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FACTORIZATION OF OPERATORS WITH Gα
α(Rd

+)
AND gαα(Rd

+) KERNELS
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Abstract. The aim of this paper is to prove that any linear operator
with kernel in the spaces Gα

α(Rd
+), α ≥ 1 and gαα(Rd

+), α > 1 is a compo-
sition of two operators in the same space.
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1. Introduction

The test space S(R+) for the space of tempered distributions supported by
[0,∞) is studied in [3], [10] and [13]; recently, the space S(Rd

+) is examined in
[5]. In [6] G-type spaces, Gα

α(Rd
+), α ≥ 1 and their dual spaces, i.e. the spaces

of ultradistributions of Roumier type over [0,∞)d, are characterized in terms of
their Fourier-Laguerre coefficients; cf. Duran [4] for the one-dimensional case.
Actually, the result of [4] is extended and the full topological characterization is
given in all dimensions, as well as applications to pseudo-differential operators
with radial symbols.

In this paper we introduce g-type spaces, gαα(Rd
+), α > 1 and their dual

spaces i.e. the spaces of ultradistributions of Beurling type over [0,∞)d (cf.
[7]). We give the kernel theorem for gαα(Rd

+), α > 1.
For any topological vector space B, the set of continuous linear functionals

on B, denoted by M = L(B), is a factorization algebra (also the term decom-
position algebra can be used). This means that any operator T in M is a
composition of two operators T1, T2 in M since we can choose T1 as the iden-
tity operator and T2 = T . If B is a Hilbert space, then it follows from spectral
decomposition that the set of compact operators on B is a factorization algebra,
where the factorization properties are obtained by straightforward applications
of the spectral theorem.

An interesting subclass of linear and continuous operators on an L2 space
concerns the set of all linear operators whose kernels belong to the Schwartz
space (see e.g. [1], [8],[12]). Similar facts hold true for the set of operators with
kernels in Gelfand-Shilov spaces (cf. [11]) and Pilipović spaces (cf. [2]).
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In this paper we consider the case when M is the set of all linear operators
with kernels in Gα

α(Rd
+), α ≥ 1 and gαα(Rd

+), α > 1 spaces. We prove that any
such M is a factorization algebra. Note that the identity operator does not
belong to these operator classes.

2. Preliminaries

We denote by N, Z, R and C the sets of positive integers, integers, real
and complex numbers, respectively; N0 = N ∪ {0}, R+ = (0,∞), Rd

+ =

(0,∞)d and Rd
+ = [0,∞)d. We use the standard multi-index notation. Let

x = (x1, . . . , xd) ∈ Rd, k = (k1, . . . , kd) ∈ Nd
0. Then |x| =

√
x2
1 + . . .+ x2

d,

|k| = k1 + . . . + kd, k! = k1! · · · kd!, xk =
∏d

i=1 x
ki
i , Dk =

∏d
i=1 ∂

ki/∂xki
i . Fur-

thermore, if x, γ ∈ Rd
+ we also use xγ =

∏d
j=1 x

γj

j . In this case, if xj = 0 and

γj = 0, we use the convention 00 = 1.
For j ∈ N0 and γ > −1, the j-th Laguerre polynomial of order γ is defined

by

Lγ
j (x) =

x−γex

j!

dj

dxj
(e−xxγ+j), x ≥ 0.

For γ = (γ1, . . . , γd) ∈ Rd such that γj > −1, j = 1, . . . , d and n ∈ Nd
0,

the d-dimensional n-th Laguerre polynomial of order γ is defined by Lγ
n(x) =

Lγ1
n1
(x1) . . . L

γd
nd
(xd). For γ = 0, we write Ln(x) instead of L0

n(x).

The j-th Laguerre function (of order 0) is defined by lj(x) = Lj(x)e
−x/2,

x ≥ 0, j ∈ N0 and in a d-dimensional case we have ln(x) = ln1(x1) . . . lnd
(xd),

x ∈ Rd
+, n ∈ Nd

0. The Laguerre functions form an orthonormal basis for L2(Rd
+).

Also, they have a special role for the characterisation of the spaces Gα
α(Rd

+),
α ≥ 1 and gαα(Rd

+), α > 1 considered below.

2.1. Basic spaces

We denote by Rd
+ the set (0,∞)d and by Rd

+ its closure, i.e. [0,∞)d. The
space S(Rd

+) consists of all f ∈ C∞(Rd
+) such that all derivatives Dpf , p ∈ Nd

0,

extend to continuous functions on Rd
+ and

sup
x∈Rd

+

xk|Dpf(x)| < ∞ , ∀k, p ∈ Nd
0.

Let A > 0. We denote by Gα,A
α,A(Rd

+) the space of all f ∈ S(Rd
+) for which

sup
p,k∈Nd

0

∥t(p+k)/2Dpf(t)∥2
A|p+k|k(α/2)kp(α/2)p

< ∞.

With the following seminorms

σA,j(f) = sup
p,k∈Nd

0

∥t(p+k)/2Dpf(t)∥L2(Rd
+)

A|p+k|k(α/2)kp(α/2)p
+ sup
|p|≤j
|k|≤j

sup
t∈Rd

+

|tkDpf(t)|, j ∈ N0,
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one easily verifies that it becomes an (F )-space.

Define Gα
α(Rd

+) = lim−→
A→∞

Gα,A
α,A(R

d
+) and gαα(Rd

+) = lim←−
A→0

Gα,A
α,A(R

d
+). Clearly,

Gα
α(Rd

+), α ≥ 1 and gαα(Rd
+), α > 1 are continuously injected into S(Rd

+) i.e.

gαα(Rd
+) ↪→ Gα

α(Rd
+) ↪→ S(Rd

+).

We immediately have

(2.1) (Gα
α(Rd

+))
′ =

∪
A∈N

(Gα,A
α,A(R

d
+))
′

in the set theoretical sense (see [9, (1.2), p.34]). Since the sequence Gα,A
α,A(Rd

+),
when A → ∞, is reduced, we have

(2.2) (gαα(Rd
+))
′ =

∩
A∈N

(G
α,1/A
α,1/A(R

d
+))
′

in the set theoretical sense (see [9, (1.1), p.33]).
Let α ≥ 1 and a > 1. We define sα,a as the space of all complex sequences

{an}n∈Nd
0
for which ∥{an}n∈Nd

0
∥sα,a = sup

n∈Nd
0

|an|a|n|
1/α

< ∞. With this norm

sα,a becomes a (B)-space. We define sα = lim−→
a→1+

sα,a (resp. σα = lim←−
a→∞

σα,a).

In particular, sα is a (DFN)-space (resp. σα is a (FN)-space). The strong
dual (sα)′ of sα is an (FN)-space of all complex valued sequences {bn}n∈Nd

0

such that, for each a > 1, ∥{bn}n∈Nd
0
∥(sα,a)′ =

∑
n∈Nd

0
|bn|a−|n|

1/α

< ∞ (resp.

the strong dual (σα)′ of σα is a (DFN)-space of all complex valued sequences
{bn}n∈Nd

0
such that there exists a > 1 such that ∥{bn}n∈Nd

0
∥(sα,a)′ < ∞).

Theorem 2.1. ([6, Theorem 5.7.]) Let α ≥ 1. For f ∈ L2(Rd
+) let an =∫

Rd
+
f(t)ln(t)dt, n ∈ Nd

0. Then f ∈ Gα
α(Rd

+) if and only if there exist c > 0 and

a > 1 such that |an| ≤ ca−|n|
1/α

.

With small modifications of the arguments (using the closed graph theorem
for an F -space), we have the next theorem

Theorem 2.2. Let α > 1. For f ∈ L2(Rd
+) let an =

∫
Rd

+
f(t)ln(t)dt, n ∈ Nd

0.

Then f ∈ gαα(Rd
+) if and only if for every a > 1 there exists c > 0 such that

|an| ≤ ca−|n|
1/α

.

Theorem 2.3. ([6, Theorem 6.1]) Let α ≥ 1. The mapping ι : Gα
α(Rd

+) → sα,
ι(f) = {⟨f, ln⟩}n∈Nd

0
, is a topological isomorphism between Gα

α(Rd
+) and sα.

For each f ∈ Gα
α(Rd

+),
∑

n∈Nd
0
⟨f, ln⟩ln is summable to f in Gα

α(Rd
+).

In a similar way, we prove the next theorem.

Theorem 2.4. Let α > 1. The mapping ι : gαα(Rd
+) → σα, ι(f) = {⟨f, ln⟩}n∈Nd

0
,

is a topological isomorphism between gαα(Rd
+) and σα.

For each f ∈ gαα(Rd
+),

∑
n∈Nd

0
⟨f, ln⟩ln is summable to f in gαα(Rd

+).
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The last four results are crucial and we will often tacitly apply them through-
out the rest of this article.

3. G- and g- kernels

Firstly, we state the kernel theorems:

Theorem 3.1. ([6, Theorem 6.4.]) Let α ≥ 1. We have the following canonical
isomorphism:

(3.1) (Gα
α(R

d1
+ ))′⊗̂(Gα

α(R
d2
+ ))′ ∼= (Gα

α(R
d1+d2
+ ))′ ∼= L(Gα

α(R
d1
+ ), (Gα

α(R
d2
+ ))′).

Theorem 3.2. Let α > 1. We have the following canonical isomorphism:

(3.2) (gαα(R
d1
+ ))′⊗̂(gαα(R

d2
+ ))′ ∼= (gαα(R

d1+d2
+ ))′ ∼= L(gαα(R

d1
+ ), (gαα(R

d2
+ ))′).

Proof. The proof for (gαα(Rd
+))
′ can be obtained it the same way as for (Gα

α(Rd
+))
′

in Theorem 3.1.

The isomorphisms (3.1) and (3.2) require some comment. In what follows we
use the convention that if T is a linear and continuous operator from G1

1(R
d1
+ )

to (G1
1(R

d2
+ ))′, and g ∈ (G1

1(R
d0
+ ))′, then T ⊗ g is the linear and continuous

operator from G1
1(R

d1
+ ) to (G1

1(R
d2+d0
+ ))′, given by

(T ⊗ g) : f 7→ (Tf)⊗ g.

The following theorem is the main result of this paper.

Theorem 3.3. Let T be a linear and continuous operator from G1
1(R

d1
+ ) to

(G1
1(R

d2
+ ))′ with the kernel K, and let d0 ≥ min(d1, d2). Then the following is

true:

(R) If α ≥ 1 and K ∈ Gα
α(R

d2+d1
+ ), then there are operators T1 and T2 with

kernels K1 ∈ Gα
α(R

d0+d1
+ ) and K2 ∈ Gα

α(R
d2+d0
+ ), respectively, such that

T = T2 ◦ T1.

(B) If α > 1 and K ∈ gαα(R
d2+d1
+ ), then there are operators T1 and T2 with

kernels K1 ∈ gαα(R
d0+d1
+ ) and K2 ∈ gαα(R

d2+d0
+ ), respectively, such that

T = T2 ◦ T1.

Remark 3.4. Let α ≥ 1. An operator with kernel inGα
α(R2d

+ ) is sometimes called
a regularizing operator with respect to Gα

α(Rd
+), because it extends uniquely

to a continuous mapping from (Gα
α(Rd

+))
′, into Gα

α(Rd
+).

Let α > 1. An operator with kernel in gαα(R2d
+ ) is sometimes called a

regularizing operator with respect to gαα(Rd
+).

Proof. First we assume that d0 = d1, and start to prove (R). Let ld,n(x) be the
Laguerre function on Rd

+ of order n ∈ Nd. Then K possesses the expansion

(3.3) K(x, y) =
∑

n∈Nd2

∑
k∈Nd1

an,kld2,n(x)ld1,k(y),



Factrorization of operators with Gα
α(Rd

+) and gαα(Rd
+) kernels 73

where the coefficients an,k satisfy

(3.4) sup
n,k

|an,keA(|n|1/α+|k|1/α)| < ∞,

for some A > 0. Let z ∈ Rd1
+ and

K0,1(z, y) =
∑

n,k∈Nd1

cn,kld1,n(z)ld1,k(y)

K0,2(x, z) =
∑

n∈Nd2

∑
k∈Nd1

bn,kld2,n(x)ld1,k(z),
(3.5)

where
cn,k = χn,ke

−A
2 |n|

1/α

and bn,k = an,ke
A
2 |k|

1/α

and χn,k is the Kronecker delta. Then we have∫
K0,2(x, z)K0,1(z, y)dz =

∑
n∈Nd2

∑
k∈Nd1

an,kld2,n(x)ld1,k(y) = K(x, y).

Hence, if Tj is the operator with kernel K0,j , j = 1, 2, then T = T2 ◦ T1.
Furthermore,

sup
n,k

|bn,ke
A
2 (|n|1/α+|k|1/α)| ≤ sup

n,k
|an,keA(|n|1/α+|k|1/α)| < ∞

and
sup
n,k

|cn,ke
A
4 (|n|1/α+|k|1/α)| = sup

n
|e−A

2 |n|
1/α

e
A
2 |n|

1/α

| < ∞.

This implies that K0,1 ∈ Gα
α(R

d1+d1
+ ) and K0,2 ∈ Gα

α(R
d2+d1
+ ) (see Theorem

2.1). If we put K1 = K0,1 and K2 = K0,2, we proved (R) in the case when
d0 = d1.

In order to prove (B) assume that K ∈ gαα(R
d2+d1
+ ) and let an,k be the same

as the above. Then (3.4) holds for any A > 0, which implies that if N ≥ 0 is
an integer, then

(3.6) ΣN = sup{|k| : |an,k| ≥ e−2(N+1)(|n|1/α+|k|1/α) for some n ∈ Nd2}

is finite. Let I1 = {k ∈ Nd1 : |k| ≤ Σ1 + 1} and define inductively

Ij = {k ∈ Nd1 \ Ij−1 : |k| ≤ Σj + j}, j ≥ 2.

Then
Ij ∩ Ik = ∅ when j ̸= k, and Nd1 =

∪
j≥1

Ij .

Let K0,1 and K0,2 be as in (3.5) where

cn1,k = χn1,ke
−j|k|1/α and bn2,k = an2,ke

j|k|1/α ,
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n1 ∈ Nd1 , n2 ∈ Nd2 and k ∈ Ij . If Tj is the operator with kernel K0,j , j = 1, 2,
then it follows that T = T2 ◦ T1. Moreover, if A > 0 we have

sup
n,k

|bn,keA(|n|1/α+|k|1/α)| ≤ J1 + J2,

where

(3.7) J1 = sup
j≤A+1

sup
n

sup
k∈Ij

|bn,keA(|n|1/α+|k|1/α)|

and

(3.8) J2 = sup
j>A+1

sup
n

sup
k∈Ij

|bn,keA(|n|1/α+|k|1/α)|.

We will prove that J1 and J2 are finite. Since in (3.7) we have the finite numbers
of k, from (3.4) and the definition of bn,k we obtain that J1 is finite.

For J2 we have

J2 = sup
j>A+1

sup
n

sup
k∈Ij

|an,keA|n|
1/α+(A+j)|k|1/α |

≤ sup
j>A+1

sup
n

sup
k∈Ij

|e−2j(|n|
1/α+|k|1/α)eA|n|

1/α+(A+j)|k|1/α | < ∞,

where the first inequality follows from (3.6). Hence,

sup
n,k

|bn,keA(|n|1/α+|k|1/α)| < ∞,

which implies that K0,2 ∈ gαα(R
d2+d1
+ ).

In a similar way if we replace bn,k with cn,k in the definition of J1 and J2)
we obtain

sup
n,k

|cn,keA(|n|1/α+|k|1/α)| < ∞,

which implies K0,1 ∈ gαα(R
d1+d1
+ ) and (B) follows in the case d0 = d1.

Next, assume that d0 > d1 and let d = d0 − d1 ≥ 1. Then we set

K1(z, y) = K0,1(z1, y)ld,0(z2) and K2(x, z) = K0,2(x, z1)ld,0(z2),

where z1 ∈ Rd1
+ , z2 ∈ Rd

+ and hence, z = (z1, z2) ∈ Rd0
+ . Next, we obtain∫

Rd0
+

K2(x, z)K1(z, y)dz =

∫
Rd1

+

K0,2(x, z1)K0,1(z1, y)dz1 = K(x, y).

In this case the assertion (R) and (B) follows from the equivalences

K1 ∈ Gα
α(R

d0+d1
+ ) (gαα(R

d0+d1
+ )) ⇐⇒ K0,1 ∈ Gα

α(R
d1+d1
+ ) (gαα(R

d1+d1
+ ))

and

K2 ∈ Gα
α(R

d2+d0
+ ) (gαα(R

d2+d0
+ )) ⇐⇒ K0,1 ∈ Gα

α(R
d2+d1
+ ) (gαα(R

d2+d1
+ )).
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It remains to prove the result in the case d0 ≥ d2. The rules of d1 and d2
are interchanged when taking the adjoint opeartors. Hence, the result follows
from the first part of the proof in combination with the facts that Gα

α and gαα
are invariant under pullbacks of bijective linear transformations i.e. (x, y) 7→
F (x, y) belongs to Gα

α(R
d1
+ × Rd2

+ ) if and only if (y, x) 7→ F (x, y) belongs to

Gα
α(R

d2
+ × Rd1

+ ). The proof is complete.
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[3] Duran, A.J., Laguerre expansions of Tempered Distributions and Generalized
Functions. Journal of Mathematical Analysis and Applications 150 (1990), 166-
180.

[4] Duran, A.J., Laguerre expansions of Gel’fand-Shilov spaces, J. Approx. Theory
74 (1993), 280-300.
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