X and U we get
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rl(in+1)A(Z) + (n —1)B(Z) + n(n — 2)A(Z) + (n — 2)A(Z)] = 0,
which implies
(5.12) rl(n+1)A(Z) + B(Z)] = 0.
Replacing Z by X we get
(5.13) r[(n + 1)A(X) + B(X)] = 0.
Adding (5.9), and yields

r[(3n + 6)A(X) + (n + 2) B(X)] = 0,
which implies
r(n + 2)[3A(X) + B(X)] = 0.

Therefore, either r = 0 or 3A(X)+ B(X) = 0. Thus, we can state the following
theorem:

Theorem 5.1. If an Finstein (APMPS),,, (n > 2) is an almost pseudo sym-
metric manifold, then the scalar curvature of the manifold vanishes provided
3A(X)+ B(X) #0.

Again, if in an (APMPS),, r = 0, then using (1.6 and (5.6 in (5.4]), we
get

+ AY)R(X,Z,UV)+ A(Z)R(Y,X,U, V)
+ AWU)RY,Z,X,V)+ AV)R(Y,Z,U, X).
Hence we have the following theorem:

Theorem 5.2. If in an Einstein (APMPS),, (n > 2) the scalar curvature
vanishes, then it is an almost pseudo symmetric manifold.

Now, Let p be a vector field defined by

9(X, p) = a(X),

where a(X) = A(X) — B(X).
Further, we suppose that in an Einstein (APM PS),,, the vector field p defined
above is parallel. Then we have

(5.14) pr: 0
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for all X. By Ricci identity and we get
(5.15) R(X,Y,p,U) =0,
which implies
(5.16) S(Y,p) =0.
Using in we get

rg(Y,p) = 0.

Thus, either r = 0 or || p ||2# 0. If r = 0 then using (L.6) and (5.6) in (5.4),
it follows that the manifold is an almost pseudo symmetric manifold. Thus we
have:

Theorem 5.3. If the vector field defined by g(X,p) = A(X) — B(X) is a
parallel vector field in an Finstein (APMPS),,, (n > 2), then it is an almost
pseudo symmetric manifold provided || p ||# 0.

6. Examples of (APMPS),

Examplel

Let us consider a Lorentzian metric g on R* defined by
(6.1) ds* = gijda'da’ = x*(da")? + 2" (d2?)? + 2 (d2®)? — (dxt)?

where i,j = 1,2,3,4. Then the only non-vanishing components of the Christof-
fel symbols, the Riemannian curvature tensors and the Ricci tensor are

1
F%QZF%@:_@7 F%1:F%2:F?3:ﬁv
1
Rig21 = Rizz1 = o1 Ro330 = yrsE
and
1 1
B T i v

And the scalar curvature of the resulting manifold (R*, g) is

3
_2(3;1)3'

Now, the non vanishing components of m-projective curvature tensor and their
covariant derivatives are:

7

Mg = Mizz1 = ——— Ma3zzy = —
241’ 31’
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1

Mo332.1 5.

7
Mioo1,1 = Mazzn 1 = —
i ’ 2422’

where ‘,” denotes the covariant derivative with respect to the metric tensor.
Let us choose the associated 1-forms as follows:

Ai(z) = {0, fori=1

T+, otherwise,

(6.2)
1
_ =1
Bila) = ¢ o I
—2t,  otherwise,
(6.3)

at any point x € R%. To verify the relation (1.6]), it is sufficient to check the
following equations:

Mig211 = [A1 + Bl]M1221 + A1 Mig21 + Aa Mi121 + Ao Mionn
(6.4) +A1 Mi221,

and

Mo3321 = [Al + B1]M2332 + AsMisso + AsMaize + Az Masio

(65) +A2M2331.
Since for the other cases (|1.5]) holds trivially. By (6.2)) and (6.3) we get
RHS. of (6.4) = [Ay+ Bi| Mo + A1 Migor + Ay Migo
= [3A1+ Bi| Mg
7 1 7

= 3(0)(724$1)+(7;)(7Q4.’L‘1)

B 7

O 24g2

= Mi2121

= L.H.S. of .

By a similar argument it can be shown that (6.5 is also true. So (R4, g) is a
(APMPS),,.

Example2
Consider a Riemannian space V,,, (n > 4) with the metric is given by
(6.6) ds? = ¢(dx)? + Kopdx®da® + 2dxtda™,

where [K,p] is a symmetric and non singular matrix consisting of constants

and ¢ is a function of !, 22, ...,2" ! and independent of ", and 1 < a, 8 < n.
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In the metric considered, the only non-vanishing components of Christoffel
symbols, Riemannian curvature tensor and Ricci tensor are [19]

1. .. n 1 n 1
F?l = _iK ﬂ¢.0¢7 Fll == §¢.17 7F1(y - §¢aa

1 1
(67) Rlaﬂl = §¢.O¢Ba 511 = iKaBQS.ozﬁv

where ‘. denotes the partial differentiation with respect to the coordinates and
K are the elements of the matrix inverse to [K,s]. Here we consider K,z as
Kronecker symbol 6,5 and

¢ = (Mup+ 5aﬁ)maxﬂe(zl)2,

where M, are constant and satisfy the relations

Mus = 0, for a#p,
# 0, fora=p,
n—1
> Mao = 0.
a=1

This is to be noted that the metric with this form of ¢ was considered by De
and Gazi [12]. Thus we have

bap =2(Map + 60p)e™ ) 5456%F =n—2,
B B B B
n—1

6P Myp = Z Mao = 0.

a=1
Therefore

5P b = 2(6%° Mg + 6% 505)e@ )" = 2(n — 2)e@)”,
Since ¢, vanishes for a # /3, the only non-zero components of the Riemannian
curvature tensor and Ricci tensor by virtue of (6.7)) are
2
Y

1
Rlaal = §¢a(y - (1 + Maa)e(ml)

1
S = 56.0p0°" = (n— 2)e)?

Also, the scalar curvature r = 0.
Hence the only non-zero components of the m-projective curvature tensor,
and their covariant derivatives are

72 1\2
Migar = (14M (e 4 P72 o@h
laal (+ aa)e +2(n_1)e
n 142
LI VR C
(+2(n—1) aa)®
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n 1\2
Mipe = 21+ —--M &)
laal,l T ( + 2(n—1) aa)e

1
2z Mlaah

where ‘,” denotes the covariant derivative with respect to the metric tensor.
Let us choose the associated 1-forms as follows:

Ai(z) = {xl, fori=1

0, otherwise,

Bi(z) = {xl, fori=1

0, otherwise,

at any point « € V,,. To verify the relation (1.6, it is sufficient to check the
following equation:

(6.9) Miaa1n = (BA1+ Bi)Maiia

R.H.S. of = (341 + B1)Miga1
= (3.’K1 - xl)Mlaal

I
O
8

-

IS
)
S
2

Il
=
Y
S
2
=

= L.H.S. of .
So V,, is a (APMPS),.
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