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ON BESICOVITCH-DOSS ALMOST PERIODIC
SOLUTIONS OF ABSTRACT VOLTERRA
INTEGRO-DIFFERENTIAL EQUATIONS

Marko Kostić1

Abstract. In this note, we introduce the class of Besicovitch-Doss
almost periodic functions in Banach spaces. After that, we investigate
Besicovitch-Doss almost periodic properties of finite and infinite convolu-
tion products. Our results can be simply incorporated in the qualitative
analysis of solutions of certain classes of abstract (degenerate) Volterra
integro-differential equations in Banach spaces.
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1. Introduction and preliminaries

The notion of an almost periodic function was introduced by H. Bohr in
1925 and later generalized by many other mathematicians (see e.g. [6], [10]
and [15] for further information in this direction). Let I = R or I = [0,∞), let
X be a Banach space, and let f : I → X be continuous. Given ϵ > 0, we call
τ > 0 an ϵ-period for f(·) iff ∥f(t+ τ)− f(t)∥ ≤ ϵ, t ∈ I. The set consisted of
all ϵ-periods for f(·) is denoted by ϑ(f, ϵ). It is said that f(·) is almost periodic,
a.p. for short, iff for each ϵ > 0 the set ϑ(f, ϵ) is relatively dense in I, which
means that there exists l > 0 such that any subinterval of I of length l contains
an element of ϑ(f, ϵ).

As mentioned in the abstract, this paper is intended to be only a note.
We introduce the class of Besicovitch-Doss almost periodic functions in Ba-
nach spaces and after that we analyze the Besicovitch-Doss almost periodic
properties of the infinite convolution product

t 7→
∫ t

−∞
R(t− s)g(s) ds, t ∈ R(1.1)

and the finite convolution product

t 7→
∫ t

0

R(t− s)f(s) ds, t ≥ 0.(1.2)

Keeping in mind the fact that solutions of nonhomogeneous abstract (degen-
erate) Volterra integro-differential equations in Banach spaces are basically
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given by variation of parameters formulae involving the integrals like (1.1) or
(1.2), our results can be utilized straightforwardly in the study of existence and
uniqueness of Besicovitch-Doss almost periodic solutions of certain classes of
nonhomogeneous abstract Volterra integro-differential equations; see [9], [18]
and [11]-[12] for more details on the subject (cf. [2] and [17] for some known
results on Besicovitch almost periodic solutions of abstract differential equa-
tions). The strongly continuous operator family (R(t))t>0 ⊆ L(X,Y ) appearing
in (1.1)-(1.2) is assumed to satisfy the condition∫ ∞

0

(1 + s)∥R(s)∥ ds < ∞,

which clearly implies the impossibility to apply our results to certain classes of
fractional differential equations with Riemann-Liouville or Caputo derivatives
[14]; here, Y is a Banach space, as well. But, the results obtained easily apply
to a wide class of abstract (degenerate) differential equations of first order
[9], [12], as well as to some abstract higher-order differential equations [5] and
abstract Volterra integro-differential inclusions [14]. It is also worth noting
that we introduce the class of Besicovitch-p-vanishing functions and show that
this class reduces to the class consisting of all p-locally integrable X-valued
functions whose Besicovitch seminorm is equal to zero.

We use the standard notation henceforth. By X and Y we denote two
non-trivial complex Banach spaces. The symbol L(X,Y ) designates the space
consisting of all continuous linear mappings from X into Y ; L(X) ≡ L(X,X).
The norm of an element x ∈ X is denoted by ∥x∥. If 1 ≤ p < ∞, then by
Lp
loc(I : X) we denote the vector space consisting of all locally p-integrable

functions with domain I and taking values in X; if X = C, then we simply
write Lp

loc(I) for this space.

2. Besicovitch-Doss almost periodic functions

The main aim of this section is to consider Besicovitch-Doss almost peri-
odic functions in Banach spaces. We also analyze the classes of vector-valued
Besicovitch almost periodic functions and vector-valued Besicovitch vanishing
functions.

Let 1 ≤ p < ∞, let l > 0, and let f, g ∈ Lp
loc(I : X), where I = R or

I = [0,∞). We define the Stepanov ‘metric’ by

Dp
Sl

[
f(·), g(·)

]
:= sup

x∈I

[
1

l

∫ x+l

x

∥∥f(t)− g(t)
∥∥p dt]1/p.

Then we know that, for every two numbers l1, l2 > 0, there exist two positive
real constants k1, k2 > 0 independent of f, g, such that

k1D
p
Sl1

[
f(·), g(·)

]
≤ Dp

Sl2

[
f(·), g(·)

]
≤ k2D

p
Sl1

[
f(·), g(·)

]
,
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as well as that (see e.g. [3, pp. 72-73]) in the scalar-valued case there exists

Dp
W

[
f(·), g(·)

]
:= lim

l→∞
Dp

Sl

[
f(·), g(·)

]
(2.1)

in [0,∞]. The distance appearing in (2.1) is called the Weyl distance of f(·)
and g(·). The Stepanov and Weyl ‘norm’ of f(·) are defined by∥∥f∥∥

Sp
l

:= Dp
Sl

[
f(·), 0

]
and

∥∥f∥∥
Wp := Dp

W

[
f(·), 0

]
,

respectively. We refer the reader to [13] for the notions of Stepanov and Weyl
almost periodic functions.

In the same paper, we have introduced the notions of Weyl-p-vanishing
function and equi-Weyl-p-vanishing function as follows. It is said that q ∈
Lp
loc([0,∞) : X) is Weyl-p-vanishing iff

lim
t→∞

∥∥q(t, ·)∥∥
Wp = 0, i.e., lim

t→∞
lim
l→∞

sup
x≥0

[
1

l

∫ x+l

x

∥∥q(t+ s)
∥∥p ds]1/p = 0,

(2.2)

while q ∈ Lp
loc([0,∞) : X) is said to be equi-Weyl-p-vanishing iff

lim
l→∞

lim
t→∞

sup
x≥0

[
1

l

∫ x+l

x

∥∥q(t+ s)
∥∥p ds]1/p = 0.

We know that any equi-Weyl-p-vanishing function q ∈ Lp
loc([0,∞) : X) is al-

ready Weyl-p-vanishing. Before proceeding further, we would like to observe
that there is a great number of very simple examples showing that for a function
q ∈ Lp

loc([0,∞) : X) the situation in which ∥q(t, ·)∥Wp ̸= ∥q(t′, ·)∥Wp for all
t ̸= t′ can occur: Consider, for instance, the function q(t) := 2−1(t + 1)(−1)/2,
t ≥ 0 and the case in which p = 1; then a direct computation yields that
∥q(t, ·)∥Wp = (t + 1)(−1)/2, t ≥ 0. The situation is completely different in the
case of examination of Besicovitch-p-vanishing functions, as we will see below.

The class of Besicovitch almost periodic functions extends the classes of
Stepanov and Weyl almost periodic functions. There is several possible ways
to introduce the notion of Besicovitch almost periodic function with values in
a Banach space X; cf. also L. I. Danilov [4] for the corresponding notion in
complete metric spaces.

The standard procedure goes as follows. Let 1 ≤ p < ∞. Following A. S.
Besicovitch [3], for every function f ∈ Lp

loc(R : X), we define

∥f∥Mp := lim sup
t→+∞

[
1

2t

∫ t

−t

∥f(s)∥p ds

]1/p
;

if f ∈ Lp
loc([0,∞) : X), then

∥f∥Mp := lim sup
t→+∞

[
1

t

∫ t

0

∥f(s)∥p ds

]1/p
.



190 Marko Kostić

Here we use the abbreviation ∥f∥Mp because of later J. Marcinkiewicz’s inves-
tigations of Besicovitch class [16].

In both cases, ∥ · ∥Mp is a seminorm on the space Mp(I : X) consisting of
those Lp

loc(I : X)-functions f(·) for which ∥f∥Mp < ∞. Denote Kp(I : X) :=
{f ∈ Mp(I : X) : ∥f∥Mp = 0} and

Mp(I : X) := Mp(I : X)/Kp(I : X).

The seminorm ∥ · ∥Mp on Mp(I : X) induces the norm ∥ · ∥Mp on Mp(I : X)
under which Mp(I : X) is complete; in other words, (Mp(I : X), ∥ · ∥Mp) is a
Banach space.

Definition 2.1. Let 1 ≤ p < ∞. We say that a function f ∈ Lp
loc(I : X) is

Besicovitch-p-almost periodic iff there exists a sequence of X-valued trigono-
metric polynomials converging to f(·) in (Mp(I : X), ∥ · ∥Mp).

The vector space consisting of all Besicovitch-p-almost periodic functions
I → X will be denoted by Bp(I : X). It is well known that Bp(I : X) is a
closed subspace of Mp(I : X) and therefore Banach space itself, when equipped
with the norm ∥ · ∥Mp .

The Besicovitch class can be also introduced in a Bohr-like manner, by
using the notion of satisfactorily uniform sets (see e.g. [3] and [1, Definition
5.10, Definition 5.11]). We will not use this approach henceforth.

We define the Besicovitch ‘distance’ of functions f, g ∈ Lp
loc(I : X) by

DBp [f(·), g(·)] := ∥f − g∥Mp ;

the Besicovitch ‘norm’ of f ∈ Lp
loc(I : X) is defined by

∥f∥Bp := DBp [f(·), 0] := ∥f∥Mp .

Let us recall that, in scalar-valued case (see e.g. [3, p. 73]), we have:

∥f − g∥∞ ≥ DSp
l
[f(·), g(·)] ≥ DWp [f(·), g(·)] ≥ DBp [f(·), g(·)],(2.3)

for 1 ≤ p < ∞, l > 0 and f, g ∈ Lp
loc(I), as well as that the assumption

∥f∥Mp = 0 does not imply f = 0 a.e. on I.
We introduce the notion of Besicovitch-Doss-p-almost periodic function fol-

lowing the fundamental characterization of scalar-valued Besicovitch almost
periodic functions established by R. Doss in [7]-[8] (cf. also [1, pp. 160-161] for
further information on the subject):

Definition 2.2. Let 1 ≤ p < ∞. It is said that f ∈ Lp
loc(I : X) is Besicovitch-

Doss-p-almost periodic iff the following conditions hold:

(i) (Bp-boundedness) We have ∥f∥Mp < ∞.

(ii) (Bp-continuity) We have

lim
τ→0

lim sup
t→+∞

[
1

2t

∫ t

−t

∥f(s+ τ)− f(s)∥p ds

]1/p
= 0,
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in the case that I = R, resp.,

lim
τ→0+

lim sup
t→+∞

[
1

t

∫ t

0

∥f(s+ τ)− f(s)∥p ds

]1/p
= 0,

in the case that I = [0,∞).

(iii) (Doss almost periodicity) For every ϵ > 0, the set of numbers τ ∈ I for
which

lim sup
t→+∞

[
1

2t

∫ t

−t

∥f(s+ τ)− f(s)∥p ds

]1/p
< ϵ,(2.4)

in the case that I = R, resp.,

lim sup
t→+∞

[
1

t

∫ t

0

∥f(s+ τ)− f(s)∥p ds

]1/p
< ϵ,

in the case that I = [0,∞), is relatively dense in I.

(iv) For every λ ∈ R, we have that

lim
l→+∞

lim sup
t→+∞

1

l

[
1

2t

∫ t

−t

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsf(s) ds

∥∥∥∥∥
p

dx

]1/p
= 0,

in the case that I = R, resp.,

lim
l→+∞

lim sup
t→+∞

1

l

[
1

t

∫ t

0

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsf(s) ds

∥∥∥∥∥
p

dx

]1/p
= 0,

in the case that I = [0,∞).

The vector space consisting of all Besicovitch-Doss-p-almost periodic func-
tions I → X in the sense of Definition 2.2 will be denoted by Bp(I : X). In
the case that X = C, the fundamental result of R. Doss says that Bp(I : X) =
Bp(I : X). But, the argumentation from [7]-[8] cannot be so easily transferred
to vector-valued case. Because of that, we would like to raise the following
issue:

Problem. Let 1 ≤ p < ∞, and let X be a Banach space. Is it true that
Bp(I : X) = Bp(I : X) in the set theoretical sense?

If f ∈ Lp
loc(R : X), then its restriction to the non-negative real axis f+ ∈

Lp
loc([0,∞) : X) and it is very elementary to prove that the supposition f ∈

Bp(R : X), resp., f ∈ Bp(R : X) implies f+ ∈ Bp([0,∞) : X), resp., f+ ∈
Bp([0,∞) : X); see e.g. [1, p. 153] for more details given in scalar-valued case.

It is simply said that a Besicovitch-Doss-1-almost periodic function is
Besicovitch-Doss almost periodic. We continue by stating the following notion:
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Definition 2.3. It is said that q ∈ Lp
loc([0,∞) : X) is Besicovitch-p-vanishing

iff

lim
t→∞

∥∥q(t, ·)∥∥Mp = 0, i.e., lim
t→+∞

lim sup
s→+∞

[
1

s

∫ s

0

∥∥q(t+ r)
∥∥p dr]1/p = 0.(2.5)

For any q ∈ Lp
loc([0,∞) : X), we define the function ∥q∥(·) ∈ Lp

loc([0,∞))
as usually. Then it is clear that q(·) is Weyl-p-vanishing iff

lim
t→+∞

∥∥∥q∥(t+ ·)
∥∥
Wp = 0,

while q(·) is Besicovitch-p-vanishing iff

lim
t→+∞

∥∥∥q∥(t+ ·)
∥∥
Bp = 0.

Hence, (2.3) immediately implies that the class consisting of all Besicovitch-
p-vanishing functions extends the corresponding class consisting of all Weyl-p-
vanishing functions. The reader may try to construct some examples showing
that this extension is strict.

As in the case of Weyl-almost periodicity, we can replace the limits in (2.5),
i.e., for any q ∈ Lp

loc([0,∞) : X) we can consider the following condition

lim sup
s→+∞

lim
t→+∞

[
1

s

∫ s

0

∥∥q(t+ r)
∥∥p dr]1/p = 0.(2.6)

If (2.6) holds, then there is a positive number s0 > 0 such that

lim
t→+∞

∫ s

0

∥∥q(t+ r)
∥∥p dr

exists for all s > s0. Unfortunately, an equi-Weyl-p-vanishing function need not
satisfy the last condition; a simple counterexample is given by the function

q(t) :=

∞∑
n=0

χ[n2,n2+1](t), t ≥ 0,

where χA(·) denotes the characteristic function of set A. This is the main reason
why we will not consider the class consisting of p-locally integrable X-valued
functions satisfying the condition (2.6).

As mentioned in the introductory part, the class of Besicovitch-p-vanishing
functions is equal to the class of p-locally integrable X-valued functions whose
Besicovitch seminorm is equal to zero. This basically follows from the analysis
of R. Doss [7, p. 478], showing that, for every q ∈ Lp

loc([0,∞) : X), we have∥∥q(t, ·)∥∥Mp = ∥q∥Mp , t ≥ 0. We will give another proof of this fact for the sake
of completeness:

Proposition 2.4. Let 1 ≤ p < ∞, and let q ∈ Lp
loc([0,∞) : X). Then∥∥q(t, ·)∥∥Mp = ∥q∥Mp for all t ≥ 0.
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Proof. Since for any non-negative function φ : R → [0,∞) one has

lim sup
s→+∞

φ(s) = lim
s→+∞

sup
y≥s

φ(y),

it suffices to show that

lim
s→+∞

sup
y≥s

[
1

y

∫ t+y

t

∥q(r)∥p dr

]1/p
= lim

s→+∞
sup
y≥s

[
1

y

∫ y

0

∥q(r)∥p dr

]1/p
for all t ≥ 0. Fix such a number t. Then we have

sup
y≥s

[
1

y

∫ t+y

t

∥q(r)∥p dr

]1/p

≤ sup
y≥s

[
1

y

∫ t+y

0

∥q(r)∥p dr

]1/p

≤ sup
y≥s

[(
1

t+ y
+

t

s(t+ y)

)∫ t+y

0

∥q(r)∥p dr

]1/p

≤

(
1 +

t

s

)
sup
y≥s

[
1

y

∫ y

0

∥q(r)∥p dr

]1/p
,

showing that

lim
s→+∞

sup
y≥s

[
1

y

∫ t+y

t

∥q(r)∥p dr

]1/p
≤ lim

s→+∞
sup
y≥s

[
1

y

∫ y

0

∥q(r)∥p dr

]1/p
.

For the opposite inequality, observe that

sup
y≥s

[
1

y

∫ t+y

t

∥q(r)∥p dr

]1/p

≥ sup
y≥s

[
1

y

∫ t+y

0

∥q(r)∥p dr − 1

y

∫ t

0

∥q(r)∥p dr

]1/p

≥ sup
y≥s

[(
1

y

∫ t+y

0

∥q(r)∥p dr

)1/p

−

(
1

y

∫ t

0

∥q(r)∥p dr

)1/p]
.

Since for any y ≥ s one has

1

y

∫ t

0

∥q(r)∥p dr ≤ 1

s

∫ t

0

∥q(r)∥p dr,

the above computation yields that

lim
s→+∞

sup
y≥s

[
1

y

∫ t+y

t

∥q(r)∥p dr

]1/p
≥ lim

s→+∞
sup
y≥s

[
1

y

∫ t+y

0

∥q(r)∥p dr

]1/p
.
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The final conclusion follows by noticing that

lim
s→+∞

sup
y≥s

[
1

y

∫ t+y

0

∥q(r)∥p dr

]1/p

≥ lim
s→+∞

sup
y≥s

[
1

t+ y

∫ t+y

0

∥q(r)∥p dr

]1/p

= lim
s→+∞

sup
y≥s+t

[
1

y

∫ y

0

∥q(r)∥p dr

]1/p

= lim
v→+∞

sup
y≥v

[
1

y

∫ y

0

∥q(r)∥p dr

]1/p
,

where the last equality follows by using the substitution v = s+ t.

Since for any non-negative function φ : R → [0,∞) the equivalence relation

lim sup
s→+∞

φ(s) = 0 ⇔ lim
s→+∞

φ(s) = 0

holds good, Proposition 2.4 immediately implies:

Corollary 2.5. Let 1 ≤ p < ∞, and let q ∈ Lp
loc([0,∞) : X). Then q(·) is

Besicovitch-p-vanishing iff ∥q∥Mp = 0 iff q ∈ Kp([0,∞) : X) iff

lim
s→+∞

1

s

∫ s

0

∥∥q(r)∥∥p dr = 0.

Denote by Bp
0([0,∞) : X) the set consisting of Besicovitch-p-vanishing func-

tions. Then it can be trivially shown that Bp
0([0,∞) : X) has a linear vector

structure. A great number of new ‘asymptotically almost periodic function
spaces’ can be defined as the sum of space Bp

0([0,∞) : X) and corresponding
spaces of (Stepanov, Weyl, Doss, Hartman) almost periodic functions: such
sums are not direct, in general [13]. The complete analysis is, unquestionably,
without the scope of this paper and we only want to note that it is ridiculous
to introduce the space of asymptotically Besicovitch almost periodic functions
since the sum of space Bp(I : X) and Bp

0([0,∞) : X), with the meaning clear,
is again the space Bp(I : X) on account of Corollary 2.5; cf. also Theorem 3.3.
Now we will prove that the sum of space Bp([0,∞) : X) and Bp

0([0,∞) : X) is
Bp([0,∞) : X), as well:

Proposition 2.6. Let 1 ≤ p < ∞. Then we have Bp([0,∞) : X) +Bp
0([0,∞) :

X) = Bp([0,∞) : X).

Proof. It suffices to show that, for every function q ∈ Bp
0([0,∞) : X) and for

every two real numbers τ ≥ 0 and λ ∈ R we have

lim
τ→0+

lim sup
t→+∞

[
1

t

∫ t

0

∥q(s+ τ)− q(s)∥p ds

]1/p
= 0,
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lim sup
t→+∞

[
1

t

∫ t

0

∥q(s+ τ)− q(s)∥p ds

]1/p
= 0,

and

lim
l→+∞

lim sup
t→+∞

1

l

[
1

t

∫ t

0

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsq(s) ds

∥∥∥∥∥
p

dx

]1/p
= 0.

The first two equalities follow almost immediately from Proposition 2.4 and
Corollary 2.5, so that we only need to prove the third equality. This follows
from the next computation

1

l

[
1

t

∫ t

0

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsq(s) ds

∥∥∥∥∥
p

dx

]1/p

≤ 1

l

[
1

t

∫ t

0

∣∣∣∣∣
(∫ x+l

x

+

∫ l

0

)
∥q(s)∥ ds

∣∣∣∣∣
p

dx

]1/p

≤ 1

l

[
1

t

∫ t

0

∣∣∣∣∣
(∫ x+l

x

−
∫ l

0

)
∥q(s)∥ ds+ 2

∫ l

0

∥q(s)∥ ds

∣∣∣∣∣
p

dx

]1/p

≤ 2p−1/p

l

[
1

t

∫ t

0

{∣∣∣∣∣
(∫ x+l

x

−
∫ l

0

)
∥q(s)∥ ds

∣∣∣∣∣
p

+

∣∣∣∣∣2
∫ l

0

∥q(s)∥ ds

∣∣∣∣∣
p}

dx

]1/p

≤ 2p−1/p

l

[
1

t

∫ t

0

∣∣∣∣∣
(∫ x+l

x

−
∫ l

0

)
∥q(s)∥ ds

∣∣∣∣∣
p

dx

]1/p

+
2p−1/p

l

[
1

t

∫ t

0

∣∣∣∣∣2
∫ l

0

∥q(s)∥ ds

∣∣∣∣∣
p

dx

]1/p

=
2p−1/p

l

[
1

t

∫ t

0

∣∣∣∣∣
(∫ x+l

x

−
∫ l

0

)
∥q(s)∥ ds

∣∣∣∣∣
p

dx

]1/p

+ 2
2p−1/p

l

∫ l

0

∥q(s)∥ ds

≤ 2p−1/p

l

[
1

t

∫ t

0

∣∣∣∣∣
(∫ x+l

x

−
∫ l

0

)
∥q(s)∥ ds

∣∣∣∣∣
p

dx

]1/p

+ 2 · 2p−1/p

[
1

l

∫ l

0

∥q(s)∥p ds

]1/p
,

where the last estimate follows from an application of an inequality appearing
on p. 70 of [3]. The final conclusion follows from Corollary 2.5 and the fact that
∥q(·)∥ ∈ Bp

0([0,∞) : C) = Bp(I : C) satisfies the fourth equality of Definition
2.2.
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3. Besicovitch-Doss almost periodic properties of convo-
lution products

In this section, we enquire into the Besicovitch-Doss almost periodic prop-
erties of finite and infinite convolution products. Our main result reads as
follows:

Theorem 3.1. Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous
operator family satisfying that

∫∞
0

(1 + s)∥R(s)∥ ds < ∞. If g : R → X is
bounded and Besicovitch-Doss almost periodic, then the function G(·), given by

G(t) :=

∫ t

−∞
R(t− s)g(s) ds, t ∈ R,(3.1)

is bounded and Besicovitch-Doss almost periodic, as well.

Proof. Since G(t) =
∫∞
0

R(s)g(t − s) ds, t ≥ 0, it is evident that, for every
t ∈ R, we have that G(t) is well-defined and

∥G(t)∥ ≤ ∥g∥∞
∫ ∞

0

∥R(s)∥ ds.

In particular, G(·) and all its translations are both locally integrable and B1-
bounded. Now we will verify that G(·) is Doss almost periodic. Let a number
ϵ > 0 be given in advance. Then we can find a finite number lϵ > 0 such that
any subinterval I of R of length lϵ contains a number τ ∈ R such that (2.4)
holds with function f(·) replaced therein by g(·). Then, for every t > 0, we
have:

1

2t

∫ t

−t

∥∥G(s+ τ)−G(s)
∥∥ ds

≤ 1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ ·

∥∥g(s+ τ − v)− g(s− v)
∥∥ dv ds

=

∫ ∞

0

∥∥R(v)
∥∥ · 1

2t

∫ t

−t

∥∥g(s+ τ − v)− g(s− v)
∥∥ ds dv

=

∫ ∞

0

∥∥R(v)
∥∥ · 1

2t

∫ t−v

−t−v

∥∥g(s+ τ)− g(s)
∥∥ ds dv

≤
∫ ∞

0

∥∥R(v)
∥∥ · 1

2t

∫ t

−t

∥∥g(s+ τ)− g(s)
∥∥ ds dv

+

∫ ∞

0

∥∥R(v)
∥∥ · 1

2t

∫ −t

−t−v

∥∥g(s+ τ)− g(s)
∥∥ ds dv

+

∫ ∞

0

∥∥R(v)
∥∥ · 1

2t

∫ t

t−v

∥∥g(s+ τ)− g(s)
∥∥ ds dv

≤
∫ ∞

0

∥∥R(v)
∥∥ · 1

2t

∫ t

−t

∥∥g(s+ τ)− g(s)
∥∥ ds dv + 2∥g∥∞

t

∫ ∞

0

v
∥∥R(v)

∥∥ dv.



On Besicovitch-Doss almost periodic solutions... 197

The Doss almost periodicity of G(·) immediately follows from the last inequal-
ity of previous calculation, the Doss almost periodicity of g(·) and the fact
that

∫∞
0

v∥R(v)∥ dv < ∞. We proceed by proving that the fourth condition in
Definition 2.2 holds true for G(·). Let λ ∈ R and ϵ > 0 be fixed. Then we know
that

∃l0(ϵ) > 0 ∀l ≥ l0(ϵ) ∃tl > 0 ∀t > tl :

1

l

1

2t

∫ t

−t

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsg(s) ds

∥∥∥∥∥ dx < ϵ/5.(3.2)

Furthermore,

1

l

1

2t

∫ t

−t

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsG(s) ds

∥∥∥∥∥ dx
=

1

l

1

2t

∫ t

−t

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλs

∫ ∞

0

R(v)g(s− v) dv ds

∥∥∥∥∥ dx
=

1

l

1

2t

∫ t

−t

∥∥∥∥∥
∫ ∞

0

(∫ x+l

x

−
∫ l

0

)
eiλsR(v)g(s− v) ds dv

∥∥∥∥∥ dx
=

1

l

1

2t

∫ t

−t

∥∥∥∥∥
∫ ∞

0

R(v)

(∫ x+l

x

−
∫ l

0

)
eiλsg(s− v) ds dv

∥∥∥∥∥ dx
≤ 1

l

1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ ·

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsg(s− v) ds

∥∥∥∥∥ dv dx
=

1

l

1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ ·

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλ(s−v)g(s− v) ds

∥∥∥∥∥ dv dx
=

1

l

1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ ·

∥∥∥∥∥
(∫ x+l−v

x−v

−
∫ l−v

−v

)
eiλsg(s) ds

∥∥∥∥∥ dv dx
=

1

l

1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ ·

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)

+

(
−
∫ x−v+l

x+l

+

∫ x

x−v

+

∫ l

−v+l

−
∫ 0

−v

)
eiλsg(s) ds

∥∥∥∥∥ dv dx
≤ 1

l

1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ ·

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsg(s) ds

∥∥∥∥∥ dv dx
+

1

l

1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ · 4∥g∥∞v dv dx
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≤ 1

l

1

2t

∫ t

−t

∫ ∞

0

∥∥R(v)
∥∥ ·

∥∥∥∥∥
(∫ x+l

x

−
∫ l

0

)
eiλsg(s) ds

∥∥∥∥∥ dv dx
+

4∥g∥∞
l

∫ ∞

0

v
∥∥R(v)

∥∥ dv, t > 0.

Setting l0(ϵ)
′ := max{l0(ϵ), 5ϵ−1∥g∥∞

∫∞
0

v∥R(v) dv}, we have that (3.2) holds
for any l ≥ l0(ϵ)

′ and the same tl > 0. The B1-continuity of G(·) follows from
the calculation used in proving the Doss almost periodicity of G(·) and an
elementary argumentation.

Remark 3.2. As in the case of Weyl almost periodicity, it is not clear how to
prove an analogue of Theorem 2.2 in the case that p > 1. It is also worth noting
that the boundedness of function g(·) is essential in our analysis.

For any strongly continuous operator family (R(t))t>0 ⊆ L(X,Y ) satisfy-
ing

∫∞
0

(1 + s)∥R(s)∥ ds < ∞ and for any function q ∈ L1
loc([0,∞) : X), the

following condition holds:

lim
t→+∞

lim sup
l→+∞

1

l

∫ t

0

[∫ t+l

t

∥∥R(s− r)
∥∥ ds]∥∥q(r)∥∥ dr = 0,(3.3)

because for any t > 0 we have

lim
l→+∞

1

l

∫ t

0

[∫ t+l

t

∥∥R(s− r)
∥∥ ds]∥∥q(r)∥∥ dr = 0;(3.4)

this follows from the estimate

1

l

∫ t

0

[∫ t+l

t

∥∥R(s− r)
∥∥ ds]∥∥q(r)∥∥ dr

≤

[∫ ∞

0

(1 + s)∥R(s)∥ ds

]
1

l

∫ t

0

∥∥q(r)∥∥ dr, t, l > 0.

Arguing similarly as in the proof of [13, Proposition 5.3], we can deduce the
following result:

Theorem 3.3. Suppose that (R(t))t>0 ⊆ L(X,Y ) is a strongly continuous
operator family satisfying that

∫∞
0

(1 + s)∥R(s)∥ ds < ∞. If g : R → X is
bounded and Besicovitch-Doss almost periodic, as well as q ∈ L1

loc([0,∞) : X)
is Besicovitch-1-vanishing, then the validity of condition (3.3) implies that the
function F (·), given by

F (t) :=

∫ t

0

R(t− s)[g(s) + q(s)] ds, t ≥ 0,(3.5)

is Besicovitch-Doss almost periodic, as well.
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We leave to the interested reader the analysis of various Besicovitch and
Besicovitch-Doss almost periodic properties of degenerate (a, k)-regularized C-
resolvent families (cf. [13] for the notion and corresponding results in the case
of Weyl almost periodicity).
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