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SOME GEOMETRIC PROPERTIES OF AN
INTEGRAL OPERATOR INVOLVING BESSEL

FUNCTIONS
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Abstract. The purpose of the present paper is to obtain some sufficient
conditions for an integral operator involving Bessel functions of the first
kind to be in the classes S∗(α), C(α) and UCV.
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1. Introduction

Let A denote the class of functions of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n

which are analytic in the open unit disc U = {z : |z| < 1} and normalized by
the condition f(0) = f ′(0) − 1 = 0. A function f(z) ∈ A is said to starlike of
order α(0 ≤ α < 1), if it satisfies the following condition

ℜ
(
zf ′(z)

f(z)

)
> α (z ∈ U).

A function f(z) ∈ A is said to be convex of order α(0 ≤ α < 1), if it satisfies

ℜ
{
1 +

zf ′′(z)

f ′(z)

}
> α (z ∈ U)

the classes of starlike and convex functions of order α are denoted by S∗(α)
and K(α). Further we denote by S∗(0) = S∗ and K(0) = K. The classes S∗(α),
K(α), S∗ and K were studied by Robertson [16] and Silverman [17].

A function f(z) ∈ A is said to be close-to-convex of order α(0 ≤ α < 1), if
it satisfies the condition

ℜ{f ′(z)} > α (z ∈ U).
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The class of all close-to-convex functions of order α are denoted by C(α).
A function f(z) is uniformly convex in U if f ∈ K and has the property

that for every circular arc γ contained in U, with center ξ also in U, the arc
f(γ) is convex with respect to f(ξ). The class of uniformly convex functions
denoted by UCV . It is well known that

f ∈ UCV ⇔

∣∣∣∣∣zf
′′
(z)

f ′(z)

∣∣∣∣∣ ≤ ℜ

{
1 +

zf
′′
(z)

f ′(z)

}
(z ∈ U).

The class UCV was studied by Goodman [5] and further studied and general-
ized by many researchers see e.g. ([1], [3], [6], [7], [15] and [19]).

The Bessel function of the first kind of order ν is defined by the infinite
series

Jν(z) =

∞∑
n=0

(−1)n
(
z
2

)2n+ν

n!Γ(n+ ν + 1)
,

where Γ stands for the Euler gamma function, z ∈ C and v ∈ R.
In 1960, Brown [2] studied the univalence of Bessel functions. He introduced

some criteria to determine the radius of univalence of Bessel functions. Recently
Szasz and Kupan [20] investigated the univalence of the normalized Bessel
function of the first kind gv : U → C defined by

gν(z) = 2νΓ(ν + 1)z1−ν/2Jν(z
1/2)

= z +

∞∑
n=1

(−1)nzn+1

4nn!(ν + 1)(ν + 2) . . . (ν + n)
.(1.2)

Recently, Frasin [4] introduced the following integral operator which in-
volves the normalized Bessel function of the first kind.

(1.3) Fv1,...,vn,α1,...,αn
(z) =

∫ z

0

n∏
i=1

(
gvi(t)

t

)αi

dt

and obtained several sufficient conditions for this operator to be convex and
strongly convex of given order in the open disc U. Recently, analogous to
these results Porwal and Breaz [14] studied the sufficient condition for the
operator defined by (1.3) for certain classes of univalent functions. Further,
these results were generalized by Porwal and Kumar [12], (see also [11], [13]).
In 2012 Mohammed and Darus [9] obtained some sufficient conditions for an
integral transform to be in the classes S∗(α), C(α), UCV and N(β). In the
present paper we obtain some sufficient conditions for the operator defined by
(1.3) to be in the classes S∗(α), C(α) and UCV.

To prove our main results we shall require the following lemmas:

Lemma 1.1. ([20]) Let v > (−5 +
√
5)/4 and consider the normalized Bessel

function of the first kind gv : U → C, defined by

gv(z) = 2vΓ(v + 1)z1−v/2Jv(z
1/2),
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where Jv stands for the Bessel function of the first kind, then the following
inequality holds for all z ∈ U

(1.4)

∣∣∣∣zg′v(z)gv(z)
− 1

∣∣∣∣ ≤ v + 2

4v2 + 10v + 5
.

Lemma 1.2. ([18]) If f ∈ A satisfies

ℜ
{
zf ′′(z)

f ′(z)
+ 1

}
<

3

2
, (z ∈ U)

then f ∈ S∗.

Lemma 1.3. ([8]) If f ∈ A satisfies∣∣∣∣1 + zf ′′(z)

f ′(z)

∣∣∣∣ < 2, (z ∈ U)

then f ∈ S∗.

Lemma 1.4. ([10]) If f ∈ A satisfies

ℜ
{
1 +

zf ′′(z)

f ′(z)

}
>

3α+ 1

2(α+ 1)
(z ∈ U, 0 ≤ α < 1)

then

ℜ{f ′(z)} >
α+ 1

2
or equivalently

f ∈ C

(
α+ 1

2

)
, (z ∈ U).

Lemma 1.5. ([15]) If f ∈ A satisfies∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ < 1

2
, (z ∈ U)

then f ∈ UCV.

2. Main results

Theorem 2.1. Let n be a natural number and let v1, v2, . . . , vn >
− 5 +

√
5

4
consider the functions gvi : U → C, defined by

(2.1) gvi(z) = 2viΓ(vi + 1)z1−vi/2Jvi(z
1/2).

Let v = min{v1, v2, . . . , vn} and α1, α2, . . . , αn be positive real numbers.
Moreover, suppose that these numbers satisfy the following inequality

v + 2

4v2 + 10v + 5

n∑
i=1

αi <
1

2
.

Then the function Fv1,...,vn,α1,...,αn : U → C defined by (1.3) is in the class
S∗.
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Proof. Since for all i ∈ {1, 2, . . . , n}, we have gvi ∈ A, that is

gvi(0) = g′vi(0)− 1 = 0

clearly
Fv1,...,vn,α1,...,αn ∈ A

that is
Fv1,...,vn,α1,...,αn

(0) = F ′
v1,...,vn,α1,...,αn

(0)− 1 = 0.

On the other hand, it is easy to see that,

F ′
v1,...,vn,α1,...,αn

(z) =

n∏
i=1

(
gvi(z)

z

)αi

which implies

(2.2)
zF ′′

v1,...,vn,α1,...,αn
(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)
− 1

)
or equivalently

(2.3) 1 +
zF ′′

v1,...,vn,α1,...,αn
(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)

)
+ 1−

n∑
i=1

αi

1 +
zF ′′

v1,...,vn,α1,...,αn
(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)
− 1

)
+ 1.

Taking absolute value on both sides∣∣∣∣1 + zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)

∣∣∣∣ ≤
n∑

i=1

αi

∣∣∣∣zg′vi(z)gvi(z)
− 1

∣∣∣∣+ 1

≤
n∑

i=1

αi
(vi + 2)

4v2i + 10vi + 5
+ 1.

We observe that the function ϕ : (−1,∞) → R, defined by

ϕ(x) =
x+ 2

4x2 + 10x+ 5
,

is decreasing and consequently for all i ∈ {1, 2, ..., n} we have

νi + 2

4ν2i + 10νi + 5
≤ ν + 2

4ν2 + 10ν + 5
.

≤ v+2
4v2+10v+5

∑n
i=1 αi + 1

≤ 1
2 + 1 ≤ 3

2 .

Hence by Lemma 1.2, we get f ∈ S∗.
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Theorem 2.2. Let n be a natural number and let v1, v2, . . . , vn > −5 +
√
5/4.

Consider the functions gvi : U → C defined by (2.1). Let v = min{v1, v2, . . . vn}
and α1, α2, . . . , αn be positive real numbers. Moreover, suppose that these num-
bers satisfy the following inequality

v + 2

4v2 + 10v + 5

n∑
i=1

αi < 1.

Then the function Fv1,...,vn,α1,...,αn
defined by (1.3) is in the class S∗.

Proof. From equation (2.2) we have

zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)
− 1

)

1 +
zF ′′

v1,...,vn,α1,...,αn
(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)
− 1

)
+ 1

∣∣∣∣1 + zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)

∣∣∣∣ ≤
n∑

i=1

αi

∣∣∣∣zg′vi(z)gvi(z)
− 1

∣∣∣∣+ 1

≤
n∑

i=1

αi

(
vi + 2

4v2i + 10vi + 5

)
+ 1

∣∣∣∣1 + zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)

∣∣∣∣ ≤ v + 2

4v2 + 10v + 5

n∑
i=1

αi + 1.

But

v + 2

4v2 + 10v + 5

n∑
i=1

αi ≤ 1.

Therefore, ∣∣∣∣1 + zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)

∣∣∣∣ ≤ 1 + 1 ≤ 2.

Hence by Lemma 1.3, we get f ∈ S∗.

Theorem 2.3. Let n be a natural number and let v1, v2, . . . , vn > −5+
√
5

4 . Con-
sider the function gvi : U → C defined by (2.1). Let v = min{v1, v2, . . . , vn} and
α1, α2, . . . , αn be positive real numbers. Moreover, suppose that these numbers
satisfy the following inequality

v + 2

4v2 + 10v + 5

n∑
i=1

αi <
1− α

2(1 + α)
.

Then the function Fv1,...,vn,α1,...,αn
(z) defined by (1.3) is in the class C

(
1−α

2(α+1)

)
.
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Proof. From equation (2.2), we have

zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)
− 1

)

1 +
zF ′′

v1,...,vn,α1,...,αn
(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)
− 1

)
+ 1.

We have

ℜ
{
1 +

zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)

}
= 1 +

n∑
i=1

αiℜ
{
zg′vi(z)

gvi(z)
− 1

}

= 1−
n∑

i=1

αi +

n∑
i=1

αiℜ
{
zg′vi(z)

gvi(z)

}

≥ 1−
n∑

i=1

αi +

n∑
i=1

αi

{
1− vi + 2

4v2i + 10vi + 5

}
+ 1−

n∑
i=1

αi

≥ 1−
(

v + 2

4v2 + 10v + 5

) n∑
i=1

αi

>
3α+ 1

2(α+ 1)
,

by the given hypothesis.

Hence by Lemma 1.4, we have f ∈ C
(

1−α
2(α+1)

)
.

Theorem 2.4. Let n be a natural number and let v1, v2, . . . , vn > −5 +
√
5/4.

Consider the function gvi : U → C defined by (2.1). Let v = min{v1, v2, . . . , vn}
and α1, α2, . . . , αn be positive real numbers. Moreover, suppose that these num-
bers satisfy the following inequality

v + 2

4v2 + 10v + 5

n∑
i=1

αi <
1

2
.

Then the function Fv1,...,vn,α1,...,αn
defined by (1.3) is in UCV.

Proof. From equation (2.2) we have

zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)
=

n∑
i=1

αi

(
zg′vi(z)

gvi(z)
− 1

)
.
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Taking absolute value on both sides we have,∣∣∣∣zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)

∣∣∣∣ ≤
n∑

i=1

αi

∣∣∣∣zg′vi(z)gvi(z)
− 1

∣∣∣∣ ≤ n∑
i=1

αi
vi + 2

4v2i + 10vi + 5

≤ v + 2

4v2 + 10v + 5

n∑
i=1

αi <
1

2
.

That is, ∣∣∣∣zF ′′
v1,...,vn,α1,...,αn

(z)

F ′
v1,...,vn,α1,...,αn

(z)

∣∣∣∣ < 1

2
.

Hence by Lemma 1.5, we get Fv1,...,vn,α1,...,αn
∈ UCV.
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