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Abstract. The object of the present paper is to study almost pseudo
m-projectively symmetric manifolds. Some geometric properties of al-
most pseudo m-projectively symmetric manifolds have been studied un-
der certain curvature conditions. Finally the existence of almost pseudo
m-projectively symmetric manifolds is shown by examples.
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1. Introduction

In 1926, Cartan [4] studied certain class of Riemannian spaces and he intro-
duced the notion of a symmetric space. Accoding to Cartan, an n-dimensional
Riemannian manifold M is said to be locally symmetric if it has constant cur-
vature, i.e if the curvature tensor satisfies Rhijk,l = 0, where ‘,′ denotes the
covariant differentiation with respect to the metric tensor and Rhijk are the
components of the curvature tensor. Later, symmetric manifolds have been
studied by many authors such as: recurrent manifolds introduced by Walker
[23], conformally symmetric manifolds by Chaki and Gupta [6], conformally
recurrent manifolds by Adati and Miyazawa [1], pseudo symmetric manifolds
introduced by Chaki [5], almost pseudo symmetric and almost pseudo confor-
mally symmetric manifolds by De and Gazi [11, 12] etc.

The notion of weakly symmetric manifolds was introduced by Tamassy and
Binh [22] in 1989. A non-flat Riemannian manifold (Mn, g), (n > 2) is called
weakly symmetric if the curvature tensor R̃ of type (1,3) satisfies the condition:

∇XR̃(Y, Z)W = A(X)R̃(Y,Z)W +B(Y )R̃(X,Z)W +D(Z)R̃(Y,X)W

+E(W )R̃(Y, Z)X + g(R̃(Y,Z)W,X)P,

where ∇ denotes the Levi-Civita connection on (Mn, g) and A, B, D, E and P
are 1-forms and a vector field respectively which are non-zero simultaneously.
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Such a manifold is denoted by (WS)n. Weakly symmetric manifolds have been
studied by several authors ([3], [10], [2], [17], [18] and many others).

In 1987, Chaki [5] studied a type of non-flat Riemannian manifold whose
curvature tensor satisfies

Rhijk,l = 2λlRhijk + λhRlijk + λiRhljk + λjRhilk + λkRhijl,(1.1)

where λl is a non-zero covariant vector. A manifold whose curvature tensor
satisfies the above equation is called a pseudo symmetric manifold [5]. It is to be
noted that (1.1) was already obtained by Sen and Chaki [20] when they studied
certain kind of a conformally flat Riemannian space. A pseudo symmetric
manifold is denoted by (PS)n.

In index-free notation equation (1.1) is given by

(∇XR̃)(Y,Z)W = 2A(X)R̃(Y, Z)W +A(Y )R̃(X,Z)W +A(Z)R̃(Y,X)W

+ A(W )R̃(Y, Z)X + g(R̃(Y,Z)W,X)P,(1.2)

where R̃ is a Riemannian curvature tensor of type (1,3), ∇ denotes the Levi-
Civita connection, A is a non-zero 1-form and P is a vector field defined by

g(X,P ) = A(X),

for all X.
In 2008 De and Gazi [11] introduced a type of Riemannian manifold which

is a generalization of pseudo symmetric manifolds. Such manifold is called an
almost pseudo symmetric manifold and is denoted by (APS)n. A Riemannian
manifold(Mn, g), (n > 2) is said to be almost pseudo symmetric [11] if its
curvature tensor R of type (0, 4) satisfies the condition:

(∇XR)(Y,Z, U, V ) = [A(X) +B(X)]R(Y,Z, U, V )

+A(Y )R(X,Z,U, V ) +A(Z)R(Y,X,U, V )

+A(U)R(Y,Z,X, V ) +A(V )R(Y, Z, U,X),(1.3)

where A, B are non-zero 1-forms defined by

g(X,P ) = A(X), g(X,Q) = B(X),

for all vector fields X. In the papers ([12], [13]) it was mentioned that (PS)n
is a particular case of an (APS)n, but(WS)n is not a particular case of an
(APS)n.

In 1971, Pokhariyal and Mishra [16] introduced a new curvature tensor of
type (1,3) in an n-dimensional Riemannian manifold (Mn, g), n > 2 denoted
by M̃ and defined by

M̃(Y, Z)U = R̃(Y,Z)U − 1

2(n− 1)
[S(Z,U)Y − S(Y, U)Z

+g(Z,U)LY − g(Y, U)LZ],(1.4)
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where R̃ and L denote the Riemannian curvature tensor of type (1, 3) and the
Ricci operator defined by g(LX, Y ) = S(X,Y ), respectively. Such a tensor
M̃ is known as an m-projective curvature tensor. The m-projective curvature
tensor have been studied by J.P. Singh [21], S.K. Chaubey and R.H. Ojha [8],
S.K. Chaubey [7], and many others.

From (1.4) we can define a (0, 4) type m-projective curvature tensor M as
follows:

M(Y,Z, U, V ) = R(Y, Z, U, V )− 1

2(n− 1)
[S(Z,U)g(Y, V )

−S(Y, U)g(Z, V ) + S(Y, V )g(Z,U)− S(Z, V )g(Y, U)],(1.5)

where R denotes the Riemannian curvature tensor of type (0,4) defined by

R(Y, Z, U, V ) = g(R̃(Y, Z)U, V ),

and

M(Y, Z, U, V ) = g(M̃(Y, Z)U, V ),

where R̃ is the Riemannian curvature tensor of type (1,3) and S denotes the
Ricci tensor of type (0,2) respectively.

Them-projective curvature tensor satisfies the properties of the Riemannian
curvature tensor. The object of the present paper is to study a type of non-flat
Riemannian manifold (Mn, g), (n > 2) whose m-projective curvature tensor M
of type (0,4) satisfies the condition:

(∇XM)(Y,Z, U, V ) = [A(X) +B(X)]M(Y,Z, U, V )

+A(Y )M(X,Z,U, V ) +A(Z)M(Y,X,U, V )

+A(U)M(Y, Z,X, V ) +A(V )M(Y, Z, U,X).(1.6)

Such a manifold shall be called an almost pseudo m-projectively symmet-
ric manifold and an n-dimensional manifold of this kind shall be denoted by
(APMPS)n. In a recent paper De and Mallick [9] studied almost pseudo con-
circularly symmetric manifolds and Prajjwal Pal [15] studied almost pseudo
conharmonically symmetric manifolds. Motivated by the above studies, in the
present paper we have studied a type of non-flat Riemannian manifold.

This paper is organized as follows: After preliminaries in Section 2, we
obtain a necessary and sufficient condition for constant scalar curvature of a
(APMPS)n, (n > 2). In Section 4 we study (APMPS)n, (n > 2) satisfying
Codazzi type of Ricci tensor. The next section is devoted to the study of Ein-
stein (APMPS)n. In Section 6, we study Ricci symmetric (APMPS)n, (n >
2) and we proved that the scalar curvature of a Ricci symmetric (APMPS)n is
constant. Finally, non-trivial examples of (APMPS)n have been constructed.

2. Preliminaries

Let S and r denote the Ricci tensor of type (0, 2) and the scalar curavture
respectively and L denotes the symmetric tensor of type (1, 1) corresponding
to the Ricci tensor S, that is,
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g(LX, Y ) = S(X,Y ).

In this section, some formulas useful while studying (APMPS)n are de-
rived. Let {ei} be an orthonormal basis of the tangent space at each point of
the manifold, where 1 ≤ i ≤ n. From (1.4) we can easily verify that the tensor
M satisfies the following property

M̃(Y,Z)U = −M̃(Z, Y )U,

M̃(Y,Z)U + M̃(Z,U)Y + M̃(U, Y )Z = 0.(2.1)

From (1.5)and(2.1) it follows that

(i) M(Y, Z, U, V ) = −M(Z, Y, U, V ),

(ii) M(Y, Z, U, V ) = −M(Y, Z, V, U),

(iii) M(Y, Z, U, V ) = M(U, V, Y, Z),

(iv) M(Y, Z, U, V ) +M(Z,U, Y, V ) +M(U, Y, Z, V ) = 0.(2.2)

Also from the equation (1.5) we have

n∑
i=1

M(Y, Z, ei, ei) = 0 =

n∑
i=1

M(ei, ei, U, V )(2.3)

and

n∑
i=1

M(ei, Z, U, ei) =

n∑
i=1

M(Z, ei, ei, U)

=
n

2(n− 1)
[S(Z,U)− r

n
g(Z,U)],(2.4)

where r =
n∑
i=1

εiS(ei, ei) is the scalar curvature.

3. (APMPS)n, (n > 2) with constant scalar curvature

From (1.5) we have,

(∇XM)(Y,Z, U, V ) = (∇XR)(Y,Z, U, V )

− 1

2(n− 1)
[(∇XS)(Z,U)g(Y, V )− (∇XS)(Y,U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y,U)].(3.1)

From (1.6) and (3.1) we obtain
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(∇XR)(Y,Z, U, V ) = [A(X) +B(X)]M(Y, Z, U, V )

+A(Y )M(X,Z,U, V ) +A(Z)M(Y,X,U, V ) +A(U)M(Y,Z,X, V )

+A(V )M(Y,Z, U,X) +
1

2(n− 1)
[(∇XS)(Z,U)g(Y, V )

−(∇XS)(Y, U)g(Z, V ) + (∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y,U)].(3.2)

Contracting (3.2) over Y and V we get

(∇XS)(Z,U) =
n

2(n− 1)
[A(X) +B(X)][S(Z,U)− r

n
g(Z,U)]

+A
(
M̃(X,Z)U

)
+

n

2(n− 1)
A(Z)[S(X,U)− r

n
g(X,U)]

+
n

2(n− 1)
A(U)[S(Z,X)− r

n
g(Z,X)] +A

(
M̃(X,U)Z

)
+

1

2(n− 1)
[(n− 2)(∇XS)(Z,U) + dr(X)g(Z,U)].(3.3)

Again contracting (3.3) over Z and U we get

2n

(n− 1)
[A(LX)− r

n
A(X)] = 0.

Since n > 2, the above expression implies that

A(LX)− r

n
A(X) = 0.(3.4)

We have Bianchi’s second identity for (0,4) Riemannian curvature tensor R as
follows:

(∇XR)(Y, Z, U, V ) + (∇YR)(Z,X,U, V ) + (∇ZR)(X,Y, U, V ) = 0.(3.5)

Using (3.2) and (3.5) we get
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[−A(X) +B(X)]M(Y,Z, U, V ) + [−A(Y ) +B(Y )]M(Z,X,U, V )

+[−A(Z) +B(Z)]M(X,Y, U, V )

+A(U)
[
M(Y,Z,X, V ) +M(Z,X, Y, V ) +M(X,Y, Z, V )

]
+A(V )

[
M(Y, Z, U,X) +M(Z,X,U, Y ) +M(X,Y, U, Z)

]
+

1

2(n− 1)

[
(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)

+(∇Y S)(X,U)g(Z, V )− (∇Y S)(Z,U)g(X,V )

+(∇Y S)(Z, V )g(X,U)− (∇Y S)(X,V )g(Z,U)

+(∇ZS)(Y,U)g(X,V )− (∇ZS)(X,U)g(Y, V )

+(∇ZS)(X,V )g(Y,U)− (∇ZS)(Y, V )g(X,U)
]

= 0.(3.6)

Making use of (2.2) in the equation (3.6) we get

[−A(X) +B(X)]M(Y, Z, U, V ) + [−A(Y ) +B(Y )]M(Z,X,U, V )

+[−A(Z) +B(Z)]M(X,Y, U, V )

+
1

2(n− 1)

[
(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)

+(∇Y S)(X,U)g(Z, V )− (∇Y S)(Z,U)g(X,V )

+(∇Y S)(Z, V )g(X,U)− (∇Y S)(X,V )g(Z,U)

+(∇ZS)(Y,U)g(X,V )− (∇ZS)(X,U)g(Y, V )

+(∇ZS)(X,V )g(Y,U)− (∇ZS)(Y, V )g(X,U)
]

= 0.(3.7)

Contracting (3.7) over Y and V we get

n[−A(X) +B(X)]
[
S(Z,U)− r

n
g(Z,U)

]
+2(n− 1)[−A(M̃(Z,X)U) +B(M̃(Z,X)U)]

−n[−A(Z) +B(Z)]
[
S(X,U)− r

n
g(X,U)

]
+(n− 3)

{
(∇XS)(Z,U)− (∇ZS)(X,U)

}
+

1

2

{
dr(X)g(Z,U)− dr(Z)g(X,U)

}
= 0.(3.8)

Again contracting (3.8) over Z and U we get

2n
[
A(LX)− r

n
A(X)

]
− 2n

[
B(LX)− r

n
B(X)

]
+ (n− 2)dr(X) = 0.(3.9)

Combining the equations (3.4) and (3.9), we obtain
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B(LX)− r

n
B(X) =

(n− 2)

2n
dr(X).(3.10)

Thus we can state the following:

Theorem 3.1. The scalar curvature r of an almost pseudo m-projectively sym-
metric manifold is constant if and only if

B(LX)− r

n
B(X) = 0(3.11)

holds for all vector fields.

4. (APMPS)n, (n > 2) with Codazzi type of Ricci tensor

In 1978, Gray [14] introduced two classes of Riemannian manifolds. The
class A consisting of all Riemannian manifolds whose Ricci tensor S satisfies,

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0,

and the class B consisting of all Riemannian manifolds whose Ricci tensor is a
Codazzi tensor, that is,

(∇XS)(Y,Z)− (∇Y S)(X,Z) = 0.

Suppose that the Ricci tensor of the (APMPS)n is a Codazzi type tensor, that
is,

(∇XS)(Y, Z) = (∇Y S)(X,Z).(4.1)

Now from (3.1) we get

(∇XM)(Y, Z, U, V ) = (∇XR)(Y, Z, U, V )

− 1

2(n− 1)
[(∇XS)(Z,U)g(Y, V )− (∇XS)(Y,U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)].(4.2)

By (4.2) we obtain

(∇XM)(Y,Z, U, V ) + (∇YM)(Z,X,U, V ) + (∇ZM)(X,Y, U, V )

= [(∇XR)(Y, Z, U, V ) + (∇YR)(Z,X,U, V ) + (∇ZR)(X,Y, U, V )]

− 1

2(n− 1)

[
(∇XS)(Z,U)g(Y, V )− (∇XS)(Y,U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)

+(∇Y S)(X,U)g(Z, V )− (∇Y S)(Z,U)g(X,V )

+(∇Y S)(Z, V )g(X,U)− (∇Y S)(X,V )g(Z,U)

+(∇ZS)(Y, U)g(X,V )− (∇S)(X,U)g(Y, V )

+(∇ZS)(X,V )g(Y, U)− (∇ZS)(Y, V )g(X,U)
]
.(4.3)
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Using (4.1) and (3.5) in (4.3) we get

(∇XM)(Y, Z, U, V ) + (∇YM)(Z,X, , U, V ) + (∇ZM)(X,Y, U, V ) = 0.(4.4)

Hence we have the following theorem.

Theorem 4.1. In an (APMPS)n, (n > 2) satisfying Codazzi type of Ricci
tensor, the m-projective curvature tensor satisfies Bianchi’s second identity.

5. Einstein (APMPS)n, (n > 2)

If a (APMPS)n, (n > 2) is an Einstein manifold, then the Ricci tensor
satisfies

S(Y,Z) =
r

n
g(Y,Z).(5.1)

Therefore,

(∇XS)(Y, Z) = 0,(5.2)

and

dr(X) = 0.(5.3)

Using (5.1) and (5.2) we get from (1.5)

(∇XM)(Y,Z, U, V ) = (∇XR)(Y,Z, U, V ),(5.4)

which yields

[A(X) +B(X)]M(Y, Z, U, V ) +A(Y )M(X,Z,U, V )

+A(Z)M(Y,X,U, V ) +A(U)M(Y, Z,X, V )

+A(V )M(Y,Z, U,X) = [A(X) +B(X)]R(Y,Z, U, V )

+A(Y )R(X,Z,U, V ) +A(Z)R(Y,X,U, V )

+A(U)R(Y,Z,X, V ) +A(V )R(Y, Z, U,X).(5.5)

In light of the equation (5.1), the equation (1.5) assumes the following form

M(Y, Z, U, V ) = R(Y,Z, U, V )− r

n(n− 1)
[g(Z,U)g(Y, V )

−g(Y, U)g(Z, V )].(5.6)

Now using (5.6) in (5.5) we get

r

n(n− 1)
[{A(X) +B(X)}{g(Z,U)g(Y, V )− g(Y,U)g(Z, V )}

+A(Y ){g(Z,U)g(X,V )− g(X,U)g(Z, V )}
+A(Z){g(X,U)g(Y, V )− g(Y,U)g(X,V )}
+A(U){g(Z,X)g(Y, V )− g(Y,X)g(Z, V )}

+A(V ){g(Z,U)g(Y,X)− g(Y,U)g(Z,X)} = 0,
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which implies

r[{A(X) +B(X)}{g(Z,U)g(Y, V )− g(Y, U)g(Z, V )}
+A(Y ){g(Z,U)g(X,V )− g(X,U)g(Z, V )}
+A(Z){g(X,U)g(Y, V )− g(Y, U)g(X,V )}
+A(U){g(Z,X)g(Y, V )− g(Y,X)g(Z, V )}

+A(V ){g(Z,U)g(Y,X)− g(Y,U)g(Z,X)} = 0.(5.7)

Now contracting (5.7) over Y and V we get

r[(n− 1)
[
A(X) +B(X)

]
g(Z,U) +A(X)g(Z,U)

−A(Z)g(X,U) + (n− 1)
[
A(Z)g(X,U) +A(U)g(Z,X)

]
+A(X)g(Z,U)−A(U)g(Z,X) = 0,

which implies

r
[
{(n+ 1)A(X) + (n− 1)B(X)}g(Z,U)

+(n− 2){A(Z)g(X,U) +A(U)g(Z,X)}
]

= 0.(5.8)

Again contracting (5.8) over Z and U we get

r[n(n+ 1)A(X) + n(n− 1)B(X) + 2(n− 2)A(X)] = 0,

which, in turn implies

r(n− 1)[(n+ 4)A(X) + nB(X)] = 0,

which implies

r[(n+ 4)A(X) + nB(X)] = 0.(5.9)

Again contracting (5.8) over Z and X, we get

r[(n+ 1)A(U) + (n− 1)B(U) + (n− 2)A(U) + n(n− 2)A(U)] = 0,

which implies

r[(n+ 1)A(U) +B(U)] = 0.(5.10)

Replacing U by X we get

r[(n+ 1)A(X) +B(X)] = 0.(5.11)

Again contracting (5.8) over X and U we get
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r[(n+ 1)A(Z) + (n− 1)B(Z) + n(n− 2)A(Z) + (n− 2)A(Z)] = 0,

which implies

r[(n+ 1)A(Z) +B(Z)] = 0.(5.12)

Replacing Z by X we get

r[(n+ 1)A(X) +B(X)] = 0.(5.13)

Adding (5.9), (5.11) and (5.13) yields

r[(3n+ 6)A(X) + (n+ 2)B(X)] = 0,

which implies

r(n+ 2)[3A(X) +B(X)] = 0.

Therefore, either r = 0 or 3A(X)+B(X) = 0. Thus, we can state the following
theorem:

Theorem 5.1. If an Einstein (APMPS)n, (n > 2) is an almost pseudo sym-
metric manifold, then the scalar curvature of the manifold vanishes provided
3A(X) +B(X) 6= 0.

Again, if in an (APMPS)n r = 0, then using (1.6) and (5.6) in (5.4), we
get

(∇XR)(Y,Z, U, V ) = [A(X) +B(X)]R(Y,Z, U, V )

+ A(Y )R(X,Z,U, V ) +A(Z)R(Y,X,U, V )

+ A(U)R(Y,Z,X, V ) +A(V )R(Y,Z, U,X).

Hence we have the following theorem:

Theorem 5.2. If in an Einstein (APMPS)n, (n > 2) the scalar curvature
vanishes, then it is an almost pseudo symmetric manifold.

Now, Let ρ be a vector field defined by

g(X, ρ) = α(X),

where α(X) = A(X)−B(X).
Further, we suppose that in an Einstein (APMPS)n, the vector field ρ defined
above is parallel. Then we have

∇Xρ = 0(5.14)
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for all X. By Ricci identity and (5.4) we get

R(X,Y, ρ, U) = 0,(5.15)

which implies

S(Y, ρ) = 0.(5.16)

Using (5.1) in (5.16) we get

rg(Y, ρ) = 0.

Thus, either r = 0 or ‖ ρ ‖2 6= 0. If r = 0 then using (1.6) and (5.6) in (5.4),
it follows that the manifold is an almost pseudo symmetric manifold. Thus we
have:

Theorem 5.3. If the vector field defined by g(X, ρ) = A(X) − B(X) is a
parallel vector field in an Einstein (APMPS)n, (n > 2), then it is an almost
pseudo symmetric manifold provided ‖ ρ ‖6= 0.

6. Examples of (APMPS)n

Example1

Let us consider a Lorentzian metric g on R4 defined by

ds2 = gijdx
idxj = x1(dx1)2 + x1(dx2)2 + x1(dx3)2 − (dx4)2(6.1)

where i, j = 1, 2, 3, 4. Then the only non-vanishing components of the Christof-
fel symbols, the Riemannian curvature tensors and the Ricci tensor are

Γ1
22 = Γ1

33 = − 1

2x1
, Γ1

11 = Γ2
12 = Γ3

13 =
1

2x1
,

R1221 = R1331 = − 1

2x1
, R2332 =

1

4x1
,

and

S22 = S33 = − 1

4(x1)2
, S11 = − 1

(x1)2
, S44 = 0.

And the scalar curvature of the resulting manifold (R4, g) is

r = − 3

2(x1)3
.

Now, the non vanishing components of m-projective curvature tensor and their
covariant derivatives are:

M1221 = M1331 = − 7

24x1
, M2332 =

1

3x1
,
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M1221,1 = M2332,1 =
7

24x2
, M2332,1 = − 1

3x2
,

where ‘,’ denotes the covariant derivative with respect to the metric tensor.
Let us choose the associated 1-forms as follows:

Ai(x) =

{
0, for i = 1

x1, otherwise,

(6.2)

Bi(x) =

−
1

x1
, for i = 1

−x1, otherwise,

(6.3)

at any point x ∈ R4. To verify the relation (1.6), it is sufficient to check the
following equations:

M1221,1 =
[
A1 +B1

]
M1221 +A1M1221 +A2M1121 +A2M1211

+A1M1221,(6.4)

and

M2332,1 =
[
A1 +B1

]
M2332 +A2M1332 +A3M2132 +A3M2312

+A2M2331.(6.5)

Since for the other cases (1.5) holds trivially. By (6.2) and (6.3) we get

R.H.S. of (6.4) = [A1 +B1

]
M1221 +A1M1221 +A1M1221

= [3A1 +B1

]
M1221

= 3(0)
(
− 7

24x1
)

+
(
− 1

x1
)(
− 7

24x1
)

=
7

24x2

= M1212,1

= L.H.S. of (6.4).

By a similar argument it can be shown that (6.5) is also true. So (R4, g) is a
(APMPS)n.

Example2

Consider a Riemannian space Vn, (n ≥ 4) with the metric is given by

ds2 = φ(dx1)2 +Kαβdx
αdxβ + 2dx1dxn,(6.6)

where [Kαβ ] is a symmetric and non singular matrix consisting of constants
and φ is a function of x1, x2, ..., xn−1 and independent of xn, and 1 < α, β < n.
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In the metric considered, the only non-vanishing components of Christoffel
symbols, Riemannian curvature tensor and Ricci tensor are [19]

Γβ11 = −1

2
Kαβφ.α, Γn11 =

1

2
φ.1, ,Γn1α =

1

2
φ.α,

R1αβ1 =
1

2
φ.αβ , S11 =

1

2
Kαβφ.αβ ,(6.7)

where ‘.’ denotes the partial differentiation with respect to the coordinates and
Kαβ are the elements of the matrix inverse to [Kαβ ]. Here we consider Kαβ as
Kronecker symbol δαβ and

φ = (Mαβ + δαβ)xαxβe(x
1)2 ,

where Mαβ are constant and satisfy the relations

Mαβ = 0, for α 6= β,

6= 0, for α = β,
n−1∑
α=1

Mαα = 0.

This is to be noted that the metric with this form of φ was considered by De
and Gazi [12]. Thus we have

φαβ = 2(Mαβ + δαβ)e(x
1)2 , δαβδ

αβ = n− 2,

δαβMαβ =

n−1∑
α=1

Mαα = 0.

Therefore

δαβφαβ = 2(δαβMαβ + δαβδαβ)e(x
1)2 = 2(n− 2)e(x

1)2 .

Since φαβ vanishes for α 6= β, the only non-zero components of the Riemannian
curvature tensor and Ricci tensor by virtue of (6.7) are

R1αα1 =
1

2
φ.αα =

(
1 +Mαα

)
e(x

1)2 ,

S11 =
1

2
φ.αβδ

αβ = (n− 2)e(x
1)2 .

Also, the scalar curvature r = 0.
Hence the only non-zero components of the m-projective curvature tensor,

and their covariant derivatives are

M1αα1 =
(
1 +M

αα
)e(x1)2 +

n− 2

2(n− 1)
e(x

1)2

=
(
1 +

n

2(n− 1)
M
αα
)e(x1)2 ,
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M1αα1,1 = 2x1
(
1 +

n

2(n− 1)
M
αα
)e(x1)2

= 2x1M1αα1,

where ‘,’ denotes the covariant derivative with respect to the metric tensor.
Let us choose the associated 1-forms as follows:

Ai(x) =

{
x1, for i = 1

0, otherwise,

(6.8)

Bi(x) =

{
−x1, for i = 1

0, otherwise,

at any point x ∈ Vn. To verify the relation (1.6), it is sufficient to check the
following equation:

M1αα1,1 = (3A1 +B1)Mα11α(6.9)

R.H.S. of (6.9) = (3A1 +B1)M1αα1

= (3x1 − x1)M1αα1

= 2x1M1αα1

= M1αα1,1

= L.H.S. of (6.9).

So Vn is a (APMPS)n.
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