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Abstract. In this paper, we introduce the (CLRg) property for a
hybrid pair of maps in fuzzy metric spaces and utilize the same to prove
two unique common coupled fixed point theorems for two hybrid pairs of
maps satisfying ψ + φ contractive condition in fuzzy metric spaces.
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1. Introduction

The concept of fuzzy sets was initiated by Zadeh [28] in 1965 which has in-
spired the fuzzification of almost all existing Mathematics. With similar quest,
George and Veeramani [9] and Kramosil and Michalek [14] have introduced
the concept of fuzzy topological spaces induced by fuzzy metrics which was
required to be slightly manipulated to become Hausdorff. Thereafter, many
authors proved fixed and common fixed point theorems in fuzzy metric spaces
(e. g.[7, 8, 10, 11, 15, 17, 19, 22, 23, 26, 27]).
Now, we present the required preliminaries.

Definition 1.1. ([20]). A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is a
continuous t-norm if it satisfies the following conditions:

1. ∗ is associative and commutative,

2. ∗ is continuous,

3. a ∗ 1 = a for all a ∈ [0, 1],

4. a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Two natural examples of a continuous t-norm are a ∗ b = ab and a ∗ b =
min{a, b}.
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Definition 1.2. ([9]). A 3-tuple (X,M, ∗) is called a fuzzy metric space if X
is an arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set
on X2 × (0,∞) satisfying the following conditions (for each x, y, z ∈ X and
t, s > 0):

1. M(x, y, t) > 0,

2. M(x, y, t) = 1 if and only if x = y,

3. M(x, y, t) = M(y, x, t),

4. M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),

5. M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t)
with center x ∈ X and radius 0 < r < 1 is defined by B(x, r, t) = {y ∈ X :
M(x, y, t) > 1− r}. Let (X,M, ∗) be a fuzzy metric space and τ the collection
of all subsets A ⊂ X with x ∈ A if and only if there exist t > 0 and 0 < r < 1
such that B(x, r, t) ⊂ A. Then τ forms a topology on X induced by the fuzzy
metric M . This topology is Hausdorff as well as first countable.
A sequence {xn} in X converges to x if and only if M(xn, x, t)→ 1 as n→∞,

for each t > 0 and the same (sequence) is called a Cauchy sequence in the sense
of [10] if lim

n→∞
M(xn, xn+p, tn) = 1, for all t > 0 and each positive integer p. The

fuzzy metric space (X,M, ∗) is said to be complete if every Cauchy sequence in
X is convergent. A subset A of X is said to be F -bounded if there exist t > 0
and 0 < r < 1 such that M(x, y, t) > 1− r for all x, y ∈ A.

Example 1.3. Let X = (−∞,∞). Put a ∗ b = ab for all a, b ∈ [0, 1]. For each
t ∈ (0,∞), define M(x, y, t) = t

t+|x−y| for all x, y ∈ X.

Example 1.4. Let X = [0, 1] and a ∗ b = ab for all a, b ∈ [0, 1] and let M be
the fuzzy set on X ×X × (0,∞) defined by

M(x, y, t) = e−
|x−y|

t

for all t ≥ 0. Then (X,M, ∗) is a fuzzy metric space.

Example 1.5. Let X = [0, 1] and a ∗ b = ab for all a, b ∈ [0, 1] and let M be
the fuzzy set on X ×X × (0,∞) defined by

M(x, y, t) =

(
t

t+ 1

)|x−y|
for all t ≥ 0. Then (X,M, ∗) is a fuzzy metric space.

Lemma 1.6. ([10]) Let (X,M, ∗) be a fuzzy metric space. Then M(x, y, t) is
non-decreasing with respect to t, for all x, y in X.
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Definition 1.7. Let (X,M, ∗) be a fuzzy metric space. Then M is said to
be continuous on X2 × (0,∞) if lim

n→∞
M(xn, yn, tn) = M(x, y, t), whenever a

sequence {(xn, yn, tn)} in X2 × (0,∞) converges to a point (x, y, t) ∈ X2 ×
(0,∞), i.e. lim

n→∞
M(xn, x, t) = lim

n→∞
M(yn, y, t) = 1 and lim

n→∞
M(x, y, tn) =

M(x, y, t).

Lemma 1.8. ([18]). Let (X,M, ∗) be a fuzzy metric space. Then M is a
continuous function on X2 × (0,∞).

Recently, Aamri and Moutawakil [1] introduced the property (E.A.) and
proved common fixed point theorems under strict contractive condition. There-
after, Sintunavarat and Kumam [24] introduced a new notion, namely: Com-
mon Limit Range property (in short CLRg). For some more references of this
kind, one can be referred to [5, 6, 13, 21].
Very recently, Khan and Sumitra [3] extended the (CLRg) property for coupled
maps (also see [25]) as follows.

Definition 1.9. Let (X,M, ∗) be a fuzzy metric space. Two maps F : X×X →
X and f : X → X are said to satisfy the (CLRg) property if there exist
sequences {xn} and {yn} in X such that lim

n→∞
F (xn, yn) = lim

n→∞
fxn = f(p)

and lim
n→∞

F (yn, xn) = lim
n→∞

fyn = f(q) for some p, q ∈ X.

Bhaskar and Lakshmikantham [4] introduced the concept of coupled fixed
points. On the analogous lines Lakshmikantham and Ćirić [16] defined the
common coupled fixed points. Later Xin-Qi Hu [12] defined the common fixed
points for maps F : X ×X → X and f : X → X. Abbas et al. [2] introduced
the w-compatible pair of maps.

Definition 1.10. Let F : X ×X → X and f : X → X.
(i)([4]). An element (x, y) ∈ X ×X is called a coupled fixed point of F

if F (x, y) = x and F (y, x) = y.
(ii)([16]). An element (x, y) ∈ X ×X is called a common coupled fixed point

of F and f if F (x, y) = fx = x and F (y, x) = fy = y.
(iii)([12]). A point x ∈ X is called a common fixed polnt of F and f if

F (x, x) = x = fx.
(iv)([2]). F and f are said to be w-compatible if f(F (x, y)) = F (fx, fy)

and f(F (y, x)) = F (fy, fx) whenever fx = F (x, y) and fy = F (y, x)
for all x, y ∈ X.

From now on, CB(X) denotes the set of all non-empty closed
and bounded subsets of X. For A,B ∈ CB(X) and for every t > 0, we write

δM (A,B, t) = inf{M(a, b, t) : a ∈ A, b ∈ B}.
If A consists of a single point a, we write δM (A,B, t) = δM (a,B, t). If B

also consists of a single point b, we write δM (A,B, t) = δM (a, b, t) = M(a, b, t).
It follows immediately from the definition that

δM (A,B, t) = δM (B,A, t) ≥ 0,
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δM (A,B, t) = 1⇐⇒ A = B = {a singleton},

for all A,B ∈ CB(X).

Definition 1.11. A sequence {An} in CB(X) is said to be convergent to a set
A ∈ CB(X) if lim

n→∞
δM (An, A, t) = 1 for all t > 0.

Also, one can prove the following:

Lemma 1.12. Let {An} and {Bn} be sequences in CB(X) converging to A
and B in CB(X), respectively. Then lim

n→∞
δM (An, Bn, t) = δM (A,B, t) for all

t > 0.

In this paper, we give a new definition and utilize the same to prove two
common fixed point theorems for two hybrid pairs of maps in the next section.

2. Main results

Firstly, we give the following definition.

Definition 2.1. Let (X,M, ∗) be a fuzzy metric space. The hybrid pair of
mappings F : X ×X → CB(X) and S : X → X is said to have the Common
Limit Range property (in short CLRg) with respect to S if there exist sequences
{xn} and {yn} in X such that

lim
n→∞

M(Sxn, Sa, t) = 1, lim
n→∞

δM (F (xn, yn), A, t) = 1,

lim
n→∞

M(Syn, Sb, t) = 1, lim
n→∞

δM (F (yn, xn), B, t) = 1,

for some a, b ∈ X, Sa ∈ A ∈ CB(X) and Sb ∈ B ∈ CB(X).

Let Ψ be the class of monotonically increasing continuous functions ψ :
[0, 1]→ [0, 1] and Φ the class of monotonically increasing continuous functions
φ : [0, 1]→ [0, 1] such that φ(t) > t for 0 < t < 1.

In what follows, (X,M, ∗) stands for a fuzzy metric space, F,G : X ×X →
CB(X) and S, T : X → X besides

mx, y
u, v = min


M(Sx, Tu, t),M(Sy, Tv, t), δM (Sx, F (x, y), t),

δM (Sy, F (y, x), t), δM (Tu,G(u, v), t), δM (Tv,G(v, u), t),
δM (Sx,G(u, v), t), δM (Sy,G(v, u), t),
δM (Tu, F (x, y), t), δM (Tv, F (y, x), t)

 .

Now, we are equipped to prove our main result as follows.

Theorem 2.2. Let (X,M, ∗) be a fuzzy metric space. Assume that F,G :
X × X → CB(X) and S, T : X → X are maps which satisfy the following
conditions:

(2.2.1) the pairs (F, S) and (G,T ) satisfy the (CLRg) property with respect to S
and T , respectively,
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(2.2.2) the pairs (F, S) and (G,T ) are w-compatible,

(2.2.3) ψ (δM (F (x, y), G(u, v), t)) ≥ ψ
(
mx, y
u, v

)
+ φ

(
mx, y
u, v

)
for all x, y, u, v ∈ X, t > 0, where ψ ∈ Ψ, φ ∈ Φ.

Then there exists a unique x ∈ X such that F (x, x) = {Sx} = {x} = {Tx} =
G(x, x).

Proof. Since the pairs (F, S) and (G,T ) satisfy the (CLRg) property with re-
spect to S and T , respectively, therefore there exist sequences {xn}, {yn}, {un}
and {vn} in X such that

lim
n→∞

M(Sxn, Sa, t) = 1, lim
n→∞

δM (F (xn, yn), A, t) = 1,

lim
n→∞

M(Syn, Sb, t) = 1, lim
n→∞

δM (F (yn, xn), B, t) = 1,

lim
n→∞

M(Tun, Ta
′
, t) = 1, lim

n→∞
δM (G(un, vn), P, t) = 1,

and
lim
n→∞

M(Tvn, T b
′
, t) = 1, lim

n→∞
δM (G(vn, un), Q, t) = 1,

for some a, b, a
′
, b
′ ∈ X and Sa ∈ A ∈ CB(X), Sb ∈ B ∈ CB(X),

Ta
′ ∈ P ∈ CB(X), Tb

′ ∈ Q ∈ CB(X).
Suppose 0 < min {δM (A,P, t), δM (B,Q, t)} < 1 for some t > 0. Consider

(2.1) ψ (δM (F (xn, yn), G(un, vn), t)) ≥ ψ
(
mxn, yn
un, vn

)
+ φ

(
mxn, yn
un, vn

)
wherein

mxn, yn
un, vn = min


M(Sxn, Tun, t),M(Syn, T vn, t),

δM (Sxn, F (xn, yn), t), δM (Syn, F (yn, xn), t),
δM (Tun, G(un, vn), t), δM (Tvn, G(vn, un), t),
δM (Sxn, G(un, vn), t), δM (Syn, G(vn, un), t),
δM (Tun, F (xn, yn), t), δM (Tvn, F (yn, xn), t)


and

lim
n→∞

mxn, yn
un, vn = min

 M(Sa, Ta
′
, t),M(Sb, T b

′
, t), 1, 1, 1, 1,

δM (Sa, P, t), δM (Sb,Q, t),

δM (Ta
′
, A, t), δM (Tb

′
, B, t)


≥ min {δM (A,P, t), δM (B,Q, t)} .

On letting n→∞ in (2.1), we get

ψ (δM (A,P, t)) ≥ ψ
(

min

{
δM (A,P, t),
δM (B,Q, t)

})
+ φ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
.

Similarly, we can also show that

ψ (δM (B,Q, t)) ≥ ψ
(

min

{
δM (A,P, t),
δM (B,Q, t)

})
+ φ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
.
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Thus, in all we have

ψ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
≥ ψ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})

+ φ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
,

which in turn yields that

0 ≥ φ
(
min

{
δM (A,P, t), δM (B,Q, t)

})
> min

{
δM (A,P, t), δM (B,Q, t)

}
,

a contradiction. Hence for all t > 0, we have

min {δM (A,P, t), δM (B,Q, t)} = 1

so that A = P = {a singleton} and B = Q = {a singleton}.
Since Sa ∈ A and Sb ∈ B we have

(2.2)
A = P = {Sa} = {Ta′}
B = Q = {Sb} = {Tb′}.

Now, suppose that 0 < M(Sa, Sb, t) < 1 for some t > 0.
Consider

(2.3) ψ (δM (F (yn, xn), G(un, vn), t)) ≥ ψ
(
myn, xn
un, vn

)
+ φ

(
myn, xn
un, vn

)

myn, xn
un, vn = min


M(Syn, Tun, t),M(Sxn, T vn, t),

δM (Syn, F (yn, xn), t), δM (Sxn, F (xn, yn), t),
δM (Tun, G(un, vn), t), δM (Tvn, G(vn, un), t),
δM (Syn, G(un, vn), t), δM (Sxn, G(vn, un), t),
δM (Tun, F (yn, xn), t), δM (Tvn, F (xn, yn), t)

 .

lim
n→∞

myn, xn
un, vn = min

 M(Sb, Ta
′
, t),M(Sa, Tb

′
, t), 1, 1, 1, 1,

δM (Sb, P, t), δM (Sa,Q, t),

δM (Ta
′
, A, t), δM (Tb

′
, B, t)


= M(Sb, Sa, t), due to (2.2)

Letting n→∞ in (2.3), we get
ψ(M(Sb, Sa, t)) ≥ ψ(M(Sb, Sa, t)) + φ(M(Sb, Sa, t))

0 ≥ φ(M(Sb, Sa, t)) > M(Sb, Sa, t).
It is a contradiction. Hence M(Sa, Sb, t) = 1 for all t > 0 so that Sa = Sb.
Thus

(2.4) Ta
′

= Sa = Sb = Tb
′
.

Suppose that 0 < min {δM (F (a, b), Sa, t), δM (F (b, a), Sb, t)} < 1 for some
t > 0.
Consider,

(2.5) ψ (δM (F (a, b), G(un, vn), t)) ≥ ψ
(
ma, b
un, vn

)
+ φ

(
ma, b
un, vn

)
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wherein

ma, b
un, vn = min


M(Sa, Tun, t),M(Sb, Tvn, t),

δM (Sa, F (a, b), t), δM (Sb, F (b, a), t),
δM (Tun, G(un, vn), t), δM (Tvn, G(vn, un), t),
δM (Sa,G(un, vn), t), δM (Sb,G(vn, un), t),
δM (Tun, F (a, b), t), δM (Tvn, F (b, a), t)


and

lim
n→∞

ma, b
un, vn = min


M(Sa, Ta

′
, t),M(Sb, T b

′
, t), δM (Sa, F (a, b), t),

δM (Sb, F (b, a), t), δM (Ta
′
, P, t), δM (Tb

′
, Q, t),

δM (Sa, P, t), δM (Sb,Q, t),

δM (Ta
′
, F (a, b), t), δM (Tb

′
, F (b, a), t)


≥ min

{
1, 1, δM (Sa, F (a, b), t), δM (Sb, F (b, a), t), 1, 1, 1, 1,

δM (Sa, F (a, b), t), δM (Sb, F (b, a), t)

}
= min {δM (Sa, F (a, b), t), δM (Sb, F (b, a), t)} .

Letting n→∞ in (2.5), we get

ψ (δM (Sa, F (a, b), t)) ≥ ψ
(

min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})
+φ

(
min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})
.

Similarly we can show that

ψ (δM (Sb, F (b, a), t)) ≥ ψ
(

min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})
+φ

(
min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})
.

Thus, we have

ψ

(
min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})
≥ ψ

(
min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})

+φ

(
min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})
,

which in turn yields that

0 ≥ φ
(

min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

})
> min

{
δM (Sa, F (a, b), t),
δM (Sb, F (b, a), t)

}
,

a contradiction. Hence for every t > 0, we have

min
{
δM (Sa, F (a, b), t), δM (Sb, F (b, a), t)

}
= 1

so that

(2.6) F (a, b) = {Sa} and F (b, a) = {Sb}.
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Similarly, by taking x = xn, y = yn, u = a
′
, v = b

′
and x = yn, y = xn, u = b

′
,

v = a
′

in (2.2.3) and letting n→∞, we can show that

(2.7) G(a
′
, b
′
) = {Ta

′
} and G(b

′
, a
′
) = {Tb

′
}.

Let x = Sa. Then from (2.4), Sa = Sb = Ta
′

= Tb
′

= x.
Since (F, S) and (G,T ) are w-compatible, from (2.6) and (2.7), it follows that

(2.8) Sx = SSa = SF (a, b) = F (Sa, Sb) = F (x, x).

and

(2.9) Tx = TTa = TG(a
′
, b
′
) = G(Ta

′
, T b

′
) = G(x, x).

Suppose 0 < M(Sx, x, t) < 1 for some t > 0.
Consider
ψ(M(Sx, x, t)) = ψ(M(F (x, x), G(a

′
, b
′
, t) from (2.7) and (2.8),

= ψ(δM (F (x, x), G(a
′
, b
′
, t), since F (x, x) = {Sx} and

G(a
′
, b
′
) = {Ta′} = {x}

= ψ
(
mx, x

a′ , b′

)
+ φ

(
mx, x

a′ , b′

)

mx, x

a′ , b′
= min


M(Sx, Ta

′
, t),M(Sx, Tb

′
, t),

δM (Sx, F (x, x), t), δM (Sx, F (x, x), t),

δM (Ta
′
, G(a

′
, b
′
), t), δM (Tb

′
, G(b

′
, a
′
), t),

δM (Sx,G(a
′
, b
′
), t), δM (Sx,G(b

′
, a
′
), t),

δM (Ta
′
, F (x, x), t), δM (Tb

′
, F (x, x), t)


= min

{
M(Sx, x, t),M(Sx, x, t), 1, 1, 1, 1,M(Sx, x, t),

M(Sx, x, t),M(x, Sx, t),M(x, Sx, t)

}
= M(Sx, x, t).

Thus
ψ(M(Sx, x, t)) ≥ ψ(M(Sx, x, t)) + φ(M(Sx, x, t))

0 ≥ φ(M(Sx, x, t)) > M(Sx, x, t),

a contradiction. Hence M(Sx, x, t) = 1 for every t > 0 so that Sx = x.
Similarly we can show that Tx = x. Thus from (2.8) and (2.9), we have

F (x, x) = {Sx} = {x} = {Tx} = G(x, x).

Hence (x, x) is a common coupled fixed point of F,G, S and T .
Uniqueness of x follows easily from (2.2.3).

One can prove the following along the similar lines as Theorem 2.2.

Theorem 2.3. Let (X,M, ∗) be a fuzzy metric space. If F,G : X × X →
CB(X) and S, T : X → X are maps which satisfy the following conditions:

(2.3.1) the pairs (F, S) and (G,T ) satisfy the (CLRg) property with respect to S
and T , respectively,
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(2.3.2) the pairs (F, S) and (G,T ) are w-compatible,

(2.3.3) δM (F (x, y), G(u, v), kt) ≥ mx, y
u, v for all x, y, u, v ∈ X,

t > 0, where k ∈ (0, 1) and lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X.

Then there exists a unique x ∈ X such that F (x, x) = {Sx} = {x} = {Tx} =
G(x, x).

Theorem 2.4. Let (X,M, ∗) be a fuzzy metric space, F,G : X ×X → X and
S, T : X → X be mappings satisfying

(2.4.1) the pairs (F, S) and (G,T ) satisfy the (CLRg) property with respect to S
and T , respectively,

(2.4.2) the pairs (F, S) and (G,T ) are w-compatible,

(2.4.3) M(F (x, y), G(u, v), kt) ≥ mx, y
u, v

for all x, y, u, v ∈ X, t > 0, where k ∈ (0, 1) and

mx, y
u, v = min


M(Sx, Tu, t),M(Sy, Tv, t),

M(Sx, F (x, y), t),M(Sy, F (y, x), t),
M(Tu,G(u, v), t),M(Tv,G(v, u), t),
M(Sx,G(u, v), t),M(Sy,G(v, u), t),
M(Tu, F (x, y), t),M(Tv, F (y, x), t)

 ,

(2.4.4) lim
t→∞

M(x, y, t) = 1 for all x, y ∈ X.

Then there exists x ∈ X such that F (x, x) = Sx = x = Tx = G(x, x).

Now, we give two examples to illustrate Theorem 2.4.

Example 2.5. Let X = [0, 1] and a ∗ b = ab for all a, b ∈ [0, 1] and let M be
the fuzzy set on X ×X × (0,∞) defined by

M(x, y, t) = e−
|x−y|

t

for all t ≥ 0. Then (X,M, ∗) is a fuzzy metric space.
Define F,G : X ×X → X and S, T : X → X by F (x, y) = x+y

8 ,

G(x, y) = x+y
16 , Sx = x

2 and Tx = x
4 . Then

|x+y8 −
u+v
16 | =

1
16 |2x− u+ 2y − v| ≤ 1

2 max{ |2x−u|4 , |2y−v|4 }. Now,

M(F (x, y), G(u, v),
1

2
t) = e

− |
x+y
8
−u+v

16 |
1
2t

≥ e
−

1
2

max{ |2x−u|
4

,
|2y−v|

4 }
1
2t

= e−
max{ |2x−u|

4
,
|2y−v|

4 }
t

≥ min
{
e−
|2x−u|

4t , e−
|2y−v|

4t

}
= min {M(Sx, Tu, t),M(Sy, Tv, t)}
≥ mx, y

u, v.
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Also (F, S) and (G,T ) satisfy the (CLRg) property with respect to S and
T , respectively with sequences {xn} = { 1√

n
}, {yn} = { 1n}, {un} = { 1

n2 } and

{vn} = { 1n}, respectively. Clearly, the pairs (F, S) and (G,T ) are w-compatible.
Clearly (0, 0) is the unique common fixed point of F,G, S and T .

Example 2.6. Let X = [0, 1] and a ∗ b = ab for all a, b ∈ [0, 1] and let M be
the fuzzy set on X ×X × (0,∞) defined by

M(x, y, t) =

(
t

t+ 1

)|x−y|
for all t ≥ 0. Then (X,M, ∗) is a fuzzy metric space.

Define F,G : X ×X → X and S, T : X → X by F (x, y) = x2+y2

16 ,

G(x, y) = x+y
16 , Sx = x2

4 and Tx = x
4 .

We have
t
2

t
2+1
≥
(

t
t+1

)2
for all t ≥ 0. Now,

M(F (x, y), G(u, v),
1

2
t) =

( t
2

t
2 + 1

)∣∣∣ x2+y2

16 −u+v
16

∣∣∣

≥
(

t

t+ 1

)∣∣∣ x2−u+y2−v
8

∣∣∣

≥
(

t

t+ 1

) |x2−u|+|y2−v|
8

=

(
t

t+ 1

) |fx−gu|+|fy−gv|
2

≥
(

t

t+ 1

)max{|fx−gu|,|fy−gv|}

≥ min

{(
t

t+ 1

)|fx−gu|
,

(
t

t+ 1

)|fy−gv|}
= min {M(fx, gu, t),M(fy, gv, t)}
≥ mx,y

u,v.

Also (F, S) and (G,T ) satisfy the (CLRg) property with respect to S and
T , respectively with sequences {xn} = { 1√

n
}, {yn} = { 1n}, {un} = { 1

n2 } and

{vn} = { 1n}, respectively. Clearly, the pairs (F, S) and (G,T ) are w-compatible.
Clearly (0, 0) is the unique common fixed point of F,G, S and T .

Remark 2.7. Recently, Sumitra et al. [25] proved a unique coupled common
fixed point theorem for four self mappings (see Theorem 3.2 of [25]). Inherently
they used the condition lim

t→∞
M(x, y, t) = 1 for all x, y ∈ X in the proof of their

Theorem 3.2. Moreover, the condition a∗b ≥ ab,∀a, b ∈ [0, 1] is redundant. Our
Theorem 2.3 with H-type t-norm is a generalization and extension of Theorem
3.2 of [25].



Hybrid coupled fixed point theorems for maps... 11

Theorem 2.8. Let (X,M, ∗) be a fuzzy metric space. If F,G : X × X →
CB(X) and S, T : X → X are maps which satisfy the following conditions:

(2.8.1) the pairs (F, S) and (G,T ) satisfy the (CLRg) property with respect to S
and T , respectively,

(2.8.2) the pairs (F, S) and (G,T ) are w-compatible,

(2.8.3) δM (F (x, y), G(u, v), t) ≥ φ(mx,y
u,v) for all x, y, u, v ∈ X, t > 0, where

φ : [0, 1]→ [0, 1] is continuous, monotonically increasing and φ(t) > t for
0 < t < 1.

Then there exists a unique x ∈ X such that F (x, x) = {Sx} = {x} = {Tx} =
G(x, x).

Finally we prove the following.

Theorem 2.9. Let (X,M, ∗) be a fuzzy metric space. If F,G : X × X →
CB(X) and S, T : X → X are maps which satisfy the following conditions:

(2.9.1)(a) the pair (F, S) satisfies the (CLRg) property with respect to S and F (X×
X ⊆ T (X),

or

(2.9.1)(b) the pair (G,T ) satisfies the (CLRg) property with respect to T and G(X×
X) ⊆ S(X),

(2.9.2) the pairs (F, S) and (G,T ) are w-compatible,

(2.9.3) ψ (δM (F (x, y), G(u, v), t)) ≥ ψ
(
mx, y
u, v

)
+ φ

(
mx, y
u, v

)
for all x, y, u, v ∈ X, t > 0, where ψ ∈ Ψ, φ ∈ Φ.

Then there exists a unique x ∈ X such that F (x, x) = {Sx} = {x} = {Tx} =
G(x, x).

Proof. Suppose (2.9.1)(a) holds.
Then there exist sequences {xn}, {yn} in X such that

lim
n→∞

M(Sxn, Sa, t) = 1, lim
n→∞

δM (F (xn, yn), A, t) = 1,

lim
n→∞

M(Syn, Sb, t) = 1, lim
n→∞

δM (F (yn, xn), B, t) = 1

for some a, b ∈ X and Sa ∈ A ∈ CB(X), Sb ∈ B ∈ CB(X).
Since F (xn, yn) ⊆ F (X ×X) ⊆ T (X), there exist αn ∈ F (xn, yn) and un ∈ X
such that αn = Tun for all n.
Also M(Tun, Sa, t) = M(αn, Sa, t) ≥ δM (F (xn, yn), A, t)→ 1 as n→∞.
Hence lim

n→∞
M(Tun, Sa, t) = 1.

Similarly, there exists vn ∈ X such that lim
n→∞

M(Tvn, Sb, t) = 1.

Let lim
n→∞

G(un, vn) = P and lim
n→∞

G(vn, un) = Q.
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Suppose 0 < min{δM (A,P, t), δM (B,Q, t)} < 1 for some t > 0.
Consider

(2.10) ψ (δM (F (xn, yn), G(un, vn), t)) ≥ ψ
(
mxn, yn
un, vn

)
+ φ

(
mxn, yn
un, vn

)

mxn, yn
un, vn = min


M(Sxn, Tun, t),M(Syn, T vn, t),

δM (Sxn, F (xn, yn), t), δM (Syn, F (yn, xn), t),
δM (Tun, G(un, vn), t), δM (Tvn, G(vn, un), t),
δM (Sxn, G(un, vn), t), δM (Syn, G(vn, un), t),
δM (Tun, F (xn, yn), t), δM (Tvn, F (yn, xn), t)


lim
n→∞

mxn, yn
un, vn = min

{
1, 1, 1, 1, δM (Sa, P, t), δM (Sb,Q, t),
δM (Sa, P, t), δM (Sb,Q, t), 1, 1

}
≥ min {δM (A,P, t), δM (B,Q, t)} .

Letting n→∞ in (2.10), we get

ψ (δM (A,P, t)) ≥ ψ
(

min

{
δM (A,P, t),
δM (B,Q, t)

})
+φ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
.

Similarly we can show that

ψ (δM (B,Q, t)) ≥ ψ
(

min

{
δM (A,P, t),
δM (B,Q, t)

})
+φ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
.

Thus we have

ψ

(
min

(
δM (A,P, t),
δM (B,Q, t)

))
≥ ψ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
+φ

(
min

{
δM (A,P, t),
δM (B,Q, t)

})
,

which in turn yields that

0 ≥ φ (min {δM (A,P, t), δM (B,Q, t)}) > min {δM (A,P, t), δM (B,Q, t)} .

It is a contradiction. Hence for all t > 0, we have

min {δM (A,P, t), δM (B,Q, t)} = 1.

Hence A = P = {a singleton} and B = Q = {a singleton}.
Since Sa ∈ A and Sb ∈ B we have A = P = {Sa} and B = Q = {Sb}.
Thus lim

n→∞
G(un, vn) = {Sa} and lim

n→∞
G(vn, un) = {Sb}.

Now by taking x = xn, y = yn, u = vn, v = un in (2.9.3) and letting n → ∞,
we can show that

(2.11) Sa = Sb.
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Taking x = a, y = b, u = un, v = vn and x = b, y = a, u = vn, v = un in
(2.9.3) and letting n→∞, we can show that F (a, b) = {Sa} and
F (b, a) = {Sb}.
Since {Sa} = F (a, b) ⊆ F (X × X) ⊆ T (X), there exists a

′ ∈ X such that
Sa = Ta

′
.

Since {Sb} = F (b, a) ⊆ F (X × X) ⊆ T (X), there exists b
′ ∈ X such that

Sb = Tb
′
.

From (2.11), we have Ta
′

= Sa = Sb = Tb
′
.

Now taking x = xn, y = yn, u = a
′
, v = b

′
and x = yn, y = xn, u = b

′
,

v = a
′

in (2.9.3) and letting n → ∞, we can show that G(a
′
, b
′
) = {Ta′} and

G(b
′
, a
′
) = {Tb′}.

The rest of the proof follows as in Theorem 2.2.
Similarly we can prove Theorem 2.9 if (2.9.1)(b) holds.

3. An Application

As an application of Theorem 2.4, we prove a theorem on the existence
and uniqueness of the solution of a Fredholm nonlinear integral equation. To
accomplish this purpose, we consider the following integral equation:

(3.1) x(p) =

b∫
a

(K1(p, q) +K2(p, q)) [f(q, x(q)) + g(q, x(q))] dq + h(p),

for all p ∈ I = [a, b], K1, K2 ∈ C(I × I, R) and h ∈ C(I, R).

Let Θ be the set of all functions θ : R+ → R+ satisfying the following
conditions:

(iθ) θ is non-decreasing,
(iiθ) θ(p) ≤ p.

We also require the functions K1, K2, f and g to satisfy the following
conditions:
Assumption (3.1)

(i) K1(p, q) ≥ 0 and K2(p, q) ≤ 0 for all p, q ∈ I,
(ii) there exist positive numbers λ, µ and θ ∈ Θ such that for all x, y ∈ C(I,

R) with x ≥ y, the following conditions hold:

(3.2) 0 ≤ f(q, x)− f(q, y) ≤ λθ(x− y)− µθ(x− y)

(3.3) λθ(x− y)− µθ(x− y) ≤ g(q, x)− g(q, y) ≤ 0,

(iii)

(3.4) max{λ, µ} sup
p∈I

b∫
a

[K1(p, q)−K2(p, q)]dq ≤ 1

4
.
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Now, we are equipped to prove the following theorem:

Theorem 3.1. Consider the integral equation (3.1) with K1, K2 ∈ C(I × I,
R) and h ∈ C(I, R). If all the conditions embodied in the Assumption (3.1)
are satisfied, then the integral equation (3.1) has a unique solution in C(I, R).

Proof. It is well known that X = C(I, R) is a complete metric space with
respect to the sup metric

d(x, y) = sup
p∈I
|x(p)− y(p)| .

It is straightforward to check that (X, M, ∗) is a fuzzy metric space if we define

M(x, y, t) = e−
d(x,y)

t , for all x, y ∈ C(I,R) and t > 0,

wherein ∗ is defined by x ∗ y = xy (for all x, y ∈ I). Now, define a mapping
F : X ×X → X by

F (x, y)(p) =

b∫
a

K1(p, q)[f(q, x(q)) + g(q, y(q))]dq

+

b∫
a

K2(p, q)[f(q, y(q)) + g(q, x(q))]dq + h(p),

for all p ∈ I. On using (3.2) and (3.3), we have (for x, y, u, v ∈ X)

F (x, y)(p)− F (u, v)(p)

=

b∫
a

K1(p, q) [f(q, x(q)) + g(q, y(q))] dq

+

b∫
a

K2(p, q) [f(q, y(q)) + g(q, x(q))] dq(3.5)

−
b∫
a

K1(p, q) [f(q, u(q)) + g(q, v(q))] dq

−
b∫
a

K2(p, q) [f(q, v(q)) + g(q, u(q))] dq

=

b∫
a

K1(p, q)[(f(q, x(q))− f(q, u(q)))− (g(q, v(q))− g(q, y(q)))]dq
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−
b∫
a

K2(p, q)[(f(q, v(q))− f(q, y(q)))− (g(q, x(q))− g(q, u(q)))]dq

≤
b∫
a

K1(p, q) [λθ (x(q)− u(q)) + µθ (v(q)− y(q))] dq

−
b∫
a

K2(p, q) [λθ (v(q)− y(q)) + µθ (x(q)− u(q))] dq.

As the function θ is non-decreasing, we have

θ (x(q)− u(q)) ≤ θ

(
sup
q∈I
|x(q)− u(q)|

)
= θ(d(x, u)),

θ (v(q)− y(q)) ≤ θ

(
sup
q∈I
|v(q)− y(q)|

)
= θ(d(y, v)).

Appealing to (3.5) and making use of the fact that K2(p, q) ≤ 0, we obtain

|F (x, y)(p)− F (u, v)(p)|

≤
b∫
a

K1(p, q) [λθ(d(x, u)) + µθ(d(y, v))] dq

−
b∫
a

K2(p, q) [λθ(d(y, v)) + µθ(d(x, u))] dq,

≤
b∫
a

K1(p, q) [max{λ, µ}θ(d(x, u)) + max{λ, µ}θ(d(y, v))] dq

−
b∫
a

K2(p, q) [max{λ, µ}θ(d(y, v)) + max{λ, µ}θ(d(x, u))] dq.

Now, taking the supremum with respect to p and making use of (3.4), we get

d(F (x, y), F (u, v))(3.6)

≤ max{λ, µ} sup
p∈I

b∫
a

(K1(p, q)−K2(p, q)) dq. [θ(d(x, u)) + θ(d(y, v))]

≤ θ(d(x, u)) + θ(d(y, v))

4
.

Since θ is non-decreasing, we have

θ(d(x, u)) ≤ θ (max {d(x, u), d(y, v)}) ,
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θ(d(y, v)) ≤ θ (max {d(x, u), d(y, v)}) ,

which implies (due to (iiθ)) that

θ(d(x, u)) + θ(d(y, v))

2
≤ θ (max {d(x, u), d(y, v)})

≤ max {d(x, u), d(y, v)} ,

so that (owing to (3.6), we have

(3.7) d(F (x, y), F (u, v)) ≤ 1

2
max {d(x, u), d(y, v)} .

Now, on making use of (3.7), it follows that

M(F (x, y), F (u, v),
t

2
) = e

− d(F (x,y),F (u,v))
t
2

≥ e
−

1
2

max{d(x,u),d(y,v)}
t
2

= e
−max{d(x,u),d(y,v)}

t

≥ min

{
e
− d(x,u)

t , e−
d(y,v)

t

}
= min {M(Sx, Tu, t),M(Sy, Tv, t)}
≥ mx,y

u,v.

Thus the involved contractive condition of Theorem 2.4 is satisfied if we set
F = G and Sx = Tx = x, Also, it is straightforward to notice that all the
hypotheses of Theorem 2.4 are satisfied and henceforth F has a coupled fixed
point (x, x) ∈ X2 which also remains the solution of the integral equation
(3.1).
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