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SEMI-SLANT SUBMERSION FROM AN ALMOST
PARA COSYMPLECTIC MANIFOLD

Rajendra Prasad” and Shashikant Pandey®®

Abstract. In this paper, we introduce semi-slant submersion from
an almost para-cosymplectic manifold onto a Riemannian manifold. We
obtain some results and investigate the geometry of foliations. Finally, we
obtain the necessary and sufficient conditions for a semi-slant submersion
to be totally geodesic and harmonic. Also, we provide some examples of
such submersions.
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1. Introduction

A differentiable map f : (M, g,) — (N, gs) between Riemannian manifolds
(M, g-) and (N,gs) is called a Riemannian submersion if f,. is onto and it
satisfies

9s(f+ X, [Y) = g, (X, Y)

for X, Y vector fields tangent to M. Firstly B. O’ Neill [I7] and A. Gray
[¥] studied Riemannian submersions between Riemannian manifolds. Rieman-
nian submersions between Riemannian manifolds equipped with differentiable
structures was studied by Watson in [Z5]. Watson also showed that the base
manifold and each fiber have the same kind of structure as the total space,
in most cases, see [24] and [25]. Also, there are several kinds of Riemannian
submersions, like: slant submersions [Z1], anti-invariant submersions [23], [G],
contact-complex submersions [4], [6], quaternionic submersions [I?], H-slant
submersions [I[R¥], semi-invariant submersions [22], H-semi-invariant submer-
sions [9], paracontact semi-Riemannian submersions [I1], locally conformal
Kéhler submersions [I6], hemi-slant submersions [[], para-quaternionic sub-
mersions [d]. After that, there are lots of papers on this topic. Riemannian
submersions have several applications in mathematical physics [I4]. Indeed,
Riemannian submersions have their applications in the Yang-Mills theory [2],
Kaluza-Klein theory [B] and [[3], supergravity and superstring theories [I3], etc.
Later such submersions were considered between manifolds with differentiable
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structures, see [[@]. In [20], K.S. Park and Rajendra Prasad introduced semi-
slant submersion from almost Hermitian manifolds onto Riemannian manifolds
and in [M], Y. Gunduzalp studied semi-slant submersion from almost product
Riemannian manifolds. They showed that such submersions have rich geomet-
ric properties and they are useful for investigating the geometry of the total
space. We know that a semi-slant submersion is the generalized version of a
slant submersion. There are some similarities and differences between slant
Riemannian submersions and semi-slant Riemannian submersions. In order to
such submersions be harmonic, a semi-slant submersion has much nicer form
than a slant submersion. Motivated by the above, we are interested in study-
ing a semi-slant submersion from an almost para-cosymplectic manifold onto a
Riemannian manifold.

In this paper, we define a semi-slant submersion from an almost para-
cosymplectic manifold onto a Riemannian manifold. The paper is organized
as follows: In section two, we recall some notions needed for this paper. In
section three, we give definition of a semi-slant submersion from an almost
para-cosymplectic manifold onto a Riemannian manifold and we obtain some
results and investigate the geometry of foliations. We also investigate the ge-
ometry of leaves of the distributions. Finally, we obtain necessary and sufficient
condition for the harmonicity of semi-slant submersion from an almost para-
cosymplectic manifold onto a Riemannian manifold. Also, we provide some
examples of such submersions.

2. Preliminaries

In this section, we are going to recall main definitions and several properties
of an almost para-cosymplectic manifold and also semi-slant submersion and
the results needed for study throughout this paper.

2.1. Almost para-cosymplectic manifold

Let M be an odd dimensional manifold. If there exist on M a (1,1) type
tensor field J, a vector field &, and 1-form 7 satisfying

(2.1) JP=T-n®&nE) =1,rankJ =2n

(2.2) JE=0, n®J =0,

An almost para-contact manifold is said to be an almost para-contact metric
manifold if the Riemannian metric g, on M satisfies

(2.3) gr(JX, JY) = g:(X,Y) = n(X)n(Y), gr(§, X) = n(X),

for all X,Y € I'(T'M). The almost para-contact metric structure (J,&, 7, g,) is
said to be normal if [J, J] — 2dn ® £ = 0, where [J, J] is Nijenhuis tensor. The
fundamental 2-form ® on M is defined by ®(X,Y) = g,.(X, JY) for any vector
fields X, Y € I'(T'M). Using equation (E70) and (E2), we have

(2'4) 9 (JX,Y) = gr(Xa JY)
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An almost para-contact metric manifold is said to be an almost para-cosym-
plectic Riemannian manifold if it has a normal almost para-contact metric
structure and both ® and 7 are closed, i.e. d® = 0 and dn = 0. Then, the
structure equation of a para-cosymplectic manifold (M, J,&, 7, g,-) is given by

(2.5) (VxJ)Y =0,

for any vector fields X,Y € I'(T'M), where V denotes the Levi-Civita connec-
tion of g, on M.

Example 2.1. Let (;,;, z) be Cartesian coordinates on R?"*! fori =1, ..., n.
An almost para-contact metric structure (J,£,7,g,) on R?"H1 is defined as

0 6, O
follows: g, = Y7 ((dz;)? + (dy;)* + (d2)?),J = |&;; 0 0
0 0 O
¢=2 n=d
We can easily show that (J,&,7,g,) is an almost para-cosymplectic struc-
ture in R2"*1. The vector fields E; = [‘)iyi , Enii = B%i’ ¢ form a J-basis

for an almost para-cosymplectic structure in R??*!. Thus, R?"*! with an
almost para-cosymplectic structure(J,&,m, g,) is an almost para-cosymplectic
manifold.

2.2. Riemannian submersions

Let (M, g,) be an r-dimensional Riemannian manifold and (N, gs) be an
s dimensional Riemannian manifold. A Riemannian submersion is a smooth
map f: M — N which is onto and satisfies the following axioms:
(a). f has maximal rank.
(b). The differential f. preserves the lengths of horizontal vectors.
The fundamental (1,2) tensors 7 and A of a submersion on M, are defined by

TeF = HVyeVF + VVyEHF,

AgF =VVygHF + HVygVE,

for any vector fields F and F on (M,g,). Here V denotes the Levi-Civita
connection of (M, g,). These tensors are called integrability tensors for Rie-
mannian submersions. We denote the projection morphism on the distribution
kerf. and (kerf.)* by V and H, respectively.

Now, we recall the following lemma which will be needed for later discussion.

Lemma 2.2. Let U and V be any vertical vector fields, and X andY horizontal
vector fields. Then the tensor fields T and A satisfy:

TUW - TWU,

AxY = —AyX = %V[X, Y],
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Now, it is easy to see that T is vertical, Tg = Tyg and A is horizontal,

A= .AfHE

Lemma 2.3. Let f: (M,g,) = (N,gs) be a Riemannian submersion. If X,Y
are basic vector fields on M, then:

(a). g-(X,Y) = gs(Xs, Ya)of,

(b). H[X,Y] is basic, f-related to [X., Y],

(c). H(VxY) is basic vector field corresponding to Vi Y., where V* is the
connection on N.

(d). for any vertical vector field V', [X, V] is vertical.

If X is basic and U is vertical, then H(VyX) = H(VxU) = AxU. Now,
we obtain

(2.6) VrpQ =TpQ+ VpQ

(2.7) VpX = HVpQ + TpX
(2.8) VP = AxP + VWP
(2.9) VxY = HVxY + AxY

for any P,Q € I'(kerf,) and X,Y € I'((kerf.)*), where VpQ = VVpQ.

Note that 7 acts on the fibers as the second fundamental form of the sub-
mersion restricted to vertical vector fields and it can be easily obtained that
T = 0 is equivalent to the condition that the fibers are totally geodesic. A
Riemannian submersion is called Riemannian submersion with totally geodesic
fiber if 7 vanishes identically. Now, assume that {ej,...,e,_4} is an orthonor-
mal frame of I'(kerf.). Then the horizontal vector field H = —->"7"" T ¢;
is called the mean curvature vector field of the fiber. Riemannian submer-
sion is said to be minimal if H = 0. A Riemannian submersion is said to be
Riemannian submersion with totally umbilical fibers if

(2.10) TxY =g.(X,Y)H,

for X,Y € T'(kerf.). Tg and Ag are skew symmetric operators on I'(T'M) for
any E € I'(T'M) reversing the horizontal and the vertical distributions. Using
Lemma P2 horizontally distribution # is integrable if and only if A = 0. For
any X,Y,Z € I'(T'M) we have

(2.11) g7-(TXKZ)+9r(TXZ7Y) =0,

(2.12) Gr(AXY, Z) + g,(Ax Z,Y) = 0.

Let (M, g,) and (N, g5) be Riemannian manifolds and suppose that ¢ : (M, g,) —
(N,gs) is a smooth map between them. Then the differential ¢, of ¢ can be
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viewed as a section of the bundle Hom (T M, p~'TN) — M, where ¢ TN is
the pullback bundle which has fibers (¢ !'TN), = ToumN,z2 € M.
Hom(TM, ¢ 'TN) has a connection V induced from the Levi-Civita connec-
tion VM and the pullback connection. Then the second fundamental form ¢
is given by

(2.13) (Vo) (X,Y) = VEpu(Y) — 0 (VXY),

for any X,Y € T'(T M), where V¥ is the pullback connection. It is well known
that second fundamental form is symmetric. If ¢ is a Riemannian submersion
it can be easily obtained that

(2.14) (V) (X,Y) =0

for any X,Y € T'((kerf.)%). A smooth map ¢ : (M,g,) — (N,g,) is said to
be harmonic if trace(Vp,) = 0. The tension field of ¢ is the section 7(¢) of
I'(p~*TN) defined by

r

(2.15) 7(p) = divg. = 3 (Vo) (e e4),

i=1

where {eq,....,e,} is the orthonormal frame of M. Then it follows that ¢ is
harmonic if and only if 7(¢) = 0.

3. Semi-slant submersion from an almost
para-cosymplectic manifold onto a Riemannian mani-
fold

In this section, we give definition of a semi-slant submersion from an almost
para-cosymplectic manifold onto a Riemannian manifold and we obtain some
results and investigate the geometry of foliations.

Definition 3.1. Let (M, J, &, 1, g,) be an almost para-cosymplectic manifold
and (N,gs) Riemannian manifold. A Riemannian submersion
f (M, J &, 9-,) — (N,gs) is called a semi-slant submersion if there is a
distribution D, € T'(ker f.) such that

kerf* = Da @Db ©® <£>7 J(Da) = Dav

and the angle 0 = 0(X) between JX and the space (Dy), is constant for non
vanishing X € (Dy), and x € M, where Dy is the orthogonal to D, and (£) in
kerf.. We call 6 the semi-slant angle of the semi-slant submersion.

Let f: (M,J,&,n,9.) — (N,gs) be a semi-slant Riemannian submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold then
there is a distribution D, C (ker f,) such that

(3.1) kerf. = Do ® Dy ® (§), J(Da) = Dq
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and the angle § = 6(X) between JX and the space (Dy), is constant for
nonzero X € (Dy), and x € M, where D, is the orthogonal to D, and (£) in
ker fy.

Then for X € I'(kerf.), we have

(3.2) X = PX + QX +n(X)¢,

where PX € I'(D,) and QX € I'(Dy).
For X € I'(kerf.), we write

(3.3) JX = ¢X + wX,

where ¢ X € ['(kerf.) and wX € T'((kerf.)*).
For Z € T'((kerf.)*), we have

(3.4) JZ =BZ+CZ,

where BZ € T'(kerf.) and CZ € I'((kerf.)™b).
For U € T(T M), we have

(3.5) U =VU + HU,

where VU € I'(kerf,) and HU € T'((kerf.)™b).
For W € T'(ker f~'TN), we have

(3.6) W = PW + QW,

where PW € I'(rangef,) and QW € T'((rangef.)*).
Then

(3.7) (kerf.)* = wDy @ p,

where p is the orthogonal complement of wD;, in (kerf,): and it is invariant
under J. For XY € I'(kerf.). Now, we define the covariant derivative of ¢
and w

(Vxo)Y = VxoY — ¢(VxY),
(wa)y = H?xwY — w(?xY),
for all X,Y € I'(kerf.), where V.= VVxY. Then we obtain easily

Lemma 3.2. Let (M, J,&,n,g.) be an almost para-cosymplectic manifold and
(N, gs) be a Riemannian manifold. Let f : (M,J,&,n,g.) — (N, gs) be a semi-
slant submersion from an almost para-cosymplectic manifold onto a Rieman-
nian manifold. Then we get the following:

(3.8) VoY — ¢VxY = BTxY — TxwY,

(3.9) HVXMY — w?xY = CTXy — Tx¢Y7
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for X,Y € T'(kerf.).

(3.10) VVzBW + AzCW = BHV ;W + ¢ AZzW,
(3.11) HYV ;CW + Az BW = CHV 7 W + wAZ W,
for Z,2W € T'((kerf.)*)

(3.12) VxBZ +TxCZ =BHV xZ + ¢Tx Z,
(3.13) HV xBZ +HVxCZ = CHV xZ +wTxZ,

for X € T(kerf,) and Z € T'((kerf.)™b).

Theorem 3.3. Let f : (M,J,€,1,9-) = (N,gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold. Then
f is a proper semi-slant submersion if and only if there exist a constant A € [0, 1]
such that

(3.14) 91X = (X — n(X)¢)
for all X € T'(Dy), where A\ = cos®6.

Proof. For any non zero X € I'(Dy), let 6(X) be a semi-slant angle. Then
we get

X
(3.15) cosf(X) = |||f;X|||

Using (E4) and (BI3), we have
9-(6°X, X) = g,( X, 9X)

= c0s%0(X)g,(J X, JX)

= cos?0(X)g,(J*X, X).
Using equation (1), we obtain

#*X = cos?0(X)(X — n(X)§).
Let A = cos?f, then we get
¢*X = XX —n(X)E).

for all X € I'(Dy).
Conversly, let there exist a constant A € [0, 1], which satisfies $?X = \(X —
n(X)E). Then using (E4) and (B3), we obtain

_ 9:(JX, 6X)
I17XT (1o X]]
_ g (JX, JX)

17X [[oX]|

cosf(X)
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Thus we get for all X € T'(Dy).

|1JX1]
3.16) cosf(X) =
( 16X
Using (B13) and (BIM@), we have
A = cos*0(X).

It is clear that for a proper semi-slant submersion from an almost para-cosym-
plectic manifold onto a Riemannian manifold the semi-slant angle 6(X) is al-
ways constant.

Proposition 3.4. Let f: (M, J, &, n,9-) = (N,gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold with
semi-slant angle 8. Then for any X,Y € T'(Dy), we obtain

(317> gr<¢X7 d)Y) = 005299r (X,Y)

(3.18) gr(WX,wY) = sin*0g,(X,Y)

Proposition 3.5. Let f: (M, J,&,n,9,) = (N,gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold with
semi-slant angle 8. Then we obtain

(3.19) $*+Bw=I-n®¢

(3.20) wp+Cw=0

Proposition 3.6. Let f: (M, J,&,n,9-) = (N, gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold with
semi-slant angle 8. Then f is a proper semi-slant submersion if and only if
there exist a constant § € [0,1], such that

(3.21) Bw=0(I —n®¢g),
where § = sin?0.
Proof. From Theorem B3 and equation (BTU), we obtain the above result.

Theorem 3.7. Let f : (M,J,&,1,9-) — (N, gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold with
semi-slant angle 0. If w is parallel with respect to the connection V on kerf,,
then

(3.22) ToxdX = MNTx X — n(X)TxE),

for all X € T'(kerf.).
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Proof. Since w is parallel, then using equation (89) of Lemma B2, we have
(3.23) Tx oY = CTXY,

for all X,Y € I'(kerf.). Substitute X =Y and ¥ = X in equation (BZ3) and
use the obtained equation. Since 7 is symmetric, then we get

(3.24) Ty X = Tx Y,
taking Y = ¢X in equation (B2d) and using equation (BId), we obtain
Tox X = cos?0(Tx X — n(X)TxE).
Let A = cos?f in above equation, then
Tox X = NTx X — n(X)TxE),
for all X € I'(kerf.).

Theorem 3.8. Let f : (M,J,&,n,9-) — (N, gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold with
semi-slant angle 0. Then the distribution ker f, defines a totally geodesic foli-
ation on M if and only if

9r(TxwY, BW)—g,(H(VxweY), W) — g, (H(VxwY),CW)
(3.25) = cos?0n(Y ) g, (Tx§, W),

for X,Y € T(kerf,) and W € T'(kerf.)*.

Proof. Let X,Y € T'(kerf,) and W € T'(kerf.)*. Using (233), (B3) and
(B3), we obtain

g (VxY, W)
= g (JVxY,JW
= ¢, (VxoY,JW)+ g.(VxwY, JW)
= g,(JVx8Y, W)+ g:(VxwY, BW) + g,(VxwY, CW)
(
(

—_ — —

= 9. (VxJoY, W)+ g,(VxwY, BW) + g.(VxwY,CW)
9 (Vxd*Y, W) + g.(VxwoY, W) + ¢,(VxwY, BW) + ¢,(VxwY, CW),

using equations (272), (210) and (BTI4), we have

9r(VxY, W) = cos’0g,(VxY, W) = (Y )cos?0g,(Vx &, W) + gr(VxwY, BW)
(3.26) + g (VxwY,CW).

Now, using equation (B20) we get

9r(TxwY, BW) — g, (H(VxwoY), W) — g.(H(VxwY),CW)
= cos*0n(Y ) gr (Tx &, W),

for X, Y € T'(kerf.) and W € T'(ker f.)*, which proves the theorem.
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Theorem 3.9. Let f : (M,J,&,1,9-) — (N,gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold with
semi-slant angle 6. Then the distribution (kerf.)* defines totally geodesic fo-
liation on M if and only if

(3.27) d(AxCY +VVxBY)+ B(AxBY + HVxCY) =0,
for X,Y € T'(kerf,)" .

Proof. Let V € I'(kerf.) and X,Y € I'(kerf.)*. Using (223) and (B4), we
get

9-(VxY, V) =g, (VxJY,JV)
=¢.(VxBY + VxCY,JV),

from equation (Z9) and (210), we have

9-(VxY,V) = g,(AxBY + VWxBY + AxCY +HVxCY), JV)
= g.(JAXBY + JVVxBY + JAxCY + JHVxCY),V)
= g.(BAxBY + CAxBY + ¢VVxBY +wVVxBY
+ ¢AxCY +wAxCY + BHVxCY) + CHV xCY),V)
= g.(6(AxCY + VVxBY) +w(AxCY + VVxBY)
+ B(AxBY + HVxCY) + C(AxBY +HVxCY)),V).

So, we have from above
(AxCY + VVxBY) + B(AxBY + HVxCY) = 0,
for X,Y € I'(kerf.)* and V € I'(kerf.), which proves the assertion.
4. Harmonicity of semi-slant submersion from an almost

para-cosymplectic manifold onto a Riemannian mani-
fold

In this section, we deal with the harmonicity of semi-slant submersion from
an almost para-cosymplectic manifold onto a Riemannian manifold. Also, we
provide some examples of such submersions.

Theorem 4.1. Let f : (M,J,€,n,9-) — (N, gs) be a semi-slant submersion
from an almost para-cosymplectic manifold onto a Riemannian manifold with
semi-slant angle 6. Then f is a harmonic map if and only if

(4.1) trace(Vf.) =0

on Dy.
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Proof. Since f be a semi-slant submersion from an almost para-cosymplectic
manifold onto a Riemannian manifold. So we can choose a local orthonormal

frame {e1, e, ....,e2p} of D, and a local orthonormal frame {vq,va, ....,v4} of
Dy. The vector field £ is a horizontal vector field and orthogonal to D, and
Dy. So a local orthonormal frame of kerf, is {vi,vs,....,vq, €1, €2, ...., €25, &}

such that for 1 <i <p,q
e2i—1 = Jeg,

and
JE=0

Since
[«(ViesiiJe2im1) = —f«(Veg€2i), fxVe§ =0

trace(Vf,) =0< z’”: fi(Ve,ei) =0

i=1
i.e. fi is harmonic map on Dy.

Theorem 4.2. Let f : (M,J,&,1,9-) = (N,gs) be a semi-slant submersion
with totally umbilical fibers from an almost para-cosymplectic manifold onto a
Riemannian manifold with semi-slant angle . Then H € T'(wDy).

Proof. For X,Y € I'D, and W € 'y, we obtain
JVxY = JVxY + JTxY,

(VxJ)Y —=VxJY = ¢VxY +wVxY + BTxY + CTxY,

so that
- (Tx Y, W) = g, (CTx Y. W).

By the above, we get
9r(¢TxY, W) = g,(X, ¢Y)g(H, W)
gr (X, ¢Y)gr(Ha W) = *gr(TXY’a ¢W)

(4.2) 9r(X, Y ) g (H, W) = —gr(X,Y) g, (H, oW),
replacing X by Y and Y by X in above equation, we get
(4.3) gr(Y,0X)gr(H W) = =g, (Y, X)gr(H, oW),
by equation (E22) and (E33), we obtain

(4.4) gr(X,Y)gr(H, W) =0,

Since || X || # 0, hence
H e T'(wDy).

Examples.
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Example 4.3. Let f be a semi-invaraint submersion from an almost para-
cosymplectic manifold (M, J, £, n, g-) onto a Riemannian manifold (N, gs). Then
the map f is a semi-slant submersion with the semi-slant angle 6 = 7.

Example 4.4. Let f be a slant submersion from an almost para-cosymplectic
manifold (M, J,&,n, g.) onto a Riemannian manifold (N, gs). Then the map f
is a semi-slant submersion with Dy = ker f,.

Example 4.5. Define the map f : R” — R? by
flx1, 2o, ..., x7) = (x38ina — x5C08Q, T6),

where « € (0, g) Then the map f is a semi-slant submersion from an almost
para-cosymplectic manifold onto a Riemannian manifold such that

D, = <8?cl’ 8w2> Dy = (— cosoza‘9 —l—smaa yand £ = 8307

with the semi-slant angle f = a.

Example 4.6. Define the map f : R!! — R* by

L3 — Is L7 — X9

f(xl,xg,....,xn) = ( \/§ s L, \/Q ,iEg).

Then the map f is a semi-slant submersion from an almost para-cosymplectic
manifold onto a Riemannian manifold such that

e o
D <8x1’ 8rz> Db <8T3 + BTr’ 877 + 8?9’ GBI 8710> and 5 - 8T11
with the semi-slant angle 0 = 7.

Example 4.7. Define the map f: R? — R* by
f(z1,29,...,29) = (x1, T2, T3co8x — T5Sin, T4sinf — x5c08P)

where « and [ are constant functions. Then the map f is a semi-slant sub-
mersion from an almost para-cosymplectic manifold M onto a Riemannian
manifold N such that

D, = <3‘z7, (%8) D, = (sznaaz + cosaa%,cosﬂam + smﬂax ) and £ = 6%9
with the semi-slant angle cost = |sin(« + B)|
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