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ON KENMOTSU MANIFOLDS ADMITTING A
SPECIAL TYPE OF SEMI-SYMMETRIC
NON-METRIC ¢p— CONNECTION

Ajit Barman”, Uday Chand De? and Pradip Majhi®®

Abstract. The object of the present paper is to study a special type
of semi-symmetric non-metric ¢-connection on a Kenmotsu manifold. It
is shown that if the curvature tensor of Kenmotsu manifolds admitting
a special type of semi-symmetric non-metric ¢-connection V vanishes,
then the Kenmotsu manifold is locally isometric to the hyperbolic space
H"™(—1). Beside these, we consider Weyl conformal curvature tensor of
a Kenmotsu manifold with respect to the semi-symmetric non-metric
¢-connection. Among other results, we prove that the Weyl conformal
curvature tensor with respect to the Levi-Civita connection and the semi-
symmetric non-metric ¢-connection are equivalent. Moreover, we deal
with ¢-Weyl semi-symmetric Kenmotsu manifolds with respect to the
semi-symmetric non-metric ¢-connection. Finally, an illustrative exam-
ple is given to verify our result.
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1. Introduction

The product of an almost contact manifold M and the real line R carries
a natural almost complex structure. However, if one takes M to be an almost
contact metric manifold and suppose that the product metric G on M x R is
Kaehlerian, then the structure on M is cosymplectic [IZ] and not Sasakian.
On the other hand, Oubina [I6] pointed out that if the conformally related
metric e?'G, t being the coordinates on R, is Kaehlerian, then M is Sasakian
and conversely.

In [P3], Tanno classified almost contact metric manifolds whose automor-
phism group possesses the maximum dimension. For such a manifold M, the
sectional curvature of plane section containing £ is a constant, say c. If ¢ > 0, M
is a homogeneous Sasakian manifold of constant sectional curvature. If ¢ = 0,
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M is the product of a line or a circle with a Kaehler manifold of constant holo-
morphic sectional curvature. If ¢ < 0, M is a warped product space R x ; C".
In 1972, Kenmotsu [[3] abstracted the differential geometric properties of the
third case. We call it a Kenmotsu manifold. Any point of a Kenmotsu mani-
fold has a neighborhood isometric to the warped product (—¢,€) Xy V', where
(—¢,€) is an open interval from R, f(t) = cexpt, ¢ > 0 and V is a Kéhler
manifold [I3].

More recently, in [9], almost contact metric manifolds such that 7 is closed
and d® = 2n A ® were studied and they were called almost Kenmotsu mani-
foolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu mani-
fold.

In 1924, Friedmann and Schouten [0] introduced the idea of a semi-sym-
metric connection on a differentiable manifold. A linear connection V on a
differentiable manifold M is said to _be a semi-symmetric connection if the
torsion tensor T' of the connection V satisfies T(X,Y) = w(Y)X — w(X)Y,
where u is a 1-form and p is a vector field defined by u(X) = g(X,p), for
all vector fields X,Y € x(M). Here x(M) denotes the set of all differentiable
vector fields on M.

In 1932, Hayden [IT] introduced the idea of semi-symmetric metric connec-
tions on a Riemannian manifold (M, g). A semi-symmetric connection V is
said to be a semi-symmetric metric connection if %g =0.

A relation between the semi-symmetric metric connection V and the Levi-

Civita connection V of (M, g) was given by Yano [P4]: VxY = VxY4u(Y)X —
9(X,Y)p, where u(X) = g(X, p).
In 1976, Yano [75] introduced the notion of semi-symmetric metric ¢-connection
in a Sasakian manifold. Semi-symmetric connection \Y satisfying @g # 0,
was initiated by Prvanovié [20] with the name pseudo-metric semi-symmetric
connection and was just followed by Andonie [22]. Semi-symmetric connection
\Y satisfying @g # 0 is said to be a semi-symmetric non-metric connection.
Semi-symmetric non-metric connection have been studied by several authors
such as ([6], [21], [27]) and many others.

In 1992, Agashe and Chafle [{] studied a semi-symmetric non-metric con-
nection V, whose torsion tensor 7' satisfies T(X,Y) = u(Y)X — u(X)Y and
(Vxg)(Y,Z) = —u(Y)g(X, Z) — u(Z)g(X,Y). In [15] Barua and Mukhopad-
hyay studied a type of semi-symmetric connection V which satisfies (V x g)(Y, Z)
= 2u(X)g(Y, Z) — u(Y)g(X,Z) —u(Z)g(X,Y). Since Vg # 0, this is another
type of semi-symmetric non-metric connection. However, the authors preferred
the name semi-symmetric semimetric connection.

In 1994, Liang [4] studied another type of semi-symmetric non-metric con-
nection V for which we have (Vxg)(Y, Z) = 2u(X)g(Y, Z), where u is a non-
zero 1-form and he called this a semi-symmetric recurrent metric connection.
In this paper we introduce a new type of semi-symmetric non-metric ¢-conne-
ction in a Kenmotsu manifold. The paper is organized as follows:

After introduction, in Section 2, we give a brief account of Kenmotsu man-
ifolds. In Section 3, we define a special type of semi-symmetric non-metric
¢-connection on Kenmotsu manifolds. In section 4 we establish the relation
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between the curvature tensors with respect to the special type of the semi-
symmetric non-metric ¢-connection and the Levi-Civita connection and prove
that if the curvature tensor with respect to the semi-symmetric non-metric ¢-
connection V vanishes, then the Kenmotsu manifold is locally isometric to the
hyperbolic space H™(—1). In Section 5 we consider Weyl conformal curvature
tensor of a Kenmotsu manifold with respect to the semi-symmetric non-metric
¢-connection. Among others we prove that the Weyl conformal curvature tensor
with respect to the Levi-Civita connection and the semi-symmetric non-metric
¢-connection are equivalent. Moreover, Section 6 deals with a ¢-Weyl semi-
symmetric Kenmotsu manifold with respect to the semi-symmetric non-metric
¢-connection. Finally, an illustrative example is given to verify our result.

2. Kenmotsu Manifolds

Let M be an (2n + 1)-dimensional almost contact metric manifold with an
almost contact metric structure (¢,&,n, g) consisting of a (1,1) tensor field ¢,
a vector field &, a 1-form 7 and the Riemannian metric g on M satisfying ([d],

5))

(2'1) ”7(5) =1, ¢(£) =0, 77(¢(X)) =0, g(X7 f) = U(X)7
(2.2) P*(X) = =X +n(X)g,
(2.3) 9(0X,9Y) = g(X,Y) = n(X)n(Y),

for all vector fields X Y on x(M). A manifold with the almost contact metric
structure (¢, &, 7, g) is an almost Kenmotsu manifold if the following conditions
are satisfied

dn=20; dQ=2nAQQ,

where  is the 2-form defined by Q(X,Y") = g(X, ¢Y"). Any normal almost Ken-
motsu manifold is a Kenmotsu manifold. An almost contact metric structure
(¢,€,m, g) is a Kenmotsu manifold [I3] if and only if

(2.4) (Vxo)(Y) = g(¢X,Y)E —n(Y)pX.

Hereafter we denote the Kenmotsu manifold of dimension (2n+1) by M. From
the above relations, it follows that

(2.5) Vxé=X —n(X)¢,
(2.6) (Vxm)(Y) = g(X,Y) = n(X)n(Y),
(2.7) R(X,Y)E=n(X)Y —n(Y)X,

(2.8) R, X)Y =n(Y)X — g(X,Y)E,
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(2.9) n(R(X,Y)Z) = g(X, Z)n(Y) = g(Y, Z)n(X),

(2.10) S(X, €) = —2nn(X),

where R and S denote the curvature tensor and the Ricci tensor of M, respec-
tively, with respect to the Levi-Civita connection.

Kenmotsu manifolds were studied by many authors such as Pitis [19], De
and Pathak [B], Binh et al. [8], Ozgur ([I¥], [T7]) and many others.

Let M be a Kenmotsu manifold. M is said to be an n-Einstein manifold
if there exist real valued functions «,  such that S(X,Y) = ag(X,Y) +
Bn(X)n(Y). For B = 0, the manifold M is an Einstein manifold.

Now we state the following;:

Lemma 2.1. [13] Let M be an n-Einstein Kenmotsu manifold of the form
S(X,Y) = ag(X,Y) + Bn(X)n(Y). If a = constant (or 5 = constant), then
M is an Einstein one.

3. Semi-symmetric non-metric ¢-connection on Kenmotsu
manifolds

This section deals with a special type of semi-symmetric non-metric ¢-
connection on a Kenmotsu manifold. Let (M?"*1 g) be a Kenmotsu Manifold
with the Levi-Civita connection V and we define a linear connection V on M
by

(3.1) VxY =VxY —n(Y)X - 2n(X)Y + g(X,Y)E.
Using (B), the torsion tensor 7' of M with respect to the connection V is
given by
(32)  T(X,Y)=VxY —VyX — [X,V] = 5(Y)X — n(X)Y.
The linear connection V satisfying (82) is a semi-symmetric connection.
So the equation (B) turns into
(Vxg)(Y. Z) =Vxg(Y. Z) = g(VxY,Z) — g(Y.VxZ)
(3:3) =4n(X)g(Y, Z) # 0.
The linear connection V satisfying (82) and (83) is called a semi-symmetric

non-metric connection.
By making use of (1), (24) and (B), it is obvious that

(3.4) (Vx9)(Y) = VxoY —p(VxY) =0.
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The linear connection V defined by (B) satisfying (82), (823) and (B3) is
a special type of semi-symmetric non-metric ¢-connection on Kenmotsu mani-
folds.

Conversely, we show that a linear connection V defined on M satisfying
(832), (B3) and (BA) is given by (B). Let H be a tensor field of type (1,2)
and

(3.5) ?XYZVXY—FH()CY).

Then we conclude that

(3.6) T(X,Y)=H(X,Y) - H(Y,X).

Further using (B3), it follows that

(Vxg)(Y,2) =Vxg(Y,2) — g(VxY,Z) — g(Y,VxZ) = —g(H(X,Y), Z)
(3.7) —9(Y,H(X, Z)).

In view of (B33) and (B77) yields

(3-8) g(H(X,Y), Z) +g(Y, H(X, Z)) = —4n(X)g(Y, Z).
Also using (BR) and (BH), we derive that
9(T(X,Y), 2)+9(T(2, X),Y)+9(T(Z,Y), X) = 29(H(X,Y), Z)+4n(X)g(Y, Z)

—4n(Y)g(X, Z) — 4n(Z2)g(X,Y).
The above equation yields

G(H(X,Y),2) = 5[6(T(X,Y), Z) + g(T(Z,X),Y) + g(T(Z,Y), X))
(39) ~20(X)g(¥, 2) + 20(Y)g(X, 2) + 20(2)g (X, V).

Let T” be a tensor field of type (1,2) given by

(3.10) 9T (X,Y),2)=g(T(Z,X),Y).
Adding (1), (B2) and (BTW), we obtain
(3.11) T'(X,Y) =n(X)Y — g(X,Y)¢.

From (B™) we have by using (B0) and (BT)
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9(H(X,Y), 2) = Jo(T(X, V), 2) + o(T'(X,Y), 2) + g(T'(Y, X), 7)]
—20(X)g(Y, Z) + 20(V)g(X, Z) + 20(Z)g(X,Y) = —n(V)g(X, )
(3.12) —2(X)g(Y, Z) +n(Z)9(X,Y).

Now contracting Z in (B12) and using (E71), we obtain that

(3.13) HX)Y)=—Y)X —2n(X)Y + g(X,Y)¢.

Combining (BH) and (B13), it follows that

VxY =VxY —n(Y)X —29(X)Y + g(X,Y)E.
From the above discussions we conclude the following:

Theorem 3.1. The linear connection VxY = VxY —n(Y)X — 2n(X)Y +
9(X,Y)E is a special type of semi-symmetric non-metric ¢-connection on a
Kenmotsu manifold.

4. Curvature tensor of a Kenmotsu manifold with respect
to the semi-symmetric non-metric ¢-connection

In this section we obtain the expressions of the curvature tensor, Ricci tensor
and scalar curvature of M with respect to the semi-symmetric non-metric ¢-
connection defined by (BI).

Analogous to the definitions of the curvature tensor of M with respect to
the Levi-Civita connection V, we define the curvature tensor R of M with
respect to the semi-symmetric non-metric ¢-connection V by

(4.1) R(X,Y)Z =VxVyZ —-VyVxZ -V xyZ,

where XY, Z € x(M), the set of all differentiable vector fields on M.
Using (21), (E2) and (B) in (E), we obtain

R(X,Y)Z = R(X,Y)Z + (Vyn)(Z)X — (Vxn)(2)Y +n(Y)n(Z)X
(4.2) -n(X)n(2)Y.

By making use of (EZ4) and (Z0) in (72), we have

(4.3) R(X,Y)Z = R(X,Y)Z +g(Y, Z)X — g(X, Z)Y.

So the equation (E33) turns into

(4.4) R(X,Y)Z = —-R(Y,X)Z,
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and
(4.5) R(X,Y)Z+ R(Y,Z2)X + R(Z,X)Y = 0.

We call (E3) the first Bianchi identity with respect to V on Kenmotsu mani-
folds.
Taking the inner product of (E3) with U, it follows that

(4'6) R(X,Y,Z, U) = R<X> Y. Z, U) +g(Y, Z)9<X) U) - g(X, Z)Q(K U)7

where U € x(M), R(X,Y,Z,U) = g(R(X,Y)Z,U) and
R(X,Y,Z,U) = g(R(X,Y)Z,U).
Equation (EH) yields

R(X,Y,Z,U) = —R(X,Y,U, Z).

Let {e1,...,ean+1} be a local orthonormal basis of the tangent space at a
point of the manifold M. Then by putting X = U = ¢; in (E8) and taking
summation over i, 1 <1i < 2n+ 1 and also using (270, we get

where S and S denote the Ricci tensor of M with respect to V and V,
respectively.
Equation (A74) implies that

S(Y,2)=8(Z,Y).

Let 7 and r denote the scalar curvature of M with respect to V and V,
respectively, i.e., 7 = 3.2"7" S(e;, ;) and r = 37T S(ey, ).

Again let {eq,...,ean+1} be a local orthonormal basis of vector fields in
M. Then by putting Y = Z = ¢; in (EZ) and taking summation over i,
1 <i<2n+1 and also using (1), it follows that

F=r+2n2n+1).

Summing up all of the above equations, we can state the following proposi-
tion:

Proposition 4.1. For a Kenmotsu manifold M with respect to a special type
of semi-symmetric non-metric ¢-connection V
(i) The curvature tensor R is given by

R(X,Y)Z =R(X,Y)Z+g(Y,2)X — g(X, 2)Y,
(ii) The Ricci tensor S is given by

S(Y,2) = S(Y, Z) + 2ng(Y, Z),
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(iii) The scalar curvature 7 is given by
F=r+2n2n+1),

(iw)R(X,Y)Z = —R(Y,X)Z,
(vWR(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0,

(vi) The Ricci tensor S is symmetric,
(vii) R(X,Y,Z,U) = ~R(X,Y,U, Z).

Definition 4.2. A Kenmotsu manifold with respect to the Levi-Civita con-
nection is of constant curvature if its curvature tensor R is of the form

where k is a constant.

It R = 0, then the equation (EH) turns into

(4.8) R(X,Y,Z,U) = g(X, 2)g(Y,U) — g(Y, Z)g(X,U).

Therefore, g(R(X,Y)Z,U) = k[g(Y,Z)g9(X,U) — g(X, Z)g(Y,U)], where k =
—1. From which it follows that the Kenmotsu manifold with respect to the
Levi-Civita connection is of constant curvature —1.

This leads to the following theorem:

Theorem 4.3. If the curvature tensor of V in a Kenmotsu manifold vanishes,
then the Kenmotsu manifold is locally isometric to the hyperbolic space H™(—1).

Definition 4.4. For each plane p in the tangent space T, (M), the sectional

curvature K(p) is defined by K(p) = oS X?;g;};f_’;()x 77 where {X,Y} is
orthonormal basis for p. Clearly K (p) is the independent of the choice of the

orthonormal basis {X,Y} [7].

Putting Z = X, U =Y in (EXR), we get
R(X,Y,X,Y) = [g(X, X)g(Y,Y) — g(X,Y)g(X,Y)].
Then from the above equation we conclude that

K(p) = R(X,Y,X,Y)

T X X)g(ry) — gV PE

Summing up, we can state the following theorem :

Theorem 4.5. If in a Kenmotsu manifold the curvature tensor of a special
type of semi-symmetric non-metric ¢-connection V vanishes, then the sectional
curvature of the plane determined by two vectors X,Y € €+ is —1.

Lemma 4.6. [19] The Kenmotsu manifold M has constant sectional curvature
—1 if and only if M is obtained by a concircular structure transformation from
C™ x R endowed with the canonical cosymplectic structure.
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Therefore from Theorem BZ3 and Lemma B0 we can state the following
theorem:

Theorem 4.7. If in a Kenmotsu manifold the curvature tensor of the spe-
cial type of semi-symmetric non-metric ¢-connection V wvanishes, then the
Kenmotsu manifold is obtained by a concircular structure transformation from
C™ x R endowed with the canonical cosymplectic structure.

5. Weyl conformal curvature tensor of a Kenmotsu man-
ifold with respect to the semi-symmetric non-metric
¢-connection

In a Riemannian manifold Weyl conformal curvature tensor C' is defined as
follows:

C(X.Y)Z = RX,Y)Z- L [S(Y, 2)X ~ S(X, 2)Y + 4(¥, 2)@X
(5.1) 9, 2)QY] + 5 oY 2)X = g(X, 2)Y)

where R is the Riemannian curvature tensor of type (1,3), the Ricci operator
Q is defined by ¢(QX,Y) = S(X,Y), S is the Ricci tensor of type (0,2) and r
denotes the scalar curvature.

Let C be the conformal curvature tensor of M with respect to the semi-
symmetric non-metric ¢-connection V. Then

C(X,Y)Z = R(X,Y)Z- [S(Y, 2)X — 8(X, Z)Y + (Y, Z)QX

2n —1
- 7
5.2 —g9(X,2)QY |+ ——— 9V, 2) X —g(X, 2)Y

(52) 95 D)QY ]+ gt [0V, 2)X — g(X.2)Y],
~ where Ris the Riemannian curvature tensor of type (1,3), the Ricci operator
Q is defined by g(QX,Y) = S(X,Y), S is the Ricci tensor of type (0,2) and
7 denotes the scalar curvature with respect to semi-symmetric non-metric ¢-
connection V.

An application of Proposition B0 in (E3) yields

(5.3) C(X,Y)Z =C(X,Y)Z,

for all X, Y, Z. Thus the Weyl conformal curvature tensor with respect to the
Levi-Civita connection and the semi-symmetric non-metric ¢-connection are
equivalent. Therefore, we conclude the following:

Theorem 5.1. The Weyl conformal curvature tensor with respect to the Levi-
Civita connection and the semi-symmetric non-metric ¢-connection are equiv-
alent.

In [8], Binh et al. proved the following:
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Proposition 5.2. Let M be a Kenmotsu manifold. Then the following asser-
tions are equivalent:

(a) M has constant sectional curvature -1;

(b) M is conformally flat;

(¢) M is conformally symmetric;

(d) M is conformally semi-symmetric (i. e. R.C =0);

(e) R(X,£).C =0 for any X.

Suppose R = 0, then from Proposition Bl we get R(X,Y)Z = —{g(Y, Z) X —
9(X,Z2)Y}. It follows that M is a manifold of constant curvature —1 with
respect to the Levi-Civita connection. Then from Proposition B2 we con-
clude that M is conformally flat. Since C' = C, then M is conformally flat
with respect to the semi-symmetric non-metric ¢-connection. Conversely, if
C = 0, then C = 0. Hence by Proposition B2 M is a manifold of constant
curvature —1 with respect to the Levi-Civita connection, i.e., R(X,Y)Z =
—{g(Y,Z)X — g(X,Z)Y}. Again in view of Proposition I we have R = 0.
Thus we conclude that C =0, C = 0 and R = 0 are equivalent. Thus we can
state the following:

Theorem 5.3. Let M be a Kenmotsu manifold. Then with respect to the semi-
symmetric non-metric ¢-connection the following assertions are equivalent:
(a) M has constant sectional curvature -1;

(b) M is conformally flat (C = 0);

(c) M is conformally symmetric (VC = 0);

(d) M is conformally semi-symmetric (i. e. R.C =0);

(e) R(X,&).C =0 for any X.

6. ¢-Weyl semisymmetric Kenmotsu manifold with re-
spect to the semi-symmetric non-metric ¢-connection

Definition 6.1. [26] A Riemannian manifold (M?"*1 g), n > 1 is said to be
¢-Weyl semisymmetric if C(X,Y).¢p =0 holds on M.

First we consider ¢-Weyl semisymmetric Kenmotsu manifolds. Then

(6.1) (C(X,Y).9)Z =0,
for all X, Y, Z. Putting Z = ¢ in (6) we have
(6.2) P(C(X,Y)E) =0.

Using (51) in (62) we get

(63)  —(1+ 3 ){n(X)6Y —n(Y)oX} = n(Y)dQX — n(X)6QY.
Putting X = ¢ in the above equation we get

(64)  S(X,Y) = =14 7-)g(X,¥) = (2n— 1= - )n(X)n(Y).

Thus in view of the above we can state the following:
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Proposition 6.2. A ¢-Weyl semi-symmetric Kenmotsu manifold (M?"+1,g),
n > 1 is an n-Einstein manifold.

Since C' = C, then (C(X,Y).¢)Z = 0 and (C(X,Y).$)Z = 0 are equivalent.
Thus we can state the following:

Theorem 6.3. A ¢-Weyl semi-symmetric Kenmotsu manifold (M?"+1,g),
n > 1 with respect to the semi-symmetric non-metric ¢-connection is an n-
Einstein manifold.

7. Example of a 5-dimensional Kenmotsu manifold with
respect to the semi-symmetric non-metric ¢-connection

We consider the 5-dimensional smooth manifold M = {(z,y, z,u,v) € R},
where (7, z,u,v) are the standard coordinates in R®.
We choose the vector fields
0

€1 = ¢€ -, €y =

ox’

9
oy’

9
0z’

—v —v

€3 = €4 =€ ——, €5 = 5,

which are linearly independent at each point of M [7].
Let g be the Riemannian metric defined by

gleiej) =0, 15, 4,7 =1,2,3,45

and
glei,e1) = glez, e2) = gles, e3) = glea, ea) = g(es, e5) = 1.
Let n be the 1-form defined by

(%) = g(Z,es),

for any Z € x(M).
Let ¢ be the (1,1)-tensor field defined by

per = e3, pea = ey4, Qez = —e1, ¢eqg = —ea, ¢es = 0.

Using the linearity of ¢ and g, we have
77(65) =1,
¢*(Z) = ~Z +n(Z)es

and
9(¢Z,9U) = g(Z,U) —n(Z)n(U),

for any U, Z € x(M). Thus, for e5 = &, M(¢,&,n,g) defines an almost contact
metric manifold. The 1-form 7 is closed.
We have

aa_aa_g_g__%
gz 57) =905595;,) =955 —g5) =
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Hence, we obtain Q = —e?dx A dz. Thus, dQ = —2e2Vdv A dx A dz = 2n A Q.
Therefore, M(¢,&,7,9) is an almost Kenmotsu manifold. It can be seen that
M(,&,m,g) is normal. So, it is a Kenmotsu manifold.

Then we have

[61,62] = [61,63] = [61,64] = [62763} =0, [61765} = €1,

lea, e5] = €4, [e2, e4] = [e3,e4] = 0, [e2, e5] = €2, [e3, €5] = €.

The Levi-Civita connection V of the metric tensor ¢ is given by Koszul’s
formula which is given by

29(VxY,Z) = Xg(Y,2)+Yg(X,Z) - Zg(X,Y)
—g(X, [Y, Z]) —g(Y, [X7 Z]) + 9(27 [X’ Y])

Taking e5; = £ and using the above formula we obtain the following:
velel = —é€s, veleQ = 0, VeleB = 07 v€164 = 07 v(:'165 = €1,

V@el = O, VeZeQ = —€s, vez,eg = O, v6264 = O7 V6265 = €2,

Ve3€1 = 0, Veseg = 0, ve363 = —e€s5, v6364 = 07 Ve365 = €3,

Ve,e1 =0, Veea=0, V. e3=0, Vgeq=—e5, Vg5 =eq,
V65€1 = 0, v55€2 = O, ve563 = 0, ve5€4 = O7 V6565 =0.

Further we obtain the following:

Vee; =0, i,j=1,234,5.
and hence -
(V€i¢)ej = 07 Z?] = 17 27 3a47 5

By the above results, we can easily obtain the non-vanishing components
of the curvature tensors as follows:

R(e1,e2)ea = R(e1,e3)es = R(eq,es)es = R(eq, e5)es = —eq,

R(e1,eax)e; = ea, R(er,ez)er = R(es,es)es = R(ea, e3)es = es,
R(eq,e3)es = R(ea,eq)eq = R(ea,e5)es = —ea, R(es, e4)eq = —es,
R(eq,e5)ea = R(ey, es)er = R(eyq,e5)eq = R(es, e5)es = es,
R(ey,eq4)er = R(ea,eq)ea = R(es,eq)es = R(es, eq)es = ey

and

R(ej,ej)e, =0, i,j,k=1,2,3,4,5.
From the components of the curvature tensor of the Kenmotsu manifold it
can be easily seen that the manifold is of constant curvature —1. Therefore
Theorem BT is verified.
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