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THE ADJOINT SEMIGROUP OF A I'-SEMIGROUP
Elton Pasku®

Abstract. Given a ['-semigroup S and a fixed 7o € I', we construct a
semigroup X,, in such a way that there is a one to one correspondence
between the set of principal one sided ideals (resp. principal quasi-ideals)
of S and their counterparts in ¥,,. This correspondence allows us to ob-
tain several results for S without having the need to work directly with
it, but working with 3., instead and employing well known results of
semigroup theory. For example, we obtain an analogue of the Green’s
theorem for I'-semigroups as a corollary of the usual Green'’s theorem in
semigroups. Also we prove that, if S is a I'-semigroup and 7o € I" such
that S, is a completely simple semigroup, then for every v € I', S, is
completely simple too.
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1. Introduction and preliminaries

Let S and I' be two non empty sets. Every map from S x I' x S to S will
be called a I'-multiplication in S and is denoted by (-)r. The result of this
multiplication for a,b € S and v € T" is denoted by ayb. According to Sen
and Saha [H], a I-semigroup S is an ordered pair (S, (-)r) where S and I' are
non empty sets and (+)r is a T-multiplication on S which satisfies the following

property
Y(a,b,c,a, B) € 8% x T2, (aab) e = ac(bfc).

Here we give a few notions and present some auxiliary results that will be used
throughout the paper. Some of the results regarding I'-semigroups may be
found in [4] and [6] but for the reader’s convenience we have restated them

below.
Let S be a I'-semigroup and A, B subset of S. We define the set

AT'B = {avybla € A,b € B and v € T'}.

For simplicity we write aI'B instead of {a}I'B and similarly we write AT'b, and
write AyB in place of A{y}B.

Definition 1.1. [@] Let S be a I-semigroup. A non empty subset S; of S is
said to be a I'-subsemigroup of S if S;I'S; C 5.
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Definition 1.2. [d] A right [left] ideal of a I-semigroup S is a non empty
subset R[L] of S such that RT’S C R, [STL C LJ.

The principal right ideal (a), generated by an element a in a I-semigroup
S has been defined by [@] as the smallest right ideal of S containing a, and it
is proved that (a), = a U aI'S. Dually, the principal left ideal (a); generated
by an element a exists and is given by (a); = a U ST'a. By analogy with plain
semigroups, Saha defined in [@] relations R, £ and H in a I'-semigroup S by

setting
(a,b) e R iff (a), = (b),
(a,b) e Liff (a)l = (b)l,
(a,b) € H iff (a), = (b), and (a); = (b);.

By analogy with the definition of quasi-dieals in plain semigroups [6] we give
the following.

Definition 1.3. A quasi-ideal of a I'-semigroup S is a non empty subset Q) of
S such that QI'S N STQ C Q.

It is easy to see that the principal quasi-ideal (a), generated by a in a
I'-semigroup S exists and is given by

(a)g =aU (al'SNSTa) = (a), N (a).
We can now define the relation Q in a I'-semigroup S by setting
(a,b) € Qiff (a)g = (b)q-

Similarly to plain semigroups, one can prove just as easily that relations Q and
‘H in I'-semigroups coincide.

Given a I'-semigroup S it is obvious that to any fixed v € I" one can associate
to S a semigroup (S, o) where S, = 5 and o is defined by setting z oy = zyy
for every z,y € S. A remarkable result of Sen and Saha in [5] states that if S
is a I'-semigroup without zero and if S, is a group for some v € I, then S, is
a group for every v € I'. Such a I'-semigroup is called a I'-group. The main
puropose of our paper is to generalize Sen’s and Saha’s result by replacing the
group condition for some S, with S, being a completely simple semigroup.
Recall from [2] that for a simple semigroup S (without a zero element) the
following conditions are equivalent:

(i) S is completely simple, that is, it contains a primitive idempotent;
(ii) S is completely regular, that is, every H-class is a group;
(iii) S satisfies miny, and ming;

(iii) S contains at least a minimal left ideal and at least a minimal right ideal.

For further readings on semigroups the reader is refereed to the monograph [2].
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2. The adjoint semigroup X,

In this section we will need some notions from reductions systems which
can be found in [0] and [3]. In order to make the paper self contained we will
give below what is necessary to make the proofs involving reduction systems
easy to follow.

An abstract reduction system is a pair (A4, —), where the reduction — is
a binary relation on the set A. We write a—b instead of (a,b) € —. In
what follows we denote by % the transitive closure of —, by = the reflexive
transitive closure of — and by <— the equivalence relation generated by —.
We call a € A reducible if and only if there is a b € A such that ai>b, otherwise
we call it irreducible or in the normal form. If it happens that b is unique, then
we denote b by a |. We call a and a’ joinable (or resolvable) if and only if there
is ¢ such that a—>c<-a’, in which case we write a | a’.

A reduction — is called

o Confluent if and only if a<—c-3b = a | b.
e Locally-Confluent if and only if a<—c—b = a | b.

e Terminating (or Noetherian) if and only if there is no infinite descending
chain ag—ai—...

e (Convergent if and only if it is both confluent and terminating.

The following is known as the Newman’s Lemma.
Lemma 2.1. A Noetherian system is confluent if it is locally confluent.

An important notion is that of a complete reduction system. A reduction
system (A4, —) is called complete if and only if every element has a unique nor-
mal form. The following characterization of complete systems, due to Newman
[3], is important because it translates the completeness in terms of confluence
and termination.

Lemma 2.2. A reduction system is complete if and only if it is Noetherian
and confluent.

This lemma is the reason why sometimes complete systems are called con-
vergent. Combining Lemma 20 and Lemma 22, we get the following charac-
terization.

Lemma 2.3. A reduction system is complete if and only if it is Noetherian
and locally confluent.

To define ¥, we first let F' be the free semigroup on the disjoint union
SUT. Its elements are finite strings (x1, ..., ,,) where each z; € SUT". Now we
define 3, as the quotient semigroup of F' by the congruence generated from
the set of relations

((v1:72), M), (7, 9), 279), (2, ), 2v0y)
for all 41,79 and v € T, all z,y € S and with 7y € I a fixed element.
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Lemma 2.4. Every element of X, can be represented by an irreducible word
which has the form (v, z,v"), (v,2), (x,7v), v or x where x € S and v,y € T.

Proof. To prove the lemma, we show first that the reduction system arising
from the given presentation is Noetherian and confluent, and therefore any
element of 3. is given by a unique irreducible word from F. Secondly, we
show that the irreducible words have one of the five claimed forms.

If a word w of F has the form (u,v1,72,v) where 71,72 € T, and u,v are
possibly empty words of F', then w reduces to w’ = (u,~1,v). Now if for some
z,y € S and v € I', the word w contains a subword of the form (z,~,y), which
is to say that w = (u,z,7v,y,v) with u,v being possibly empty words from
F, then it reduces to w' = (u,zyy,v). Finally, if the word w contains two
adjacent letters from S, meaning that w = (u, z,y,v) where v and v as before
and z,y € S, then it reduces to w’ = (u,zyy,v). In this way we obtain a
reduction system made of the following three type of reductions:

(U, 71772)”) — (u?’ylav)
(w,z,7,y,v) — (w,z7y,0)
(U7I7yvv) — (U7$’Yoyvv)

which is length reducing and therefore Noetherian. To prove that it is conflu-

ent, from Newman’s lemma, it is sufficient to show that it is locally confluent.

As there are no inclusion ambiguities, we need to check only overlapping ones.

There are only five such pairs:

1- (z,y,7,2) = (zyy,7, 2) and (z,y,7, 2) = (x,yyz). Both resolve to (xyoyyz).
2- (x,7,y,2) = (z,7,yv%) and (x,7,y, 2) = (xyy, z) which resolve to (zyyyoz).
3- (x,7v,y,7,2) = (z,v,y7'2) and (z,7,y,7,2) — (zyy,7,z) which resolve

to (zyyy'z).

4- (z,y,z) = (xvoy, 2) and (z,y, z) = (x,yy0z), which resolve to (zvoyy02).

5- (71,72,73) = (71,73) and (1,72,73) — (71,72) Which resolve to (1).

To complete the proof, we need to show that the irreducible words repre-
senting elements of ¥,, have the claimed forms. Any word which has neither
a prefix nor a suffix made entirely of letters from I'" reduces to an element of .S
by performing reductions of types one, two and three. Otherwise, if the word
is (n,U,n') where n,n’ are words from the free monoid with base I" and U has
neither a prefix nor a suffix made entirely of letters from I', then reduce n and
7’ to a single letter form I' by performing reductions of the first type, and than
reduce as before U to a single letter from S. O

Lemma P4 shows in particular that the natural epimorphism p: F — X,
is injective on S and I'. In what follows we will identify the elements of ¥ with
the irreducible words from F' they are represented of written without brackets
and commas, and if we want to multiply in ¥, two such words, we take their
concatenation and then find its irreducible form. For instance, the product in
Y., of z with vy is - yy = xyy.

We call 3, the adjoint semigroup of the given I'-semigroup. The semigroup
¥, satisfies the following universal property.
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Theorem 2.5. Let S and S’ be both T'-semigroups. For every homomorphism
of T-semigroups ¢ : S — S’ identical on T, there is a unique homomorphism
of semigroups ¢ : X, — X identical on I' such that ¢p = pi'ep.

Proof. Let f: F(SUT) — F(S’UT) be the homomorphism of free semigroups
induced from . We prove that ¢ induces a homomorphism ¢ : ¥, — EQ/O. To
do this we need to show that every relation that defines X, lies in the kernel
of p f where p/ : F(S"UT') — ¥/ is the canonical homomorphism. Indeed, for
the first type of relations ((v1,72),71) we have

1 f(v,v2) = 1 (e(n), v(12))
= (1)
=N
= p' f(m).

For the second type ((x,v,y),zvy) we have

w f(x,y,y) = 1 (e(x), 7, ¢(y)
= p(x)70(y)
= p(z7y)
=y’ f(zvy),

and for the last type ((z,y), zvy) we have

1 f(z,y) = 1 (), o(y))
= o(z)70¢(y)
= o(T70y)
= ' f(zy0y).

Therefore 4 f induces ¢ : X, — ¥ such that ¢u = p'f. Since p is the
restriction of f in S UT, then we derive that ¢u = p’¢. The uniqueness of ¢
with the given property follows easily from the fact any other homomorphism
b ¥, — X satisfying q@u = ¢ coincides with ¢ on the generators of X,
and therefore equals with ¢. O

The next lemma and the subsequent proposition establish a 1-1 correspon-
dence between principal one sided ideals and quasi ideals of S, and their coun-
terparts of ¥.,. This correspondence will be useful in the proof of Theorem
3.

Lemma 2.6. Let x € S by an arbitrary element. The following hold true.

(i) The principal left ideal in ¥, generated by x is the set (x)?”" = (2)j U
I(x)} where (z); = STx U {x} is the left ideal in S generated by x and
['(z)} is a short notation for the set {yy:v €T andy € (z)} }.
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(i1) The principal right ideal in ., generated by x is the set (x)TE”" = (z)l'U

()T where (z)L = 2T'S U {x} is the right ideal in S generated by x and
(x)XT is the short notation for the set {yy:v €Tl andy € (z)L}.

Proof. We will make the proof for (i) only since the proof for (ii) is dual to

that of (i). The elements of (a:)?”o \ {z} are of the following five forms:

1- yy -z with v € I" and y € S. But vy - £ = yyyoz which belongs to I'(z)}.
2- yyy' - @ with 4,7 € T and y € S. Again yyy' - © = v(yy'z) which belongs
to I'(x)L.

3- v - @ with v € I which obviously belongs to I'(z)}.

4- y - & which equals to yyox and belongs to (x)}.

5- y7v - © which equals to yyz and as before belongs to (m)g O

Proposition 2.7. For every xz € S, Q?O =0

Proof. From Lemma 28 we see that for every € S, the quasi ideal in X,

generated by x is the set ()7 = (2)0 N (z)! = ()i, therefore any y € S that

. . . by . . .
is contained in Q3 has to be contained in Qg, and conversely. It remains

to prove that QEWO has no elements of the following four forms: aygs, ay, ys8
or a where o, € I and y € S. We make the proof for the first type ays
because the proofs for the other types of words are similar. If ayfS € QE“"’,

then (ozyﬂ)rE 0= (a:)? " which is impossible since the left hand side cannot
contain x. O

Theorem 2.8. (Green Theorem) Suppose that x,y and xyoy for a certain
70 € T belong to the same class HL. Then, HL is a subgroup of the semigroup
S.

Yo

Proof. For the particular vy stated in the theorem, we construct the semigroup

Y., for which we know from Proposition P2 that H. and " coincide. Now

since x,y, ry0y € HL, we have that z,y, xyy € 7—[?”0. But zyoy = zy in X,

hence Hf”o satisfies the Green condition and then the Green’s theorem for
plain semigroups implies that H; " is a group. It is now obvious that HL is a
subgroup of S, . O

3. Completely simple ['-semigroups

In this section we will define completely simple I'-semigroups as those I'-
semigroups without zero such that each S, is a completely simple semigroup. It
turns out that it is sufficient to assume that only a particular S, is a completely
simple semigroup in order that every S, is a completely simple semigroup. This
generalizes the well known result of [6] for I-groups.

Theorem 3.1. For a given I'-semigroup S without zero, if for some vy € T,
Sy, is a completely simple semigroup, then S, is a completely simple semigroup
for every v € T.
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Proof. As in the previous theorem, we let ¥,, be the adjoint semigroup con-
structed for v9. We proceed by first showing that E'% =Y., \I' is a completely
simple semigroup without zero. To show that it is simple, we note first that
from Lemma 24 EQYO is a disjoint union of subsemigroups of the form S, S,
Sy, vSy" for 7,7 varying in I'. If J is an ideal of ¥/ containing an x € S,
then JN S is an ideal of S5, and since S, is a simple semigroup, then it follows
that J NS =8, hence S C J. For any so € 5,,

SosgoS =S5,
from simplicity of S,,. For any v € I', we have in X, the equality
(3.1) vSosgoS=+8S.

Taking into account that S C J together with the fact that 7.5 o sy C E;O we
derive from (B) that S C J. In the same way we get Sy C J. Further, since
again S o sgoS =9, then for any v,+" € T,

vS 05908y =v8v,

which together with the inclusions 7S, 5y C J and sg € S C J, imply that
¥Sy C J.

If J contains some x+, then, for any y € S, it contains xvyy which lies in S,
and than we proceed as before. The same argument applies if J contains some
~z or some yry'. So we finally have that J = Eﬁm proving the simplicity of
¥

’YONOW we show that Eim contains a primitive idempotent. Let 9 be a primi-
tive idempotent of S,,. We show that yyegvo is a primitive idempotent of Efm.
To do this, one should observe first that any idempotent which is lower than
Yo€07Y0 in the natural order must have the form ~yeyy where € is an idempotent
in S,,. It is obvious that any idempotent ¢ of Z{Yo belonging to S cannot be
lower than ~pegvo since € - (70£070) # €. Similar arguments apply if the idem-
potent is from some 7S or Sv. Finally if the idempotent has the form ~ev/,
then

787" = (ve7") - (Y0€070)
= 7(e7"€0)70-
The uniqueness of the expression of elements of >, as words with letters from

S UT (Lemma E3) implies that v/ = 79. In a similar fashion one can prove
that v = 9. From the assumption that ypevy < vo€070, We get

Y070 = (70E70) * (Yo00)
= v0(€70€0)70 = Y0€0Y0 (since €¢ is primitive,)
which similarly to above implies that ¢ = ¢¢. The assertion that Efm does

not have a zero is proved easily. Thus Z’% is completely simple and therefore
it is completely regular. The latter means that any element of ¥/ = lies in a
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subgroup of Efm. Let v € T be arbitrary and yx € 5. There is a subgroup
G of E'% such that vz € vS N G. Tt follows that the unit of G must have the
form ~ye where € is an idempotent in S,. Indeed, the unit cannot be an element
e € S since ¢ - (yx) # vyx. Also it cannot be an element aefS € S since
(yx) - (aef) # vx. Similarly one shows that the unit cannot be of the form
e € SB. Finally if the unit is ae € .S, then

vr = (ag) - (yz) = aleyz),

which shows that o = 7.

Taking into account that the unit of G is y¢ we show that any g € G must
have the form ~z with z € S, therefore G C vS. Indeed, elements of the form
z €S, ayb € aSp and yB € SB are excluded since

z # (ve) -z, ayf # (aypB) - (ve) and ypB # (ve) - (yB).

The remaining elements are ay € a.S. For such elements we have

ay = (ye) - (ay) = y(eay),

whence a = v and so G C 7S as claimed. This shows that any element ya € vS
is contained in a subgroup G of 7.5, whence 7S is completely regular. Using
this it is easy to show that S, is completely regular too. For this it is enough
to observe that vS and S, are isomorphic under the map

¢ :vS — Sy such that vz — =.

To complete the proof, we show that S, is a simple semigroup under the as-
sumption that S, is simple. To this end we show that any ideal I of S, is an
ideal of S, too. Indeed, let x € I and s € S, arbitrary elements. Denote by
€7 the unit of the subgroup of S, containing x, then

so@ = 570z = s70(e17w) = (70 )ye € 1,

showing that I is a left ideal of S,,. In a similar fashion with above one can
show that I is a right ideal concluding the proof. O

We may now redefine a completely simple I'" semigroup as a I' semigroup
S having the property that there exists o € I' such that S, is a completely
simple semigroup.
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