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Abstract. In this paper, we introduce the notions of a vector-valued
almost automorphic distribution and a vector-valued almost automorphic
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1. Introduction and preliminaries

The notion of a scalar-valued almost automorphic function was introduced
by S. Bochner [2] in 1962. The first systematic study of almost automor-
phic functions on topological groups was carried out by W. A. Veech [17]-[18]
during the period 1965-1967. The reader may consult the monographs [7] by
T. Diagana, [14] by G. M. N’Guérékata and [12] by M. Kostić for the basic
information about almost automorphic functions, asymptotically almost auto-
morphic functions, their generalizations and various applications to abstract
integro-differential equations in Banach spaces.

The notion of a scalar-valued almost automorphic distribution was intro-
duced by C. Bouzar and Z. Tchouar [4] in 2017, while the notion of a scalar-
valued almost automorphic Colombeau generalized function was introduced by
C. Bouzar, M. T. Khalladi and F. Z. Tchouar [3] in 2015 (see also the pioneer-
ing researches of I. Cioranescu [5]-[6] and M. C. Gómez-Collado [9] for almost
periodic classes). As mentioned in the abstract, the main aim of this paper
is to introduce the notions of a vector-valued almost automorphic distribution
and a vector-valued almost automorphic ultradistribution in a complex Banach
space. We provide several structural profilations for the introduced classes.

The organization and main ideas of paper are given as follows. In Subsection
1.1, we remind ourselves of the elementary facts about Komatsu’s approach to
vector-valued ultradistributions. Section 2 is written in an expository manner,
and its aim is to transfer the results of C. Bouzar and Z. Tchouar [4] to vector-
valued case. In Section 3, we introduce the notion of a vector-valued almost
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automorphic ultradistribution and further analyze this concept. In such a way,
we continue the research study of vector-valued almost periodic ultradistribu-
tions, carried out recently by the first named author [13].

We use the standard notation throughout the paper. By (X, ‖·‖) we denote
a complex Banach space. The symbols Cb(R : X) and C(K : X), where K is a
non-empty compact subset of R, stand for the spaces consisting of all bounded
continuous functions R 7→ X and all continuous functions K 7→ X, respectively.
Both spaces are endowed with sup-norm. Let f : R→ X be continuous. Then
we say that f(·) is almost automorphic, a.a. for short, iff for every real sequence
(bn) there exist a subsequence (an) of (bn) and a map g : R→ X such that

lim
n→∞

f
(
t+ an

)
= g(t) and lim

n→∞
g
(
t− an

)
= f(t),

pointwise for t ∈ R. If this is the case, we have that f ∈ Cb(R : X) and the limit
function g(·) is bounded on R but not necessarily continuous on R. The vector
space consisting of all almost automorphic functions is denoted by AA(R : X).
Owing to Bochner’s criterion, any almost periodic function has to be almost
automorphic; the converse statement is not true, however [7].

In this paper, we will use the following notion of a Stepanov p-almost au-
tomorphic function (see e.g. the paper [8] by S. Fatajou, N. Van Minh, G. M.
N’Guérékata and A. Pankov): Let 1 ≤ p < ∞. A function f ∈ Lploc(R : X) is
said to be Stepanov p-almost automorphic, Sp-almost automorphic or Sp-a.a.
shortly, iff for every real sequence (an), there exists a subsequence (ank

) and a
function g ∈ Lploc(R : X) such that

lim
k→∞

∫ t+1

t

∥∥∥f(ank
+ s
)
− g(s)

∥∥∥p ds = 0

and

lim
k→∞

∫ t+1

t

∥∥∥g(s− ank

)
− f(s)

∥∥∥p ds = 0

for each t ∈ R. It is checked at once that the Sp-almost automorphy of f(·)
implies the almost automorphy of the mapping f̂ : R → Lp([0, 1] : X) defined

by f̂(t) := f(t + ·), t ∈ R, with the limit function being g(·)(s) := g(s + ·) for
a.e. s ∈ [0, 1], so that any Sp-almost automorphic function f(·) has to be Sp-
bounded (1 ≤ p <∞); see [12] for the notion. The vector space consisting of all
Sp-almost automorphic functions is denoted by AASp(R : X). If 1 ≤ p < q <∞
and f(·) is Stepanov q-almost automorphic, then f(·) is Stepanov p-almost
automorphic. If f(·) is an almost automorphic function, then f(·) is Sp-almost
automorphic, for any p ∈ [1,∞). The converse statement is false, however.

1.1. Vector-valued ultradistributions

There are a great number of different approaches to the theory of ultra-
distributions. For the sake of brevity, in this paper we will always follow Ko-
matsu’s approach, with the sequence (Mp) of positive real numbers satisfying
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M0 = 1 and the following conditions: (M.1): M2
p ≤ Mp+1Mp−1, p ∈ N,

(M.2): Mp ≤ AHp sup0≤i≤pMiMp−i, p ∈ N, for some A, H > 1, (M.3’):∑∞
p=1

Mp−1

Mp
<∞. Any use of the condition

(M.3): supp∈N
∑∞
q=p+1

Mq−1Mp+1

pMpMq
< ∞, which is slightly stronger than (M.3′),

will be explicitly accented.
It is well-known that the Gevrey sequence (p!s) satisfies the above conditions

(s > 1). Define mp :=
Mp

Mp−1
, p ∈ N.

The space of Beurling, resp., Roumieu ultradifferentiable functions, is de-

fined by D(Mp) := indlimKbbRD
(Mp)
K , resp., D{Mp} := indlimKbbRD

{Mp}
K ,

where D(Mp)
K := projlimh→∞D

Mp,h
K , resp., D{Mp}

K := indlimh→0D
Mp,h
K ,

DMp,h
K :=

{
φ ∈ C∞(R) : suppφ ⊆ K, ‖φ‖Mp,h,K <∞

}
and

‖φ‖Mp,h,K := sup

{
hp|φ(p)(t)|

Mp
: t ∈ K, p ∈ N0

}
.

In the sequel, the asterisk ∗ is used to denote both, the Beurling case (Mp)
or the Roumieu case {Mp}. The space consisted of all continuous linear func-
tions from D∗ into X, denoted by D′∗(X) := L(D∗ : X), is said to be the
space of all X-valued ultradistributions of ∗-class. We also need the notion
of space E∗(X), defined as E∗(X) := indlimKbbRE∗K(X), where in Beurling

case E(Mp)
K (X) := projlimh→∞E

Mp,h
K (X), resp., in Roumieu case E{Mp}

K (X) :=

indlimh→0E
Mp,h
K (X), and

EMp,h
K (X) :=

{
φ ∈ C∞(R : X) : sup

p≥0

hp‖φ(p)‖C(K:X)

Mp
<∞

}
.

The space consisted of all linear continuous mappings E∗(C) → X is denoted
by E ′∗(X); E ′∗ := E ′∗(C). Let us recall [10] that an entire function of the form
P (λ) =

∑∞
p=0 apλ

p, λ ∈ C, is of class (Mp), resp., of class {Mp}, if there
exist l > 0 and C > 0, resp., for every l > 0 there exists a constant C > 0,
such that |ap| ≤ Clp/Mp, p ∈ N. The corresponding ultradifferential operator
P (D) =

∑∞
p=0 apD

p is of class (Mp), resp., of class {Mp}. The convolution
of Banach space valued ultradistributions and scalar-valued ultradifferentiable
functions of the same class will be taken in the sense of considerations given on
page 685 of [11]. We have that, for every f ∈ D′∗(X) and ϕ ∈ D∗, f ∗ϕ ∈ E∗(X)
as well as that the linear mapping ϕ 7→ · ∗ ϕ : D′∗(X)→ E∗(X) is continuous.
The convolution of an X-valued ultradistribution f(·) and an element g ∈ E ′∗,
defined by the identity [11, (4.9)], is an X-valued ultradistribution and the
mapping g ∗ · : D′∗(X) → D′∗(X) is continuous. Put 〈Th, ϕ〉 := 〈T, ϕ(· − h)〉,
T ∈ D′∗(X), ϕ ∈ D∗ (h > 0).

If (Mp) satisfies (M.1), (M.2) and (M.3), then

Pl(x) =
(
1 + x2

)∏
p∈N

(
1 +

x2

l2m2
p

)
,
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resp.

Prp(x) =
(
1 + x2

)∏
p∈N

(
1 +

x2

r2pm
2
p

)
,

defines an ultradifferential operator of class (Mp), resp., of class {Mp}. Here,
(rp) is a sequence of positive real numbers tending to infinity. The family
consisting of all such sequences will be denoted by R henceforth. For more
details, see [10]-[11].

The spaces of tempered ultradistributions of Beurling, resp., Roumieu type,
are defined by S. Pilipović [15] as duals of the corresponding test spaces

S(Mp) := projlimh→∞SMp,h, resp., S{Mp} := indlimh→0SMp,h,

where

SMp,h :=
{
φ ∈ C∞(R) : ‖φ‖Mp,h <∞

}
(h > 0),

‖φ‖Mp,h := sup

{
hα+β

MαMβ
(1 + t2)β/2|φ(α)(t)| : t ∈ R, α, β ∈ N0

}
.

A continuous linear mapping S(Mp) → X, resp., S{Mp} → X, is said to be an X-
valued tempered ultradistribution of Beurling, resp., Roumieu type. The space
consisting of all vector-valued tempered ultradistributions of Beurling, resp.,
Roumieu type, will be denoted by S ′(Mp)(X), resp. S ′{Mp}(X); the common
shorthand will be S ′∗(X). It is well known that S ′(Mp)(X) ⊆ D′(Mp)(X), resp.
S ′{Mp}(X) ⊆ D′{Mp}(X).

2. Almost automorphy of vector-valued distributions

We will use the following elementary notion (see L. Schwartz [16] for more
details). The symbol D = D(R) denotes the Schwartz space of test functions,
the space of rapidly decreasing functions S = S(R) carries the usual Fréchet
topology and E = E(R), the space of all infinitely differentiable functions,
carries the usual Fréchet topology. By D′(X), S ′(X) and E ′(X) we denote
the spaces of all linear continuous mappings D → X, S → X and E → X,
respectively.

Our first task in this section will be to verify that all structural results
proved by C. Bouzar and F. Z. Tchouar [4] continue to hold in vector-valued
case. Let 1 ≤ p ≤ ∞. Then DLp(X) denote the vector space consisting of all
infinitely differentiable functions f : R → X satisfying that for each number
j ∈ N0 we have f (j) ∈ Lp(R : X). The Fréchet topology on DLp(X) is induced
by the following system of seminorms

‖f‖k :=

k∑
j=0

∥∥f (j)∥∥
Lp(R), f ∈ DLp(X)

(
k ∈ N

)
.

In the case that X = C, then the above space is simply denoted by DLp . A
continuous linear mapping f : DL1 → X is said to be a bounded X-valued
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distribution; the space consisting of such vector-valued distributions will be
denoted by D′L1(X). By B′(X) we denote the space of such distributions;
endowed with the strong topology, B′(X) becomes a complete locally convex
space. For every f ∈ B′(X), we have that f|S : S → X is a tempered X-valued
distribution.

Set

EAA(X) :=

{
φ ∈ E(X) : φ(i) ∈ AA(R : X) for all i ∈ N0

}
.

Since, for every φ ∈ EAA(X), we have φ ∈ AA(R : X) ⊆ Cb(R : X) and∥∥∥∥∥
∫ ∞
−∞

φ(t)ϕ(t)dt

∥∥∥∥∥ ≤ ‖φ‖L∞(R)‖ϕ‖L1 , ϕ ∈ DL1 ,

the mapping φ 7→
∫∞
−∞ φ(t)ϕ(t)dt, ϕ ∈ DL1 is linear and continuous so that

EAA(X) ⊆ D′L1(X). Using the fact that the first derivative of a differentiable
almost automorphic function is almost automorphic iff it is uniformly contin-
uous [7], it can be easily verified that we have EAA(X) = E(X) ∩ AA(R : X);
furthermore, EAA(X) ∗ L1(R) ⊆ EAA(X) and EAA(X) is a closed subspace of
DL∞(X) (see [4, Proposition 5]). We have, actually, that EAA(X) is the space
of those elements f(·) from DL∞(X) for which f ∗ ϕ ∈ AA(R : X), ϕ ∈ D
see [4, Corollary 1]. For any vector-valued distribution T ∈ D′(X), we define
τhT := Th by 〈Th, ϕ〉 := 〈T, ϕ(· − h)〉, ϕ ∈ D (h ∈ R).

The following result is crucial:

Theorem 2.1. (see [4, Theorem 1]) Let T ∈ D′L1(X). Then the following
assertions are equivalent:

(i) T ∗ ϕ ∈ AA(R : X), ϕ ∈ D.

(ii) There exist an integer k ∈ N and almost automorphic functions fj(·) :

R→ X (1 ≤ j ≤ k) such that T =
∑k
j=0 f

(j)
j .

It is said that a distribution T ∈ D′L1(X) is almost automorphic iff T
satisfies any of the above two equivalent conditions. By B′AA(X) we denote the
space consisting of all almost automorphic distributions. The space B′AA(X) is
closed under differentiation and [4, Proposition 6] continue to hold in vector-
valued case. This is also the case with the assertions of [4, Proposition 7,
Proposition 8, Theorem 2, Proposition 9, Proposition 10], so that we have the
following theorem:

Theorem 2.2. (i) Let T ∈ D′L1(X). Then T is almost automorphic iff for
every real sequence (bn), there exist a subsequence (an) of (bn) and a
vector-valued distribution S ∈ D′(X) such that limn→∞ Tan = S in
D′(X) and limn→∞ S−an = T in D′(X) iff there exists a sequence of
almost automorphic functions converging to T in D′L1(X) iff for ev-
ery real sequence (bn), there exists a subsequence (an) of (bn) such that
liml→∞ limk→∞ τ−alτanT = T in D′(X).
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(ii) Let f ∈ AASp(R : X) for some p ∈ [1,∞). Then the regular distribution
associated to f(·) is almost automorphic.

3. Almost automorphy of vector-valued ultradistributions

For any h > 0, we set

DL1

(
(Mp), h

)
:=

{
f ∈ DL1 ; ‖f‖1,h := sup

p∈N0

hp‖f (p)‖1
Mp

<∞

}
.

Then (DL1((Mp), h), ‖ · ‖1,h) is a Banach space and the space of all X-valued
bounded Beurling ultradistributions of class (Mp), resp., X-valued bounded
Roumieu ultradistributions of class {Mp}, is defined as the space consisting
of all linear continuous mappings from DL1((Mp)), resp., DL1({Mp}), into X,
where

DL1

(
(Mp)

)
:= projlimh→+∞DL1

(
(Mp), h

)
,

resp.,
DL1

(
{Mp}

)
:= indlimh→0+DL1

(
(Mp), h

)
.

These spaces, equppied with the strong topologies, will be shortly denoted by
D′L1((Mp) : X), resp., D′L1({Mp} : X). It is well known that D(Mp), resp.

D{Mp}, is a dense subspace of DL1((Mp)), resp., DL1({Mp}), as well as that
DL1((Mp)) ⊆ DL1({Mp}). Since ‖ϕ‖1,h ≤ ‖ϕ‖Mp,h for any ϕ ∈ S(Mp) and

h > 0, we have that S(Mp), resp. S{Mp}, is a dense subspace of DL1((Mp)),
resp., DL1({Mp}), and that f|S(Mp) : S(Mp) → X, resp., f|S{Mp} : S{Mp} → X,

is a tempered X-valued ultradistribution of class (Mp), resp., of class {Mp}.
The space D′L1((Mp) : X), resp. D′L1({Mp} : X), is closed under the action of
ultradifferential operators of (Mp)-class, resp. {Mp}-class.

Assume that A ⊆ D′∗(X). Following the investigation of B. Basit and H.
Güenzler [1], conducted for vector-valued distributions, we have recently intro-
duced the following notion in [13]:

D′∗A (X) :=
{
T ∈ D′∗(X) : T ∗ ϕ ∈ A for all ϕ ∈ D∗

}
.

It is worth noting that D′∗A (X) = D′∗A∩B(X), for any set B ⊆ L1
loc(R : X) that

contains C∞(R : X), as well as that the set D′∗A (X) is closed under the action
of ultradifferential operators of ∗-class. In [13], we have proved the following
assertions:

(i) Suppose that there exist an ultradifferential operator P (D) =
∑∞
p=0 apD

p

of class (Mp), resp., of class {Mp}, and f, g ∈ D′∗A (X) such that T =
P (D)f + g. If A is closed under addition, then T ∈ D′∗A (X).

(ii) If A∩C(R : X) is closed under uniform convergence, T ∈ D′L1((Mp) : X)

and T ∗ ϕ ∈ A, ϕ ∈ D(Mp), then there exists h > 0 such that for each

compact set K ⊆ R we have T ∗ ϕ ∈ A, ϕ ∈ DMp,h
K .
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(iii) Suppose that T ∈ D′(Mp)(X) and there exists h > 0 such that for each

compact set K ⊆ R we have T ∗ ϕ ∈ A, ϕ ∈ DMp,h
K . If (Mp) additionally

satisfies (M.3), then there exist l > 0 and two elements f, g ∈ A such
that T = P (D)f + g.

Now we will consider the case that A = AA(R : X). Then A is closed under
the uniform convergence and addition, and we have A ⊆ D′∗A (X) ([12]). Hence,
as a special case of the above assertions, we have the following result:

Theorem 3.1. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’), and
let T ∈ D′(Mp)(X), resp., T ∈ D′{Mp}(X). Then the following hold:

(i) Suppose that there exist an ultradifferential operator P (D) =
∑∞
p=0 apD

p

of class (Mp), resp., of class {Mp}, and f, g ∈ D′∗AA(R:X)(X) such that

T = P (D)f + g. Then T ∈ D′∗AA(R:X)(X).

(ii) If T ∈ D′L1((Mp) : X) and T ∗ ϕ ∈ AA(R : X), ϕ ∈ D(Mp), then there
exists h > 0 such that for each compact set K ⊆ R we have T ∗ ϕ ∈
AA(R : X), ϕ ∈ DMp,h

K .

(iii) Suppose that T ∈ D′(Mp)(X) and there exists h > 0 such that for each

compact set K ⊆ R we have T ∗ ϕ ∈ AA(R : X), ϕ ∈ DMp,h
K . If (Mp)

additionally satisfies (M.3), then there exist l > 0 and two elements f, g ∈
AA(R : X) such that T = P (D)f + g.

As an immediate corollary of Theorem 3.1, we have the following:

Corollary 3.2. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3)’, and
let T ∈ D′L1((Mp) : X), resp. T ∈ D′L1({Mp} : X). Consider now the following
assertions:

(i) There exist a number l > 0, resp. a sequence (rp) ∈ R, and two functions
f, g ∈ AA(R : X) such that T = Pl(D)f + g, resp. T = Prp(D)f + g.

(ii) There exist an ultradifferential operator P (D) =
∑∞
p=0 apD

p of class
(Mp), resp. {Mp}, and two functions f, g ∈ AA(R : X) such that
T = P (D)f + g.

(iii) We have T ∗ ϕ ∈ AA(R : X), ϕ ∈ D∗.

(iv) There exists h > 0 such that for each compact set K ⊆ R, resp. for each
h > 0 and for each compact set K ⊆ R, we have T ∗ ϕ ∈ AA(R : X),

ϕ ∈ DMp,h
K .

Then we have (i) ⇒ (ii) ⇒ (iii) ⇔ (iv). Furthermore, if (Mp) additionally
satisfies the condition (M.3), then the assertions (i)-(iv) are equivalent for the
Beurling class.
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Let us introduce the following space

E∗AA(X) :=

{
φ ∈ E∗(X) : φ(i) ∈ AA(R : X) for all i ∈ N0

}
.

As in the distribution case, E∗AA(X) ⊆ D′∗L1(X), E∗AA(X) = E∗(X)∩AA(R : X)
and E∗AA(X) ∗ L1(R) ⊆ E∗AA(X); furthermore, E∗AA(X) is the space of those
elements f(·) from E∗(X) for which f ∗ ϕ ∈ AA(R : X), ϕ ∈ D∗.

Consider now the following statement:

(ii)’: T ∈ D′L1((Mp) : X), resp. T ∈ D′L1({Mp} : X), and there exists a
sequence (φn) in E∗AA(X) such that limn→∞ φn = T for the topology of
D′L1((Mp) : X), resp. D′L1({Mp} : X).

The proof of following proposition is almost the same as that of [13, Lemma
1]:

Proposition 3.3. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’),
and let T ∈ D′L1((Mp) : X), resp. T ∈ D′L1({Mp} : X). Then we have (iii) ⇔
(ii)’, with (iii) being the same as in the formulation of Corollary 3.2.

It is said that a bounded ultradistribution T ∈ D′L1((Mp) : X), resp.
T ∈ D′L1({Mp} : X), is almost automorphic iff T satisfies any of the above two
equivalent conditions. It can be simply verified that a regular distribution (ul-
tradistribution of ∗-class) determined by an almost automorphic vector-valued
function that is not almost periodic is an almost automorphic vector-valued
distribution (ultradistribution of ∗-class) that cannot be almost periodic (cf.
[4, Example 2]).

Now we would like to state the following result:

Theorem 3.4. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’), and
let T ∈ D′L1((Mp) : X), resp. T ∈ D′L1({Mp} : X). Then we have (i) ⇒ (ii) ⇒
(iii) ⇒ (iv), where:

(i) There exist an ultradifferential operator P (D) =
∑∞
p=0 apD

p of class
(Mp), resp. {Mp}, and two functions f, g ∈ AA(R : X) such that
T = P (D)f + g.

(ii) For every real sequence (bn), there exist a subsequence (an) of (bn) and a
vector-valued ultradistribution S ∈ D′∗(X) such that limn→∞〈Tan , ϕ〉 =
〈S, ϕ〉, ϕ ∈ D∗ and limn→∞〈S−an , ϕ〉 = 〈T, ϕ〉, ϕ ∈ D∗.

(iii) For every real sequence (bn), there exists a subsequence (an) of (bn) such
that liml→∞ limk→∞〈τ−alτakT, ϕ〉 = 〈T, ϕ〉, ϕ ∈ D∗.

(iv) We have T ∗ ϕ ∈ AA(R : X), ϕ ∈ D∗.

Furthermore, if (Mp) additionally satisfies the condition (M.3), then the asser-
tions (i)-(iv) are equivalent for the Beurling class.
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Proof. The proof of (ii) ⇒ (iii) ⇒ (iv) can be deduced as in the distribution
case (see e.g. the proof of [4, Proposition 9]). For the proof of implication (i)⇒
(ii), observe that the almost automorphy of functions f(·) and g(·) implies the
existence of essentially bounded functions F ∈ L∞(R : X) and G ∈ L∞(R : X)
such that

lim
n→∞

f
(
t+ an

)
= F (t) and lim

n→∞
F
(
t− an

)
= f(t)

and

lim
n→∞

g
(
t+ an

)
= G(t) and lim

n→∞
G
(
t− an

)
= g(t),

pointwise for t ∈ R. Using these equations, the dominated convergence theorem
and the fact that, for every bounded subset B of D∗ and for every compact set

K ⊆ R, there exists h > 0 such that B is bounded in DMp,h
K ([10]), it readily

follows that limn→∞ f(· + an) = F in D′∗(X) and limn→∞ g(· + an) = G
in D′∗(X), so that limn→∞〈Tan , ϕ〉 = 〈S, ϕ〉, where S ∈ D′∗(X) is given by
S := P (D)F + G. Similarly we can deduce that limn→∞〈S−an , ϕ〉 = 〈T, ϕ〉,
ϕ ∈ D∗, finishing the proof of theorem.

In the present situation, we cannot tell whether the implication (iv) ⇒ (ii)
holds true in the general case.

In [4, Section 6], C. Bouzar and F. Z. Tchouar have continued the analysis
of S. Bochner [2] concerning linear difference-differential operators

Lh =

p∑
i=0

q∑
j=0

aij
di

dxi
τhj

,

where aij are complex numbers (0 ≤ i ≤ p, 0 ≤ j ≤ q) and h = (hj)0≤j≤q ⊆ Rq.
Taking into account the fact that [2, Theorem 4(i)] holds in vector-valued case,
[13, Theorem 1, Theorem 3] and the proof of [4, Theorem 3], we can simply
clarify that the assertions of [4, Theorem 3, Corollary 3] hold for vector-valued
distributions, as well as for vector-valued ultradistributions:

Theorem 3.5. Let Cpbuc(R : X) denote the vector space of all p-times differ-
entiable uniformly continuous functions f ∈ BUC(R : X) for which f (j) ∈
BUC(R : X), 0 ≤ j ≤ p. Let S ∈ D′L1({Mp} : X), resp. S ∈ D′L1({Mp} : X),
be almost automorphic.

(i) If every solution f ∈ Cpbuc(R : X) of the homogeneous equation Lhf = 0
is almost automorphic, then every solution T ∈ D′L1((Mp) : X), resp.
T ∈ D′L1({Mp} : X), of the inhomogeneous equation LhT = S is almost
automorphic.

(ii) If S′ is almost automorphic, then S is almost automorphic.

(iii) Any translation Sh of S is almost automorphic (h ∈ R).

We close the paper with the observation that the assertions of [4, Theorem 4,
Corollary 4] can be also formulated for vector-valued distributions and vector-
valued ultradistributions.
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[9] Gómez-Collado, M. C. Almost periodic ultradistributions of Beurling and of
Roumieu type. Proc. Amer. Math. Soc. 129, 8 (2001), 2319–2329.

[10] Komatsu, H. Ultradistributions. I. Structure theorems and a characterization.
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105.

[11] Komatsu, H. Ultradistributions. III. Vector-valued ultradistributions and the
theory of kernels. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29, 3 (1982), 653–717.
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Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition,
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