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Abstract. In this paper, we investigate some existence, uniqueness
and stability results for a class of partial differential equations with not
instantaneous impulses in Banach spaces. We give an Ulam type stability
result and present an illustrative example.
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1. Introduction

The fractional calculus represents a powerful tool in applied mathematics
to study a myriad of problems from different fields of science and engineer-
ing, with many break-through results found in mathematical physics, finance,
hydrology, biophysics, thermodynamics, control theory, statistical mechanics,
astrophysics, cosmology and bioengineering. There has been a significant de-
velopment in ordinary and partial fractional differential equations in recent
years; see the monographs of Abbas et al. [2, 3], Kilbas et al. [10], Miller and
Ross [11], Zhou [19], the papers of Abbas et al. [5], Diethelm [6], Kilbas and
Marzan [8], Podlubny [13], and Vityuk and Golushkov [14], and the references
therein.

Implicit differential equations involving the regularized fractional derivative
was analyzed by many authors, in the last years; see for instance [5, 15] and the
references therein. In [16], Wang et al. introduced some new concepts about
Ulam stability of impulsive fractional differential equations. Recently, in [4],
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Abbas et al. studied the existence, the uniqueness and the Ulam stability of
solutions for the Darboux problem of partial impulsive differential equations.

In pharmacotherapy, the above instantaneous impulses can not describe
the certain dynamics of evolution processes. For example, one considers the
hemodynamic equilibrium of a person, the introduction of the drugs in the
bloodstream and the consequent absorption for the body are gradual and con-
tinuous process. In [7, 12] the authors initially offered to study some new classes
of abstract semilinear impulsive differential equations with not instantaneous
impulses.

Motivated by recent works [9, 17], we investigate the uniqueness and Ulam-
Hyers-Rassias stability of the following partial fractional implicit differential
equations with not instantaneous impulses
(1.1)

D
r

θk
u(t, x) = f(t, x, u(t, x), D

r

θk
u(t, x)); if (t, x) ∈ Ik, k = 0, . . . ,m,

u(t, x) = gk(t, x, u(t, x)); if (t, x) ∈ Jk, k = 1, . . . ,m,

u(t, 0) = φ(t); t ∈ [0, a],

u(0, x) = ψ(x); x ∈ [0, b],

φ(0) = ψ(0),

where Ik := (sk, tk+1]× [0, b], Jk := (tk, sk]× [0, b], a, b > 0, θk = (sk, 0); k =
0, . . . ,m, D

r

θk
is the mixed regularized derivative of order r = (r1, r2) ∈ (0, 1]×

(0, 1], 0 = s0 < t1 ≤ s1 ≤ t2 < · · · < sm−1 ≤ tm ≤ sm ≤ tm+1 = a, f :
Ik×E → E; k = 0, . . . ,m is a given continuous function, gk : Jk×E → E; k =
1, . . . ,m are given continuous functions, φ : [0, a] → E and ψ : [0, b] → E are
given absolutely continuous functions and E is a Banach space.

The paper is organized as follows: In Section 2 we present some fundamental
results of fractional calculus, stability theory and a version of Gronwall’s lemma
for partial differential equations. In Section 3 we present our main results.
Finally, an example is included to illustrate one of the main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
which are used throughout this paper. Let J = [0, a] × [0, b]; a, b > 0, denote
by L1(J) the space of Bochner-integrable functions u : J → E with the norm

∥u∥L1 =

∫ a

0

∫ b

0

∥u(t, x)∥Edxdt,

where ∥ · ∥E denotes a suitable complete norm on E.
As usual, by AC(J) we denote the space of absolutely continuous functions
from J into E, and C := C(J) is the Banach space of all continuous functions
from J into E with the norm ∥ · ∥∞ defined by

∥u∥∞ = sup
(t,x)∈J

∥u(t, x)∥E .



Existence and stability for fractional differential equations 159

Consider the Banach space

PC =
{
u : J → E : u ∈ C((tk, tk+1]× [0, b]); k = 0, 1, . . . ,m, and there

exist u(t−k , x) and u(t
+
k , x); k = 1, . . . ,m,

with u(t−k , x) = u(tk, x) for each x ∈ [0, b]
}
,

with the norm
∥u∥PC = sup

(t,x)∈J

∥u(t, x)∥E .

Let θ = (0, 0), r1, r2 > 0 and r = (r1, r2). For u ∈ L1(J), the expression

(Irθu)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

0

∫ x

0

(t− τ)r1−1(x− ξ)r2−1u(τ, ξ)dξdτ,

is called the left-sided mixed Riemann-Liouville integral of order r, where Γ(.)
is the (Euler’s) Gamma function defined by Γ(ς) =

∫∞
0
tς−1e−tdt; ς > 0.

In particular,

(Iθθu)(t, x)=u(t, x), (I
σ
θ u)(t, x) =

∫ t

0

∫ x

0

f(τ, ξ)dξdτ ; for almost all (t, x) ∈ J,

where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J). Note also that
when u ∈ C(J), then (Irθu) ∈ C(J), moreover

(Irθu)(t, 0) = (Irθu)(0, x) = 0; t ∈ [0, a], x ∈ [0, b].

Example 2.1. Let λ, ω ∈ (−1, 0) ∪ (0,∞), r = (r1, r2), r1, r2 ∈ (0,∞) and
h(t, x) = tλxω; (t, x) ∈ J. We have h ∈ L1(J), and we get

(Irθh)(t, x)=
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
tλ+r1xω+r2 , for almost all (t, x) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
tx := ∂2

∂t∂x ,
the mixed second order partial derivative.

Definition 2.2. [14] Let r ∈ (0, 1]×(0, 1] and u ∈ L1(J). The mixed fractional
Riemann-Liouville derivative of order r of u is defined by the expression

Dr
θu(t, x) = (D2

txI
1−r
θ u)(t, x)

=
1

Γ(1− r1)Γ(1− r2)
D2

tx

∫ t

0

∫ x

0

u(τ, ξ)

(t− τ)r1(x− ξ)r2
dξdτ.

and the Caputo fractional-order derivative of order r of u is defined by the
expression

cDr
θu(t, x) = (I1−r

θ D2
txu)(t, x)

=
1

Γ(1− r1)Γ(1− r2)

∫ t

0

∫ x

0

D2
τξu(τ, ξ)

(t− τ)r1(x− ξ)r2
dξdτ.
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The case σ = (1, 1) is included and we have

Dσ
θ u)(t, x) = (cDσ

θ u)(t, x) = (D2
txu)(t, x); for almost all (t, x) ∈ J.

Example 2.3. Let λ, ω ∈ (−1, 0)∪(0,∞) and r = (r1, r2) ∈ (0, 1]×(0, 1], then

Dr
θt

λxω =c Dr
θt

λxω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
tλ−r1xω−r2 ;

for almost all (t, x) ∈ J .

Definition 2.4. [15] For a function u : J → E, we set

q(t, x) = u(t, x)− u(t, 0)− u(0, x) + u(0, 0).

By the mixed regularized derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1] of a
function u(t, x), we name the function

D
r

θu(t, x) = Dr
θq(t, x).

Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J, Jz = (a1, a] × [0, b], r1, r2 > 0 and
r = (r1, r2). For u ∈ L1(Jz), the expression

(Irz+u)(t, x) =
1

Γ(r1)Γ(r2)

∫ t

a+
1

∫ x

0

(t− τ)r1−1(x− ξ)r2−1u(τ, ξ)dξdτ,

is called the left-sided mixed Riemann-Liouville integral of order r of u.

Definition 2.5. [15] For u ∈ L1(Jz), the mixed regularized derivative of order
r of u is defined by the expression

D
r

z+u(t, x) = Dr
z+qk(t, x),

where
qk(t, x) = u(t, x)− u(t, 0)− u(a1, x) + u(a1, 0).

As a consequence of Lemma 3.2 in [1], we have the following Lemma

Lemma 2.6. Let r1, r2 ∈ (0, 1], µ(t, x) = φ(t) + ψ(x) − φ(0). A function
u ∈ PC is solution of the problem (1.1), if and only if u satisfies

(2.1)



u(t, x) = µ(t, x) + (Irθh)(t, x); if (t, x) ∈ [0, t1]× [0, b],

u(t, x) = φ(t) + gk(sk, x, u(sk, x))− gk(sk, 0, u(sk, 0))

+(Irθkh)(t, x); if (t, x) ∈ Ik, k = 1, . . . ,m,

u(t, x) = gk(t, x, u(t, x)); if (t, x) ∈ Jk, k = 1, . . . ,m,

where h ∈ C(Ik); k = 0, . . . ,m, such that

h(t, x) = f(t, x, u(t, x), h(t, x))); for (t, x) ∈ Ik, k = 0, . . . ,m.
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Now, we consider the Ulam stability for the problem (1.1). Let ϵ > 0, Ψ ≥ 0
and Φ : J → [0,∞) be a continuous function. We consider the following
inequalities

(2.2)


∥Dr

θk
u(t, x)− f(t, x, u(t, x), D

r

θk
u(t, x))∥E ≤ ϵ;

if (t, x) ∈ Ik,

k = 0, . . . ,m,

∥u(t, x)− gk(t, x, u(t, x))∥E ≤ ϵ;
if (t, x) ∈ Jk,

k = 1, . . . ,m.

(2.3)
∥Dr

θk
u(t, x)− f(t, x, u(t, x), D

r

θk
u(t, x))∥E ≤ Φ(t, x);

if (t, x) ∈ Ik,

k = 0, . . . ,m,

∥u(t, x)− gk(t, x, u(t, x))∥E ≤ Ψ;
if (t, x) ∈ Jk,

k = 1, . . . ,m.

(2.4)
∥Dr

θk
u(t, x)− f(t, x, u(t, x), D

r

θk
u(t, x))∥E ≤ ϵΦ(t, x);

if (t, x) ∈ Ik,

k = 0, . . . ,m,

∥u(t, x)− gk(t, x, u(t, x))∥E ≤ ϵΨ;
if (t, x) ∈ Jk,

k = 1, . . . ,m.

Definition 2.7. [16] Problem (1.1) is Ulam-Hyers stable if there exists a real
number cf,gk > 0 such that for each ϵ > 0 and for each solution u ∈ PC of the
inequality (2.2) there exists a solution v ∈ PC of problem (1.1) with

∥u(t, x)− v(t, x)∥E ≤ ϵcf,gk ; (t, x) ∈ J.

Definition 2.8. [16] Problem (1.1) is generalized Ulam-Hyers stable if there
exists cf,gk : C([0,∞), [0,∞)) with cf,gk(0) = 0 such that for each ϵ > 0 and
for each solution u ∈ PC of the inequality (2.2) there exists a solution v ∈ PC
of problem (1.1) with

∥u(t, x)− v(t, x)∥E ≤ cf,gk(ϵ); (t, x) ∈ J.

Definition 2.9. [16] Problem (1.1) is Ulam-Hyers-Rassias stable with respect
to (Φ,Ψ) if there exists a real number cf,gk,Φ > 0 such that for each ϵ > 0 and
for each solution u ∈ PC of the inequality (2.4) there exists a solution v ∈ PC
of problem (1.1) with

∥u(t, x)− v(t, x)∥E ≤ ϵcf,gk,Φ(Ψ + Φ(t, x)); (t, x) ∈ J.

Definition 2.10. [16] Problem (1.1) is generalized Ulam-Hyers-Rassias stable
with respect to (Φ,Ψ) if there exists a real number cf,gk,Φ > 0 such that for
each solution u ∈ PC of the inequality (2.3 ) there exists a solution v ∈ PC of
problem (1.1) with ∥u(t,mx)− v(t, x)∥E ≤ cf,gk,Φ(Ψ + Φ(t, x)); (t, x) ∈ J.
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Remark 2.11. It is clear that: (i) Definition 2.7 ⇒ Definition 2.8, (ii) Definition
2.9 ⇒ Definition 2.10, (iii) Definition 2.9 for Φ(·, ·) = Ψ = 1 ⇒ Definition 2.7.

Remark 2.12. A function u ∈ PC is a solution of the inequality (2.2) if and
only if there exist a function G ∈ PC and a sequence Gk; k = 1, . . . ,m in E
(which depend on u) such that

(i) ∥G(t, x)∥E ≤ ϵ and ∥Gk∥E ≤ ϵ; k = 1, . . . ,m,

(ii) D
r

θk
u(t, x) = f(t, x, u(t, x), D

r

θk
u(t, x)) +G(t, x);

if (t, x) ∈ Ik, k = 0, . . . ,m,

(iii) u(t, x) = gk(t, x, u(t, x)) +Gk; if (t, x) ∈ Jk, k = 1, . . . ,m,

One can have similar remarks for the inequalities (2.3) and (2.4). So, the
Ulam stabilities of the impulsive fractional differential equations are some spe-
cial types of data dependence of the solutions of impulsive fractional differential
equations.

We recall now an integral inequality which based on an iteration argument.

Lemma 2.13. [18] Suppose β > 0, a(t) is a nonnegative function locally inte-
grable on 0 ≤ t < T (some T ≤ +∞) and g(t) is a nonnegative, nondecreasing
continuous function defined on 0 ≤ t < T, g(t) ≤ M (constant), and suppose
u(t) is nonnegative and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)

∫ t

0

(t− s)β−1u(s)ds

on this interval. Then

u(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=1

(g(t)Γ(β))n

Γ(nβ)
(t− s)nβ−1a(s)

]
ds, 0 ≤ t < T.

From the above lemma, we concluded the following lemma.

Lemma 2.14. Suppose r1, r2 > 0, a(t, x) is a nonnegative function locally
integrable on J and g(t, x) is a nonnegative, nondecreasing continuous function
on J, g(t, x) ≤ M (constant), and suppose u(t, x) is nonnegative and locally
integrable on J with

u(t, x) ≤ a(t, x) + g(t, x)

∫ t

0

∫ x

0

(t− τ)r1−1(x− ξ)r2−1u(τ, ξ)dξdτ

on J. Then

u(t, x)

≤ a(t, x)

+

∫ t

0

∫ x

0

[ ∞∑
n=1

(g(t, x)Γ(r1)Γ(r2))
n

Γ(nr1)Γ(nr2)
(t− τ)nr1−1(x− ξ)nr2−1a(τ, ξ)

]
dξdτ

on J.
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3. Uniqueness and Ulam stabilities results

In this section, we present conditions for the Ulam stability of problem
(1.1).

Lemma 3.1. If u ∈ PC is a solution of the inequality (2.2) then u is a solution
of the following integral inequality

(3.1)



∥u(t, x)− µ(t, x)−
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

≤ ϵar1br2

Γ(1+r1)Γ(1+r2)
; if (t, x) ∈ [0, t1]× [0, b],

∥u(t, x)− φ(t)− gk(sk, x, u(sk, x)) + gk(sk, 0, u(sk, 0))

−
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

≤ ϵar1br2

Γ(1+r1)Γ(1+r2)
; if (t, x) ∈ Ik, k = 1, . . . ,m,

∥u(t, x)− gk(t, x, u(t, x))∥E ≤ ϵ; if (t, x) ∈ Jk, k = 1, . . . ,m,

where h ∈ C(Ik); k = 0, . . . ,m, such that

h(t, x) = f(t, x, u(t, x), h(t, x))); for (t, x) ∈ Ik, k = 0, . . . ,m.

Proof. By Remark 2.12 we have that
D

r

θk
u(t, x) = f(t, x, u(t, x), D

r

θk
u(t, x)) +G(t, x);

if (t, x) ∈ Ik,

k = 0, . . . ,m,

u(t, x) = gk(t, x, u(t, x)) +Gk;
if (t, x) ∈ Jk,

k = 1, . . . ,m.

Then

u(t, x) = µ(t, x)

+
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
(h(τ, ξ) +G(τ, ξ))dξdτ ; if (t, x) ∈ [0, t1]× [0, b],

u(t, x) = φ(t) + gk(sk, x, u(sk, x))− gk(sk, 0, u(sk, 0))

+
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
(h(τ, ξ) +G(τ, ξ))dξdτ ;

if (t, x) ∈ Ik,

k = 1, . . . ,m,

u(t, x) = gk(t, x, u(t, x)) +Gk; if (t, x) ∈ Jk, k = 1, . . . ,m,

where h ∈ C(Ik); k = 0, . . . ,m, such that

h(t, x) = f(t, x, u(t, x), h(t, x))); for (t, x) ∈ Ik, k = 0, . . . ,m.



164 S. Abbas, W. Albarakati, M. Benchohra and J.J. Nieto

Thus, it follows that

∥u(t, x)− µ(t, x)−
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

= ∥
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
G(τ, ξ)dξdτ∥E ; if (t, x) ∈ [0, t1]× [0, b],

∥u(t, x)− φ(t)− gk(sk, x, u(sk, x)) + gk(sk, 0, u(sk, 0))

−
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

= ∥
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
G(τ, ξ)dξdτ∥E ; if (t, x) ∈ Ik, k = 1, . . . ,m,

∥u(t, x)− gk(t, x, u(t, x))∥E = ∥Gk∥E ; if (t, x) ∈ Jk, k = 1, . . . ,m.

Hence, we obtain (3.1).

Remark 3.2. We have similar results for the solutions of the inequalities (2.3)
and (2.4).

Theorem 3.3. Assume that the following hypotheses hold:

(H1) There exist constants lf > 0 and 0 < l′f < 1 such that

∥f(t, x, u, v)− f(t, x, u, v)∥E ≤ lf∥u− u∥E + l′f∥v − v∥E ;

for each (t, x) ∈ Ik; k = 0, . . . ,m, and each u, v, u, v ∈ E,

(H2) There exist constants lgk > 0; k = 1, . . . ,m, such that

∥gk(t, x, u)− gk(t, x, u)∥E ≤ lgk∥u− u∥E ,

for each (t, x) ∈ Jk, and each u, u ∈ E, k = 1, . . . ,m.

If

(3.2) ℓ := 2lg +
lfa

r1br2

(1− l′f )Γ(1 + r1)Γ(1 + r2)
< 1,

where lg = max
k=1,...,m

lgk , then the problem (1.1) has a unique solution on J.

Furthermore, if the following hypothesis

(H3) There exists λΦ > 0 such that for each (t, x) ∈ J, we have∫ t

sk

∫ x

0

[ ∞∑
n=1

(lf )
n(t− τ)nr1−1(x− ξ)nr2−1

(1− l′f )
n(1− 2lg)nΓ(nr1)Γ(nr2)

Φ(τ, ξ)

]
dξdτ ≤ λΦΦ(t, x);

for k = 0, . . . ,m, holds, then the problem (1.1) is generalized Ulam-Hyers-
Rassias stable.
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Proof. Consider the operator N : PC → PC defined by

(Nu)(t, x) = µ(t, x)

+
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ ; if (t, x) ∈ [0, t1]× [0, b],

(Nu)(t, x) = φ(t) + gk(sk, x, u(sk, x))− gk(sk, 0, u(sk, 0))

+
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ ; if (t, x) ∈ Ik, k = 1, . . . ,m,

(Nu)(t, x) = gk(t, x, u(t, x)); if (t, x) ∈ Jk, k = 1, . . . ,m.

where h ∈ C(Ik); k = 0, . . . ,m, such that

h(t, x) = f(t, x, u(t, x), h(t, x))); for (t, x) ∈ Ik, k = 0, . . . ,m.

Clearly, the fixed points of the operator N are solutions of the problem (1.1).
We shall use the Banach contraction principle to prove that N has a fixed
point. N is a contraction. Let u, v ∈ PC, then, for each (t, x) ∈ J, we have

∥(Nu)(t, x)− (Nv)(t, x)∥E

≤ ∥
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
[h(τ, ξ)− hv(τ, ξ)]dξdτ∥E ;

if (t, x) ∈ [0, t1]× [0, b],

∥(Nu)(t, x)− (Nv)(t, x)∥E ≤ ∥gk(sk, x, u(sk, x))− gk(sk, x, v(sk, x))∥E

+∥gk(sk, 0, u(sk, 0))− gk(sk, 0, v(sk, 0))∥E

+∥
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
[h(τ, ξ)− hv(τ, ξ)]dξdτ∥E ;

if (t, x) ∈ Ik, k = 1, . . . ,m,

∥(Nu)(t, x)− (Nv)(t, x)∥E = ∥gk(t, x, u(t, x))− gk(t, x, v(t, x))∥E ;
if (t, x) ∈ Jk, k = 1, . . . ,m.

where hv ∈ C(Ik); k = 0, . . . ,m, such that

hv(t, x) = f(t, x, v(t, x), hv(t, x))); for (t, x) ∈ Ik, k = 0, . . . ,m.

However, (H1) gives

∥h(t, x)− hv(t, x)∥E ≤ lf∥u(t, x)− v(t, x)∥E + l′f∥h(t, x)− hv(t, x)∥E .

Then

∥h(t, x)− hv(t, x)∥E ≤ lf
1− l′f

∥u(t, x)− v(t, x)∥E

≤ lf
1− l′f

∥u− v∥PC .
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Thus, we get

∥(Nu)(t, x)− (Nv)(t, x)∥E ≤
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
lf

1−l′f
∥u− v∥PCdξdτ ;

≤ lfa
r1br2

(1−l′f )Γ(1+r1)Γ(1+r2)
∥u− v∥PC ; if (t, x) ∈ [0, t1]× [0, b],

∥(Nu)(t, x)− (Nv)(t, x)∥E ≤ 2lg∥u− v∥PC

+
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
lf

1−l′f
∥u− v∥PCdξdτ

≤
(
2lg +

lfa
r1br2

(1−l′f )Γ(1+r1)Γ(1+r2)

)
∥u− v∥PC ; if (t, x) ∈ Ik, k = 1, . . . ,m,

∥(Nu)(t, x)− (Nv)(t, x)∥E ≤ lg∥u− v∥PC ; if (t, x) ∈ Jk, k = 1, . . . ,m.

Hence

∥N(u)−N(v)∥PC ≤ ℓ∥u− v∥PC .

By the condition (3.2), we conclude that N is a contraction. As a consequence
of the Banach fixed point theorem, we deduce that N has a unique fixed point
v which is a solution of the problem (1.1). Then we have

v(t, x) = µ(t, x)

+
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
hv(τ, ξ)dξdτ ; if (t, x) ∈ [0, t1]× [0, b],

v(t, x) = φ(t) + gk(sk, x, v(sk, x))− gk(sk, 0, v(sk, 0))

+
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
hv(τ, ξ)dξdτ ; if (t, x) ∈ Ik, k = 1, . . . ,m,

v(t, x) = gk(t, x, v(t, x)); if (t, x) ∈ Jk, k = 1, . . . ,m,

where hv ∈ C(Ik); k = 0, . . . ,m, such that

hv(t, x) = f(t, x, v(t, x), hv(t, x))); for (t, x) ∈ Ik, k = 0, . . . ,m.

Let u ∈ PC be a solution of the inequality (2.3). By integrating this inequality,
for each (t, x) ∈ J, we have

∥u(t, x)− µ(t, x)−
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

≤ ∥
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
Φ(τ, ξ)dξdτ∥E ; if (t, x) ∈ [0, t1]× [0, b],

∥u(t, x)− φ(t)− gk(sk, x, u(sk, x)) + gk(sk, 0, u(sk, 0))

−
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

≤ ∥
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
Φ(τ, ξ)dξdτ∥E ; if (t, x) ∈ Ik, k = 1, . . . ,m,

∥u(t, x)− gk(t, x, u(t, x))∥E ≤ Ψ; if (t, x) ∈ Jk, k = 1, . . . ,m,



Existence and stability for fractional differential equations 167

where h ∈ C(Ik); k = 0, . . . ,m, such that

h(t, x) = f(t, x, v(t, x), h(t, x))); for (t, x) ∈ Ik, k = 0, . . . ,m.

Thus, by (H3) for each (t, x) ∈ J, we get



∥u(t, x)− µ(t, x)−
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

≤ λΦ

lf
Φ(t, x); if (t, x) ∈ [0, t1]× [0, b],

∥u(t, x)− φ(t)− gk(sk, x, u(sk, x)) + gk(sk, 0, u(sk, 0))

−
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
h(τ, ξ)dξdτ∥E

≤ λΦ

lf
Φ(t, x); if (t, x) ∈ Ik, k = 1, . . . ,m,

∥u(t, x)− gk(t, x, u(t, x))∥E ≤ Ψ; if (t, x) ∈ Jk, k = 1, . . . ,m.

Hence



∥u(t, x)− v(t, x)∥E ≤ λΦ

lf
Φ(t, x)

+
∫ t

0

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
∥h(τ, ξ)− hv(τ, ξ)∥Edξdτ ;

if (t, x) ∈ [0, t1]× [0, b],

∥u(t, x)− v(t, x)∥E ≤ λΦ

lf
Φ(t, x) + 2lg∥u(t, x)− v(t, x)∥E

+
∫ t

sk

∫ x

0
(t−τ)r1−1(x−ξ)r2−1

Γ(r1)Γ(r2)
∥(hτ, ξ)− hv(τ, ξ)∥Edξdτ ;

if (t, x) ∈ Ik, k = 1, . . . ,m,

∥u(t, x)− v(t, x)∥E ≤ Ψ+ ∥gk(t, x, u(t, x))− gk(t, x, v(t, x))∥E

≤ Ψ+ lg∥u(t, x)− v(t, x)∥E ; if (t, x) ∈ Jk, k = 1, . . . ,m.

For each (t, x) ∈ [0, t1]× [0, b], we have

∥u(t, x)− v(t, x)∥E ≤ λΦ
lf

Φ(t, x)

+
lf

1− l′f

∫ t

0

∫ x

0

(t− τ)r1−1(x− ξ)r2−1

Γ(r1)Γ(r2)
∥u(τ, ξ)− v(τ, ξ)∥Edξdτ.

From Lemma 2.14, we obtain



168 S. Abbas, W. Albarakati, M. Benchohra and J.J. Nieto

∥u(t, x)− v(t, x)∥E ≤ λΦ
lf

Φ(t, x)

+
λΦ
lf

∫ t

0

∫ x

0

[ ∞∑
n=1

(lf )
n

(1− l′f )
nΓ(nr1)Γ(nr2)

(t− τ)nr1−1(x− ξ)nr2−1Φ(τ, ξ)

]
dξdτ

≤ λΦ
lf

(1 + λΦ)Φ(t, x)

:= c1,f,gk,ΦΦ(t, x).

Thus, for each (t, x) ∈ [0, t1]× [0, b], we get

∥u(t, x)− v(t, x)∥E ≤ c1,f,gk,Φ(Ψ + Φ(t, x)).

Now, for each (t, x) ∈ Ik, k = 1, . . . ,m, we have

∥u(t, x)− v(t, x)∥E ≤ λΦ
lf

Φ(t, x)

+ 2lg∥u(t, x)− v(t, x)∥E

+
lf

1− l′f

∫ t

sk

∫ x

0

(t− τ)r1−1(x− ξ)r2−1

Γ(r1)Γ(r2)
∥u(τ, ξ)− v(τ, ξ)∥Edξdτ.

Thus, we obtain

∥u(t, x)− v(t, x)∥E ≤ λΦ
lf (1− 2lg)

Φ(t, x)

+
lf

(1− l′f )(1− 2lg)

∫ t

sk

∫ x

0

(t− τ)r1−1(x− ξ)r2−1

Γ(r1)Γ(r2)
∥u(τ, ξ)− v(τ, ξ)∥Edξdτ.

Again, from Lemma 2.14, we get

∥u(t, x)− v(t, x)∥E ≤ λΦ
lf (1− 2lg)

Φ(t, x)

+
λΦ

lf (1− 2lg)

∫ t

sk

∫ x

0

[ ∞∑
n=1

(lf )
n(t− τ)nr1−1(x− ξ)nr2−1

(1− l′f )
n(1− 2lg)nΓ(nr1)Γ(nr2)

Φ(τ, ξ)

]
dξdτ

≤ λΦ
lf (1− 2lg)

(1 + λΦ)Φ(t, x)

:= c2,f,gk,ΦΦ(t, x).

Hence, for each (t, x) ∈ Ik, k = 1, . . . ,m, we get

∥u(t, x)− v(t, x)∥E ≤ c2,f,gk,Φ(Ψ + Φ(t, x)).

Now, for each (t, x) ∈ Jk, k = 1, . . . ,m, we have

∥u(t, x)− v(t, x)∥E ≤ Ψ+ lg∥u(t, x)− v(t, x)∥E .
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This gives

∥u(t, x)− v(t, x)∥E ≤ Ψ

1− lg
:= c3,f,gk,ΦΨ.

Thus, for each (t, x) ∈ Jk, k = 1, . . . ,m, we get

∥u(t, x)− v(t, x)∥E ≤ c3,f,gk,Φ(Ψ + Φ(t, x)).

Set cf,gk,Φ := max
i∈{1,2,3}

ci,f,gk,Φ. Hence, for each (t, x) ∈ J, we obtain

∥u(t, x)− v(t, x)∥E ≤ cf,gk,Φ(Ψ + Φ(t, x)).

Consequently, problem (1.1) is generalized Ulam-Hyers-Rassias stable.

4. An Example

Let E = l1 = {w = (w1, w2, . . . , wn, . . .) :
∑∞

n=1 |wn| <∞} , be the Banach
space with norm

∥w∥E =

∞∑
n=1

|wn|.

Consider the following partial fractional differential equations with not instan-
taneous impulses

(4.1)



D
r

θk
u(t, x) = f(t, x, u(t, x), D

r

θk
u(t, x));

if (t, x) ∈ ([0, 1] ∪ (2, 3])× [0, 1], k ∈ {0, 1},
u(t, x) = g(t, x, u(t, x)); if (t, x) ∈ (1, 2]× [0, 1],

u(t, 0) = 1 + et; t ∈ [0, 3],

u(0, x) = 2 + x2; x ∈ [0, 1],

where r = (r1, r2) ∈ (0, 1] × (0, 1], θ0 = (0, 0), θ1 = (2, 0), 0 = s0 < t1 =
1 < s1 = 2 < t2 = 3, u = (u1, u2, . . . , un, . . .), f = (f1, f2, . . . , fn, . . .), g =
(g1, g2, . . . , gn, . . .),

cDr
θu = (cDr

θu1,
cDr

θu2, . . . ,
cDr

θun, . . . ,

fn(t, x, un) =
1

(1 + 110et+x)(1 + |un|+ |Dr

θk
un|)

;

for (t, x) ∈ ([0, 1] ∪ (2, 3])× [0, 1] and n ∈ N, and

gn(t, x, un) =
1

110et+x
ln(1 + t2 + x2 + |un|);

for (t, x) ∈ (1, 2]× [0, 1] and n ∈ N.
Clearly, the functions f and g are continuous. For each n ∈ N, u, u,∈ E

and (t, x) ∈ ([0, 1] ∪ (2, 3])× [0, 1], we have

|fn(t, x, un(t, x), D
r

θk
un(t, x))− fn(t, x, un(t, x), D

r

θk
un(t, x))|
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≤ 1

111
(|un − un|+ |Dr

θk
un −D

r

θk
un|).

Thus, for each u, u ∈ E and (t, x) ∈ ([0, 1] ∪ (2, 3])× [0, 1] we get

∥f(t, x, u(t, x), Dr

θk
un(t, x))− f(t, x, u(t, x), D

r

θk
un(t, x))∥E

=

∞∑
n=1

|fn(t, x, un(t, x), D
r

θk
un(t, x))− fn(t, x, un(t, x), D

r

θk
un(t, x))|

≤ 1

111

∞∑
n=1

(|un − un|+ |Dr

θk
un −D

r

θk
un|)

=
1

111
(∥u− u∥E + ∥Dr

θk
u−D

r

θk
u∥E).

Also, for each n ∈ N, u, u,∈ E and (t, x) ∈ (1, 2]× [0, 1], we have

∥g(t, x, u(t, x))− g(t, x, u(t, x))∥E ≤ 1

110
∥u− u∥E .

Hence the conditions (H1) and (H2) are satisfied with lf = l′f = 1
111 , lg = 1

110 .
We shall show that condition (3.2) holds with a = 3 and b = 1. Indeed, for
each (r1, r2) ∈ (0, 1]× (0, 1] we get

ℓ = 2lg +
lfa

r1br2

(1− l′f )Γ(1 + r1)Γ(1 + r2)

=
1

55
+

3r1

110Γ(1 + r1)Γ(1 + r2)

<
7

55
< 1.

Finally, the hypothesis (H3) is satisfied with Φ(t, x) = x2 and

λΦ =

∞∑
n=1

55n

(54× 110)nΓ(1 + nr1)Γ(1 + nr2)
3nr1 .

Consequently, Theorem 3.3 implies that the problem (4.1) is generalized Ulam-
Hyers-Rassias stable.
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