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SPHERES AND CIRCLES IN THE TANGENT SPACE
AT A POINT ON A RIEMANNIAN MANIFOLD
WITH RESPECT TO AN INDEFINITE METRIC

Georgi Dzhelepov1

Abstract. We consider a 3-dimensional Riemannian manifold with an
additional circulant structure, whose third power is the identity. This
structure is compatible with the metric such that an isometry is induced
in any tangent space of the manifold. Further, we consider an associated
metric with the Riemannian metric, which is necessarily indefinite. We
find equations of a sphere and equations of a circle, which are given with
respect to the associated metric, in terms of the Riemannian metric.

AMS Mathematics Subject Classification (2010): 53B30; 53B20; 15B05;
51N20

Key words and phrases: Riemannian manifold; circulant matrix; indefi-
nite metric tensor; sphere equation; time-like; space-like

1. Introduction

The study of Riemannian manifolds with additional structures is a very
substantial topic in modern differential geometry. Some of the manifolds are
equipped with a structure which satisfies an equation of the third power (for
example [2, 4, 3, 10, 13]).

The models of a sphere and the relations between spheres and hyperboloids,
between spheres and cones are of certain interest in pseudo-Riemannian geom-
etry. Another current problem is the obtaining of the correspondence between
a circle and other quadratic curves (for instance [1, 7, 8, 9, 11, 12]).

The object of the present paper is a 3-dimensional differentiable manifold
M equipped with a Riemannian metric g and a tensor q of type (1, 1), whose
third power is the identity and q acts as an isometry on g. The components
of q form a circulant matrix with respect to some basis, i.e. q is a circulant
structure. Such a manifold (M, g, q) is defined in [5]. Also, we consider an
associated metric f , which is introduced in [6]. The metric f is necessarily
indefinite and it determines space-like vectors, isotropic vectors and time-like
vectors in the tangent space TpM at an arbitrary point p on M .

The paper is organized as follows. In Section 2, we recall some necessary
facts about the manifold (M, g, q) and about a q-basis of TpM . Also, we con-
sider the properties of the associated metric f determined by the condition
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f(u, v) = g(u, qv) + g(qu, v). In Section 3, we obtain equations of the spheres,
which are given with respect to f , in terms of g. Also we establish that every
vector from an orthonormal q-basis of TpM is an isotropic one with respect to
f . In Section 4, we find equations of the circles, which are given with respect
to f , in terms of g.

2. Preliminaries

Let M be a 3-dimensional Riemannian manifold equipped with an addi-
tional tensor structure q of type (1, 1). Let the coordinates of q with respect
to some coordinate system form the circulant matrix

(2.1) q =

0 1 0
0 0 1
1 0 0

 .

Then we have

(2.2) q3 = id.

Let g be a positive definite metric on M , which satisfies the equality

(2.3) g(qu, qv) = g(u, v), u, v ∈ XM.

Such a manifold (M, g, q) is introduced in [5].
Further u, v, w will stand for arbitrary vectors in the tangent space TpM .
It is well-known that the norm of every vector u is given by

(2.4) ‖u‖ =
√
g(u, u).

Having in mind (2.3) and (2.4), for the angle ϕ = ∠(u, qu) we have

(2.5) cosϕ =
g(u, qu)

g(u, u)
.

In [5], for (M, g, q) it is verified that the angle ϕ is in
[
0, 2π3

]
. If ϕ ∈

(
0, 2π3

)
,

then u form a basis {u, qu, q2u}, which is called a q-basis of TpM . There exists
an orthonormal q-basis.

The associated metric f on (M, g, q), determined by

(2.6) f(u, v) = g(u, qv) + g(qu, v),

is necessarily indefinite [6].
Now, using (2.1), (2.3) and (2.6), we establish that f satisfies the following

equalities:

(2.7) f(u, u) = 2g(u, qu),

(2.8) f(u, qu) = g(u, u) + g(u, qu).

According to the physical terminology we give the following
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Definition 2.1. Let f be the associated metric on (M, g, q). If a vector u
satisfies f(u, u) > 0 (resp. f(u, u) < 0), then u is space-like (resp. time-like).
If a nonzero vector u satisfies f(u, u) = 0, then u is isotropic.

Next we get

Theorem 2.2. Let f be the associated metric on (M, g, q) and ϕ be the angle
between u and qu, with respect to g. Then the following propositions hold:

(i) u is a space-like vector if and only if ϕ ∈
[
0, π2

)
;

(ii) u is an isotropic vector if and only if ϕ = π
2 ;

(iii) u is a time-like vector if and only if ϕ ∈
(
π
2 ,

2π
3

)
.

Proof. From (2.4), (2.5) and (2.7) we get f(u, u) = 2‖u‖2 cosϕ. Having in
mind Definition 2.1, the proof follows.

Obviously, taking into account (2.2) and (2.7), we have

Corollary 2.3. If u is a space-like (isotropic or time-like) vector, then qu and
q2u are space-like (isotropic or time-like) vectors, respectively.

3. Spheres with respect to f

Let {u, qu, q2u} be an orthonormal q-basis of TpM . Let pxyz be a coordinate
system such that the vectors u, qu and q2u are on the axes px, py and pz,
respectively. So pxyz is an orthonormal coordinate system. If N(x, y, z) is an
arbitrary point with a radius vector v, then v is expressed by equality

(3.1) v = xu+ yqu+ zq2u.

The equation of a sphere s of a radius r centered at the origin p, with respect
to the associated metric f on (M, g, q), is

(3.2) s : f(v, v) = r2.

Bearing in mind that f is an indefinite metric, we have three different options
for the constant r2, which are r2 > 0, r2 = 0 and r2 < 0.

We apply (3.1) into (3.2) and, using (2.7) and (2.8), we obtain the equation
of s as follows

(3.3) 2xy + 2xz + 2yz = r2.

We rotate the coordinate system pxyz into px′y′z′ by substitutions:

x =
1√
2
x

′
− 1√

6
y

′
+

1√
3
z

′

y =

√
2√
3
y

′
+

1√
3
z

′
(3.4)

z = − 1√
2
x

′
− 1√

6
y

′
+

1√
3
z

′
.
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Then (3.3) transforms into the following equation of a quadratic surface:

(3.5) x
′2 + y

′2 − 2z
′2 = −r2.

We substitute r2 = 0 into (3.5) and we get an equation of a cone:

(3.6) s0 : x
′2 + y

′2 − 2z
′2 = 0.

The cone is shown in Figure 1.
Let r satisfy inequality r2 > 0. Then, from (3.5), we have a hyperboloid of

two sheets:

(3.7) s1 : x
′2 + y

′2 − 2z
′2 = −a2, a2 = r2 > 0.

For example, a hyperboloid with the equation x
′2 + y

′2 − 2z
′2 = −2 is shown

in Figure 2.
Let r satisfy inequality r2 < 0. Then, from (3.5), we obtain a hyperboloid

of one sheet:

(3.8) s2 : x
′2 + y

′2 − 2z
′2 = a2, a2 = −r2 > 0.

For example, a hyperboloid with the equation x
′2 + y

′2 − 2z
′2 = 1 is shown in

Figure 3.
Therefore, we state the following

Theorem 3.1. Let f be the associated metric on (M, g, q), {u, qu, q2u} be an
orthonormal q-basis of TpM and pxyz be a coordinate system such that u ∈ px,
qu ∈ py, q2u ∈ pz. Then the sphere (3.2) has the equation (3.5) with respect
to the coordinate system px′y′z′ , obtained by the rotation (3.4) of pxyz. In
particular,

(i) if r2 = 0, then s is a circular double cone s0 with (3.6),

(ii) if r2 > 0, then s is a circular hyperboloid of two sheets s1 with (3.7),

(iii) if r2 < 0, then s is a circular hyperboloid of one sheet s2 with (3.8).

Note. We will say that the surfaces s0, s1, and s2 are produced from the
sphere s.

Corollary 3.2. If the surfaces s0, s1 and s2 are produced from the sphere s,
then

(i) every point on s0 has an isotropic radius vector,

(ii) every point on s1 has a space-like radius vector,

(iii) every point on s2 has a time-like radius vector.

Proof. According to Definition 2.1 and due to (3.2), the statement holds.
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Figure 1: Cone
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Figure 2: Hyperboloid of two sheets
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Figure 3: Hyperboloid of one sheet

Theorem 3.3. Let f be the associated metric on (M, g, q) and {u, qu, q2u}
be an orthonormal q-basis of TpM . If pxyz is a coordinate system such that
u ∈ px, qu ∈ py and q2u ∈ pz, then u, qu and q2u are isotropic vectors and
their heads lie at the circles

(3.9) x
′2 + y

′2 =
2

3
, z

′
= ± 1√

3
,

where px′y′z′ is the coordinate system obtained by the rotation (3.4) of pxyz.

Proof. Bearing in mind (2.7) and Definition 2.1 we have that u, qu and q2u are
isotropic vectors with respect to f . Therefore, their heads are on the cone s0
determined by (3.6). On the other hand, the heads of u, qu and q2u lie at the
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unit sphere

(3.10) x2 + y2 + z2 = 1.

The system of (3.6) and (3.10) implies the intersection of a cone with a sphere.
This intersection, with respect to the coordinate system px′y′z′ , is represented
by

x
′2 + y

′2 − 2z
′2 = 0, x

′2 + y
′2 + z

′2 = 1,

or by the equivalent system (3.9), which is an intersection of a cylinder with a
plane. The resulting curves are two circles.

4. Circles with respect to f

Let α be the 2-plane spanned by vectors u and qu, (qu 6= u). Then, for
ϕ = ∠(u, qu) we have ϕ ∈ (0, 2π3 ]. Supposing that ‖u‖ = 1, we define another
vector w by the equality

(4.1) w =
1

sinϕ
(−u cosϕ+ qu), ϕ = ∠(u, qu).

We construct a coordinate system pxy on α, such that u is on the axes px and
w is on the axes py. Using (2.4), (2.5) and (4.1), we calculate that g(u,w) = 0
and g(w,w) = 1, i.e. pxy is an orthonormal coordinate system of α.

Let N(x, y) be a point on α and its radius vector is denoted by v. Then v
is expressed by the equality

(4.2) v = xu+ yw.

A circle k in α of a radius r centered at the origin p, with respect to the
associated metric f on (M, g, q), is determined by

(4.3) k : f(v, v) = r2.

The options for r are as follows: r2 > 0, r2 = 0 or r2 < 0.

Theorem 4.1. Let f be the associated metric on (M, g, q) and α = {u, qu} be
an arbitrary 2-plane in TpM . Let the vector w be defined by (4.1) and pxy be
a coordinate system such that u ∈ px, w ∈ py. Then the equation of the circle
(4.3) in α is given by

(4.4) (cosϕ)x2 +
(1− cosϕ)(1 + 2 cosϕ)

sinϕ
xy − cos2 ϕ

1 + cosϕ
y2 =

r2

2
,

where ϕ ∈ (0, 2π3 ].

Proof. From (4.2) and (4.3) we get

(4.5) x2f(u, u) + 2xyf(u,w) + y2f(w,w) = r2.
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On the other hand, using (2.6), (2.7), (2.8) and (4.1), we calculate

f(u, u) = 2 cosϕ, f(w,w) = − 2 cos2 ϕ

1 + cosϕ
,

f(u,w) =
1

sinϕ
(1 + cosϕ− 2 cos2 ϕ).

Then, from (4.5) we obtain (4.4).

Due to (4.4) we get the following

Corollary 4.2. The discriminant D of the left side of (4.4) is the function

(4.6) D =
1 + 3 cosϕ

1− cosϕ
.

Corollary 4.3. The curve (4.3) is a hyperbola if and only if ϕ belongs to
the interval

(
0, arccos(− 1

3 )
)
. If ϕ = π

2 , then the hyperbola has the equation

xy = r2

2 .

Proof. The condition for (4.4) to be an equation of a hyperbola is D > 0. Then
the proof follows from (4.6).

Corollary 4.4. The curve (4.3) has the equation

(4.7) (
√

2x− y)2 = −3r2

if and only if ϕ = arccos(− 1
3 ). In particular,

(i) if r2 > 0, then k hasn’t got real points;

(ii) if r2 = 0, then k is a straight line with the equation y =
√

2x;

(iii) if r2 < 0, then k separates into two parallel lines with the equations√
2x− y = ±

√
−3r2.

Proof. We substitute ϕ = arccos(− 1
3 ) into (4.4) and we obtain (4.7).

Corollary 4.5. The curve (4.3) is an ellipse if and only if ϕ belongs to the
interval

(
arccos(− 1

3 ), 2π3
)
.

Proof. The condition for (4.4) to be an equation of an ellipse is D < 0. Then
from (4.6) the proof follows.

Corollary 4.6. The curve (4.3) has the equation

(4.8) x2 + y2 = −r2

if and only if ϕ = 2π
3 . In particular,

(i) if r2 > 0, then k hasn’t got real points;

(ii) if r2 = 0, then k is the origin p;

(iii) if r2 < 0, then k is a circle.

Proof. We substitute ϕ = 2π
3 into (4.4) and we get (4.8).
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