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Abstract. In this paper, we analyze hypercyclic and topologically
mixing properties of abstract degenerate (multi-term) time-fractional in-
clusions in separable infinite-dimensional Fréchet spaces. We use the
multivalued linear operator approach.
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1. Introduction and preliminaries

The theory of topological dynamics of linear operators is very popular nowa-
days ([5, 16]). A linear operator T on a Fréchet space E is said to be hypercyclic
iff there exists an element x ∈ D∞(T ) whose orbit {Tnx : n ∈ N0} is dense
in E; T is said to be topologically transitive, resp. topologically mixing, iff
for every pair of open non-empty subsets U, V of E, there exists n ∈ N such
that Tn(U) ∩ V ̸= ∅, resp. iff for every pair of open non-empty subsets U, V
of E, there exists n0 ∈ N such that, for every n ∈ N with n ≥ n0, one has
Tn(U) ∩ V ̸= ∅.

In [23, 24], we have analyzed hypercyclic and topologically mixing properties
of various classes of abstract degenerate Volterra integro-differential equations
(cf. [19, Chapter 3] for a survey of results about non-degenerate case). The
main aim of this paper, which is written in an expository manner, is to recon-
sider the results from the above-mentioned papers from the point of view of
the theory of multivalued linear operators.

Throughout the paper, we use the standard notation. By E we denote a
separable infinite-dimensional Fréchet space over the field of complex numbers.
By L(E) we denote the space which consists of all continuous linear mappings
from E into E.We assume that the topology of E is induced by the fundamental
system (pn)n∈N of increasing seminorms. The translation invariant metric d :
E × E → [0,∞), defined by

d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ E,
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satisfies the following properties: d(x+u, y+v) ≤ d(x, y)+d(u, v), x, y, u, v ∈
E, d(cx, cy) ≤ (|c|+1)d(x, y), c ∈ C, x, y ∈ E, and d(αx, βx) ≥ |α−β|

1+|α−β|d(0, x),

x ∈ E, α, β ∈ C. The domain, kernel and range of a linear operator A on
E are denoted by D(A), N(A) and R(A), respectively. For any p ∈ N and
r ∈ Np ≡ {1, 2, · · ·, p}, we define Projr,p : Ep → E by Projr,p(x1, · · ·, xp) := xr,
x⃗ = (x1, · · ·, xp) ∈ Ep. Given s ∈ R in advance, set ⌈s⌉ := inf{l ∈ Z : s ≤ l}.
The Gamma function is denoted by Γ(·) and the principal branch is always
used to take the powers. Set 0α := 0, N0

p := Np ∪ {0} and gα(t) := tα−1/Γ(α)
(α > 0, t > 0).

During the past three decades, considerable interest in fractional calculus
and fractional differential equations has been stimulated due to their numerous
applications in various fields of science, technology and engineering. Basic in-
formation about fractional calculus and non-degenerate fractional differential
equations can be obtained by consulting [6, 13, 18, 19, 30] and the references
cited therein. We refer the reader to [31] and [19] for further information about
abstract non-degenerate Volterra equations. Concerning abstract degenerate
Voterra equations and abstract degenerate fractional differential equations, we
would like to recommend for the reader the forthcoming monograph [20] (cf.
[15] and [32] for the basic source of information on abstract degenerate differ-
ential equations with integer order derivatives).

In this paper, we will use the Caputo fractional derivatives. Let ζ > 0. Then
the Caputo fractional derivative Dζ

tu ([6, 19]) is defined for those functions u ∈
C⌈ζ⌉−1([0,∞) : X) for which g⌈ζ⌉−ζ ∗ (u−

∑⌈ζ⌉−1
j=0 u(j)(0)gj+1) ∈ C⌈ζ⌉([0,∞) :

X), by

Dζ
tu(t) :=

d⌈ζ⌉

dt⌈ζ⌉

[
g⌈ζ⌉−ζ ∗

(
u−

⌈ζ⌉−1∑
j=0

u(j)(0)gj+1

)]
.

If the Caputo fractional derivative Dζ
tu(t) exists, then for each number ν ∈

(0, ζ) the Caputo fractional derivative Dν
t u(t) exists, as well.

The Mittag-Leffler function Eβ,γ(z) (β > 0, γ ∈ R) is defined by

Eβ,γ(z) :=
∞∑
k=0

zk

Γ(βk + γ)
, z ∈ C.

In this place, we assume that 1/Γ(βk+ γ) = 0 if βk+ γ ∈ −N0. Set, for short,
Eβ(z) := Eβ,1(z), z ∈ C. For further information about the Mittag-Leffler
functions, cf. [6, 19] and the references cited there.

Let 0 < τ ≤ ∞ and F : [0, τ) → P (X). A single-valued function f : [0, τ) →
X is called a section of F iff f(t) ∈ F(t) for all t ∈ [0, τ). We denote the set
consisting of all continuous sections of F by secc(F).

2. Multivalued linear operators in locally convex spaces

In this section, we will present some necessary definitions from the theory
of multivalued linear operators. For more details about this topic, we refer the
reader to the monographs by R. Cross [11] and A. Favini-A. Yagi [15].
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Let X and Y be two sequentially complete locally convex spaces (SCLCSs)
over the field of complex numbers. A multivalued map A : X → P (Y ) is said
to be a multivalued linear operator (MLO) iff the following holds:

(i) D(A) := {x ∈ X : Ax ̸= ∅} is a linear subspace of X;

(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

If X = Y, then we say that A is an MLO in X. As an almost immediate
consequence of definition, we have that the equality λAx+ ηAy = A(λx+ ηy)
holds for every x, y ∈ D(A) and for every λ, η ∈ C with |λ|+ |η| ̸= 0. If A is
an MLO, then A0 is a linear manifold in Y and Ax = f+A0 for any x ∈ D(A)
and f ∈ Ax. Define R(A) := {Ax : x ∈ D(A)}. Then the set N(A) := A−10 =
{x ∈ D(A) : 0 ∈ Ax} is called the kernel of A. The inverse A−1 of an MLO
is defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. It can
be easily seen that A−1 is an MLO in X, as well as that N(A−1) = A0 and
(A−1)−1 = A. If N(A) = {0}, i.e., if A−1 is single-valued, then A is said to be
injective. If A, B : X → P (Y ) are two MLOs, then we define its sum A + B
by D(A+ B) := D(A) ∩D(B) and (A+ B)x := Ax+ Bx, x ∈ D(A+ B). It is
clear that A + B is likewise an MLO. We write A ⊆ B iff D(A) ⊆ D(B) and
Ax ⊆ Bx for all x ∈ D(A).

Let A : X → P (Y ) and B : Y → P (Z) be two MLOs, where Z is an
SCLCS. The product of A and B is defined by D(BA) := {x ∈ D(A) : D(B) ∩
Ax ̸= ∅} and BAx := B(D(B) ∩ Ax). Then BA : X → P (Z) is an MLO
and (BA)−1 = A−1B−1. The scalar multiplication of an MLO A : X → P (Y )
with the number z ∈ C, zA for short, is defined by D(zA) := D(A) and
(zA)(x) := zAx, x ∈ D(A). It is clear that zA : X → P (Y ) is an MLO and
(ωz)A = ω(zA) = z(ωA), z, ω ∈ C.

The point spectrum of A, σp(A) for short, is consisted of those complex
numbers λ ∈ C for which there exists a non-zero vector x ∈ D(A) such that
λx ∈ Ax.

We say that an MLO A : X → P (Y ) is closed if for any nets (xτ ) in D(A)
and (yτ ) in Y such that yτ ∈ Axτ for all τ ∈ I, we have that the suppositions
limτ→∞ xτ = x and limτ→∞ yτ = y imply x ∈ D(A) and y ∈ Ax.

We need the following auxiliary lemma from [21].

Lemma 2.1. Let Ω be a locally compact, separable metric space, and let µ
be a locally finite Borel measure defined on Ω. Suppose that A : X → P (Y )
is a closed MLO. Let f : Ω → X and g : Ω → Y be µ-integrable, and let
g(x) ∈ Af(x), x ∈ Ω. Then

∫
Ω
f dµ ∈ D(A) and

∫
Ω
g dµ ∈ A

∫
Ω
f dµ.

In the remaining part of paper, Ω will always be an appropriate subspace of
R, µ will always be the Lebesgue measure defined on Ω; E will be a separable
infinite-dimensional Fréchet space over the field of complex numbers, and A
will be a multivalued linear operator in E.
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3. Hypercyclic and topologically mixing properties of
problem (DFP )α

In this section, we will consider hypercyclic and topologically mixing prop-
erties of the following abstract degenerate time-fractional inclusion:

(DFP)α :

{
Dα

t u(t) ∈ Au(t), t ≥ 0,
u(0) = x; u(j)(0) = 0, 0 ≤ j ≤ ⌈α⌉ − 1.

By a (strong) solution of (DFP)α, we mean any continuous E-valued function
t 7→ u(t), t ≥ 0 such that the term t 7→ Dα

t u(t), t ≥ 0 is well defined and
continuous, as well as that (DFP)α holds. Assuming that the operator A is
closed, we can integrate problem (DFP)α α-times in order to see (cf. also The-
orem 2.1) that any solution u(t) of the problem (DFP)α satisfies the following
integral equation:

u(t)− x =
(
gα ∗ uA

)
(t) ∈ A

(
gα ∗ u

)
(t), t ≥ 0.

In this place, it is worth noting that we do not require a priori the closedness
of the operator A henceforth. Denote by Zα(A) the set which consists of those
vectors x ∈ E for which there exists a solution of the problem (DFP)α. Then
Zα(A) is a linear subspace of E.

The following is an extension of [22, Lemma 2.1] to multivalued linear
operator case. The proof is almost straightforward after pointing out that
Dα

t Eα(λt
α) = λEα(λt

α), t ≥ 0, λ ∈ C, α > 0.

Lemma 3.1. Suppose α > 0, λ ∈ C, x ∈ E and λx ∈ Ax. Then x ∈ Zα(A)
and one solution of (DFP)α is given by u(t) ≡ u(t;x) = Eα(λt

α)x, t ≥ 0.

The notion of a (subspace-)hypercyclicity, (subspace-)topological transitiv-
ity and (subspace-)topologically mixing property of the problem (DFP)α are
introduced in the following definition.

Definition 3.2. Let α > 0, and let Ẽ be a closed linear subspace of E. Then
it is said that:

(i) an element x ∈ Zα(A) ∩ Ẽ is a Ẽ-hypercyclic vector for (DFP)α iff there
exists a strong solution t 7→ u(t;x), t ≥ 0 of the problem (DFP)α with
the property that the set {u(t;x) : t ≥ 0} is a dense subset of Ẽ.

Furthermore, we say that the abstract Cauchy problem (DFP)α is:

(ii) Ẽ-topologically transitive iff for every y, z ∈ Ẽ and for every ε > 0, there
exist x ∈ Zα(A) ∩ Ẽ, a strong solution t 7→ u(t;x), t ≥ 0 of the problem
(DFP)α and t ≥ 0 such that d(x, y) < ε and d(u(t;x), z) < ε;

(iii) Ẽ-topologically mixing iff for every y, z ∈ Ẽ and for every ε > 0, there
exists t0 ≥ 0 such that, for every t ≥ t0, there exist xt ∈ Zα(A) ∩ Ẽ and
a strong solution t 7→ u(t;xt), t ≥ 0 of the problem (DFP)α such that
d(xt, y) < ε and d(u(t;xt), z) < ε.
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In the case Ẽ = E, it is also said that a Ẽ-hypercyclic vector for (DFP)α is
a hypercyclic vector for (DFP)α, and that (DFP)α is topologically transitive,
resp. topologically mixing.

In a series of our recent research studies of hypercyclicity and topologically
mixing properties of abstract integro-differential equations, we have reconsid-
ered several times the Desch-Schappacher-Webb and Banasiak-Moszyński cri-
teria for chaos of strongly continuous semigroups ([12, 3]). It is very important
to observe that this useful criterion continues to hold in our framework (cf. [22,
Theorem 2.3] and its proof):

Theorem 3.3. Assume α ∈ (0, 2) and there exists an open connected subset
Ω of C which satisfies Ω ∩ (−∞, 0] = ∅, Ωα := {λα : λ ∈ Ω} ⊆ σp(A) and
Ω ∩ iR ̸= ∅. Let f : Ωα → E be an analytic mapping such that f(λα) ∈
N(A− λα) \ {0}, λ ∈ Ω and let Ẽ := span{f(λα) : λ ∈ Ω}. Then the abstract
degenerate inclusion (DFP)α is Ẽ-topologically mixing.

The assertion of [23, Theorem 9] can be reformulated for multivalued linear
operators, as well:

Theorem 3.4. Suppose that α > 0 and (tn)n∈N is a sequence of positive reals
tending to +∞. If the set E0,α, which consists of those elements y ∈ Zα(A)∩ Ẽ
for which there exists a strong solution t 7→ u(t; y), t ≥ 0 of the problem
(DFP)α such that limn→∞ u(tn; y) = 0, is dense in Ẽ, and if the set E∞,α,

which consists of those elements z ∈ Zα(A) ∩ Ẽ for which there exist a null
sequence (ωn)n∈N ∈ Zα(A)∩Ẽ and a sequence (un(·;ωn))n∈N of strong solutions
of the problem (DFP)α such that limn→∞ u(tn;ωn) = z, is also dense in Ẽ, then
the problem (DFP)α is Ẽ-topologically transitive.

4. Hypercyclic and topologically mixing properties of ab-
stract degenerate Cauchy problems of first and second
order

Concerning linear dynamical properties, the abstract degenerate Cauchy
problems of first and second order have a numerous peculiarities compared
with the abstract degenerate fractional Cauchy problems. The main aim of
this section is to investigate some of these peculiarities in more detail.

We start by stating the following simple proposition.

Proposition 4.1. (cf. [23, Proposition 13])

(i) Suppose that α = 1, x ∈ Z1(A) and the function t 7→ u(t;x), t ≥ 0 is a
solution of the problem (DFP)1. Then, for every s ≥ 0, u(s;x) ∈ Z1(A)
and a solution of (DFP)1, with initial condition x replaced by u(s;x), is
given by u(t;u(s;x)) := u(t+ s;x), t ≥ 0.

(ii) Suppose that α = 2, x ∈ Z2(A) and the function t 7→ u(t;x), t ≥ 0 is
a solution of (DFP)2. Then, for every s ≥ 0, u(s;x) ∈ Z2(A) and a
solution of (DFP)2, with initial condition x replaced by u(s;x), is given
by u(t;u(s;x)) := 1

2 [u(t+ s;x) + u(|t− s|;x)], t ≥ 0.
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In [14, Theorem 2.1], S. El Mourchid has investigated the connection be-
tween the imaginary point spectrum and hypercyclicity of strongly continuous
semigroups. It is well known that this result cannot be transferred to fractional
equations. In [23, Theorem 18], we have seen that the assertion of [14, Theorem
2.1] can be extended to linear Sobolev equations of first order. Now we would
like to formulate a similar result for multivalued linear operators.

Theorem 4.2. Assume that α = 1, ω1, ω2 ∈ R ∪ {−∞,∞}, ω1 < ω2, t0 > 0
and k ∈ N. Let fj : (ω1, ω2) → E be integrable (in the sense of [21, Def-
inition 1.2(ii)]), and let for each j = 1, · · ·, k we have fj(s) ∈ isAfj(s) for
a.e. s ∈ (ω1, ω2). Put ψr,j :=

∫ ω2

ω1
eirsfj(s) ds, r ∈ R, 1 ≤ j ≤ k. Put

Ẽ := span{ψr,j : r ∈ R, 1 ≤ j ≤ k}. If the operator A is closed, then the prob-

lem (DFP)1 is Ẽ-topologically mixing.

The assertion of [23, Theorem 21] can be formulated for multivalued linear
operators, as well:

Theorem 4.3. Let Ẽ be a closed linear subspace of E, and let α = 2.

(i) Suppose that (tn)n∈N is a sequence of positive reals tending to +∞. Denote
by X1,Ẽ the set which consists of those elements x ∈ Z2(A)∩ Ẽ for which
there exists a solution t 7→ u(t;x), t ≥ 0 of the problem (DFP)2 such
that u(0;x) = x and limn→∞ u(tn;x) = limn→∞ u(2tn;x) = 0. If X1,Ẽ is

dense in Ẽ, then the problem (DFP)2 is Ẽ-topologically transitive.

(ii) Denote by X ′
1,Ẽ

the set which consists of those elements x ∈ Z2(A) ∩ Ẽ
for which there exists a strong solution t 7→ u(t;x), t ≥ 0 of the problem
(DFP)2 such that u(0;x) = x and limt→+∞ u(t;x) = 0. If X ′

1,Ẽ
is dense

in Ẽ, then the problem (DFP)2 is Ẽ-topologically mixing.

Unfortunately, Theorem 3.3 is no longer true in the case that α = 2. If so,
then we can pass to the equation of first order by considering the multivalued

linear operator

[
0 I
A 0

]
and the vector (f(λ2) λf(λ2))T for λ ∈ Ω, where Ω

is an open connected subset of C intersecting the imaginary axis, and apply
Theorem 3.3, with α = 1, after that (cf. Theorem 6.3 below and [23, Remark
6] for more details).

The Hypercyclicity Criterion for degenerate first order equations has been
stated in [23, Theorem 20]. The interested reader may try to formulate a version
of this result for abstract degenerate differential inclusions of first order.

5. Hypercyclic and topologically mixing properties of cer-
tain classes of abstract degenerate multi-term frac-
tional differential inclusions

In this section, we assume that n ∈ N \ {1}, A1, · · ·,An−1, A and B are
multivalued linear operators on E (not necessarily closed), 0 ≤ α1 < · · · <
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αn−1 < αn and 0 ≤ α < αn. By L and L−1 we denote the Laplace transform
and its inverse transform, respectively (cf. [2, 19, 21] for more details). Fix a
number i ∈ N0

mn−1. Set A0 := A, An := B, α0 := α, mj := ⌈αj⌉ (j ∈ Nn
0 ),

Di := {j ∈ Nn−1 : mj − 1 ≥ i} and Di := {j ∈ N0
n−1 : mj − 1 ≥ i}. We

will consider henceforth hypercyclic and topologically mixing properties of the
following degenerate abstract multi-term fractional inclusion:

0 ∈ BDαn
t u(t) +

n−1∑
j=1

AjD
αj

t u(t)−ADα
t u(t), t ≥ 0;

u(k)(0) = xk, k ∈ N0
mn−1.(5.1)

In this section, we will consider the case in which:

(5.2) u(i)(0) = xi = x and u(k)(0) = xk = 0, k ∈ N0
mn−1 \ {i}.

Because no confusion seems likely, we will denote such a degenerate inclusion by
the same symbol (5.1). By a strong solution of (5.1), we mean any continuous
E-valued function t 7→ u(t), t ≥ 0 such that the Caputo fractional derivative
Dαn

t u(t) is well-defined, as well as that the initial conditions in (5.1) hold and
that there exist continuous sections aj(t) ∈ secc(AjD

αj

t u(t)) (0 ≤ j ≤ n, t ≥ 0)
such that

0 =

n∑
j=1

aj(t)− a0(t), t ≥ 0.

If (5.2) holds, then u(t) will be also denoted by ui(t) ≡ ui(t;x).
We will use the following definition.

Definition 5.1. Let Ẽ be a closed linear subspace of E. Then it is said that
the equation (5.1) is:

(i) Ẽ-hypercyclic iff there exist an element x ∈ Ẽ and a strong solution
t 7→ ui(t;x), t ≥ 0 of (5.1) such that {ui(t;x) : t ≥ 0} is a dense subset of
Ẽ; such an element is called a Ẽ-hypercyclic vector of (5.1);

(ii) Ẽ-topologically transitive iff for every y, z ∈ Ẽ and for every ε > 0, there
exist an element x ∈ Ẽ, a strong solution t 7→ ui(t;x), t ≥ 0 of (5.1) and
a number t ≥ 0 such that d(x, y) < ε and d(ui(t;x), z) < ε;

(iii) Ẽ-topologically mixing iff for every y, z ∈ Ẽ and for every ε > 0, there
exists t0 ≥ 0 such that, for every t ≥ t0, there exist an element xt ∈ Ẽ
and a strong solution t 7→ ui(t;xt), t ≥ 0 of (5.1), with x replaced by xt,
such that d(xt, y) < ε and d(ui(t;xt), z) < ε.

In the case Ẽ = E, it is also said that a Ẽ-hypercyclic vector of (5.1) is
a hypercyclic vector of (5.1) and that (5.1) is topologically transitive, resp.
topologically mixing.

The assertion of [23, Theorem 11] can be extended to multivalued linear
operators as follows:



56 Marko Kostić

Theorem 5.2. Suppose that ∅ ̸= Ω is an open connected subset of C \ {0},
f : Ω → E \ {0} is an analytic function, fj : Ω → C \ {0} is a scalar-valued
function (1 ≤ j ≤ n), g : Ω → E satisfies g(λ) ∈ Af(λ), λ ∈ Ω and

g(λ) ∈ fn(λ)Bf(λ); g(λ) ∈ fj(λ)Ajf(λ), λ ∈ Ω, 1 ≤ j ≤ n− 1.

Suppose, further, that Ω+ and Ω− are two non-empty subsets of Ω, and each
of them admits a cluster point in Ω. Define Ẽ := span{f(λ) : λ ∈ Ω},

Hi(λ, t) := L−1

(
zαn−i−1 +

∑
j∈Di

fn(λ)
fj(λ)

zαj−i−1 − χDi(0)fn(λ)z
α−i−1

zαn +
∑n−1

j=1
fn(λ)
fj(λ)

zαj − fn(λ)zα

)
(t),

and

Fi(λ, t) := Hi(λ, t)f(λ),

for any t ≥ 0 and λ ∈ Ω. If

lim
t→+∞

∣∣Hi(λ, t)
∣∣ = +∞, λ ∈ Ω+ and lim

t→+∞
Hi(λ, t) = 0, λ ∈ Ω−,

then (5.1) is Ẽ-topologically mixing. Furthermore, there exist continuous sec-
tions aj,i(λ, t) ∈ secc(AjFi(λ, t)) such that the terms D

αj

t aj,i(λ, t) are well-
defined (0 ≤ j ≤ n, t ≥ 0, λ ∈ Ω) and

0 =
n∑

j=1

D
αj

t aj,i(λ, t)−Dα
t a0,i(λ, t), t ≥ 0, λ ∈ Ω.

6. D-Hypercyclic and D-topologically mixing properties
of abstract degenerate multi-term fractional differen-
tial inclusions

In this section, we will briefly explain how we can, following the method
proposed in [24], slightly generalize the notion introduced in the previous parts
of our paper. For the sake of simplicity, we will not consider here the orbits of
multilinear mappings (cf. [9, 17] for further information in this direction).

Denote by Z (Zuniq) the set of all tuples of initial values x⃗ = (x0, x1, · ·
·, xmn−1) ∈ Emn for which there exists a (unique) strong solution of problem
(5.1). Then Z is a linear subspace of Emn and Zuniq ⊆ Z. It is clear that
the equality Z = Zuniq holds iff the zero function is a unique strong solution

of the problem (5.1) with the initial value x⃗ = 0⃗ (we refer the reader to [28,
Proposition 3.8] and [27, Theorem 2.2] for some results on the uniqueness of
solutions of (5.1) and related problems). For any x⃗ ∈ Z, we denote by S(x⃗) the
set consisting of all strong solutions of problem (5.1) with the initial value x⃗.
Assume that P : Z → P (∪x⃗∈ZS(x⃗)) is a fixed mapping satisfying ∅ ≠ P(x⃗) ⊆
S(x⃗), x⃗ ∈ Z.



Hypercyclic and topologically mixing properties... 57

Let ∅ ≠W ⊆ Nmn , let Êi be a linear subspace of E (i ∈W ), and let Ẽ, Ě

be linear subspaces of Emn . Suppose that the tuple β⃗ = (β0, β1, · · ·, βmn−1) ∈
[0, αn]

mn is fixed. Set, with a little abuse of notation in comparison with [24],

D :=
(
Ẽ, Ě, {Êi : i ∈W}, β⃗

)
.

Denote by MD the set consisting of those tuples x⃗ ∈ Z for which Proji,mn
(x⃗) ∈

Êi, i ∈W.

Definition 6.1. (cf. also [24, Definition 3]) The abstract Cauchy problem
(5.1) is said to be:

(i) (D,P)-hypercyclic iff there exist a tuple x⃗ ∈ MD ∩ Ẽ and a function
u(·; x⃗) ∈ P(x⃗) such that

G :=

{((
Dβ0

s u(s; x⃗)
)
s=t

,
(
Dβ1

s u(s; x⃗)
)
s=t

, ···,
(
D

βmn−1
s u(s; x⃗)

)
s=t

)
: t ≥ 0

}

is a dense subset of Ě; such a vector is called a (D,P)-hypercyclic vector
of problem (5.1).

(ii) D-hypercyclic iff it is (D,S)-hypercyclic; any (D,S)-hypercyclic vector
of problem (5.1) will be also called a D-hypercyclic vector of problem
(5.1).

(iii) DP-topologically transitive iff for every pair of open non-empty subsets

U and V of Emn satisfying U ∩ Ẽ ̸= ∅ and V ∩ Ě ̸= ∅, there exist a
tuple x⃗ ∈ MD, a function u(·; x⃗) ∈ P(x⃗) and a number t ≥ 0 such that
x⃗ ∈ U ∩ Ẽ and((

Dβ0
s u(s; x⃗)

)
s=t

,
(
Dβ1

s u(s; x⃗)
)
s=t

, · · ·,
(
D

βmn−1
s u(s; x⃗)

)
s=t

)
∈ V ∩ Ě.

(iv) D-topologically transitive iff it is DS-topologically transitive.

(v) DP-topologically mixing iff for every pair of open non-empty subsets U

and V of Emn satisfying U ∩ Ẽ ̸= ∅ and V ∩ Ě ̸= ∅, there exists a number
t0 ≥ 0 such that, for every number t ≥ t0, there exist a tuple x⃗t ∈ MD

and a function u(·; x⃗t) ∈ P(x⃗t) such that x⃗t ∈ U ∩ Ẽ and((
Dβ0

s u(s; x⃗t)
)
s=t

,
(
Dβ1

s u(s; x⃗t)
)
s=t

, ···,
(
D

βmn−1
s u(s; x⃗t)

)
s=t

)
∈ V ∩Ě.

(vi) D-topologically mixing iff it is DS-topologically mixing.

Remark 6.2. Let 0 ≤ β ≤ α < 2, and let the requirements of Theorem 3.3 hold
(here the notation used to denote the space Ẽ is slightly different from that used
in the formulation of above-mentioned theorem). Then the consideration from
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[24, Remark 1(ii)] shows that the problem (DFP)α is DP-topologically mixing,

provided that β⃗ = (β, β), W = {1}, Ê1 = span{f(λα) : λ ∈ Ω}, Ẽ = Ê1 × {0},
Ě = {(z, z) : z ∈ Ê1} and P((

∑m
i=1 αif(λ

α
i ), 0)) = {

∑m
i=1 αiEα(·αλαi )f(λαi )}

(m ∈ N, αi ∈ C, λi ∈ Ω for 1 ≤ i ≤ m). By assuming some extra conditions,
a similar assertion can be proved for a general problem (5.1) (cf. [24, Remark
1(iii)]).

The conjugacy lemma stated in [24, Theorem 2] admits a very simple re-
formulation in our context. Details are left to the interested reader.

Using the proof of [24, Theorem 3] and the usual matrix conversion of
abstract higher-order differential equations with integer order derivatives into
the first order matrix differential equation, we can simply verify the validity of
the following theorem.

Theorem 6.3. Let αi = i for all i ∈ Nn, let Ω be an open non-empty subset of
C intersecting the imaginary axis, and let f : Ω → E be an analytic mapping
satisfying

0 ∈

(
λαnB +

n−1∑
i=1

λαiAi −A

)
f(λ), λ ∈ Ω.

Set x⃗λ := [f(λ) λf(λ) · · · λn−1f(λ)]T (λ ∈ Ω), E0 := span{x⃗λ : λ ∈ Ω},
Ẽ := Ě := E0, β⃗ := (0, 1, · · ·, n− 1), W := Nn and Êi := span{f(λ) : λ ∈ Ω},
i ∈ W. Then x⃗λ ∈ MD, λ ∈ Ω and the abstract Cauchy problem (5.1) is
DP-topologically mixing provided that

∑q
j=1 e

λj ·f(λj) ∈ P(
∑q

j=1 x⃗λj ) for any∑q
j=1 x⃗λj ∈ E0 (q ∈ N; λj ∈ Ω, 1 ≤ j ≤ q).

As observed in [24, Remark 2(iii)], Theorem 6.3 cannot be so simply refor-
mulated for abstract degenerate multi-term inclusion (5.1), provided that there
exists an index i ∈ Nn such that αi /∈ N.

Examples already given in [19, Chapter 3] and [22]-[26] can serve for il-
lustration of our theoretical results. Now we would like to present some new
elaborate examples in support of Theorem 3.3, Theorem 5.2 and Theorem 6.3.

Example 6.4. (i) Suppose that E := C2(R) is equipped with the usual
Fréchet topology, 0 < α < 2, m ∈ C(R) and m(x) > 0, x ∈ R. For any
λ ∈ C, we denote by {f1λ(x), f2λ(x)} the fundamental set of solutions of
ordinary differential equation y′′ = λm(x)y. Using the elementary theory
of linear ordinary differential equations, and direct computation of the
matrix exponential

e
x
[

0 1
λm(x) 0

]
, x ∈ R, λ ∈ C \ (−∞, 0],

we can simply prove that for any arbitrarily chosen open connected subset
Ω of C \ (−∞, 0] satisfying that Ω ∩ {e±itα/2 : t ≥ 0} ̸= ∅, the mappings
λ 7→ f1λ(x) ∈ E and λ 7→ f2λ(x) ∈ E are analytic. Let Ω be such a set.
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Denote Ẽ := span{f iλ(x) : λ ∈ Ω, i = 1, 2}. Then we can apply [23, The-
orem 5] or Theorem 3.3 in order to see that the abstract time-fractional
Poisson heat equation (cf. [15] for more details):

Dα
t [m(x)u(t, x)] = ∆u(t, x), t ≥ 0, x ∈ R;

m(x)u(0, x) = ϕ(x);
( ∂
∂t

[m(x)u(t, x)]
)
t=0

= 0, if α > 1,

is Ẽ-topologically mixing, with the meaning clear.

(ii) Suppose that n = 3, 1
3 < a < 1

2 , α3 = 3a, α2 = 2a, α1 = 0, α = a, c1 < 0,
c2 > 0 and i = 1. Then the analysis given in [19, Example 3.3.12(iii)],
in combination with Theorem 5.2, enables one to deduce some results
on topologically mixing properties of the following abstract degenerate
multi-term inclusion:

0 ∈ D3a
t u(t) + c2D

2a
t u(t) + c1D

a
t u(t)−Au(t), t > 0,

u(0) = 0, u′(0) = x, u′′(0) = 0,

where A is an MLO and satisfies certain conditions.

(iii) Suppose that A is an MLO, Ω is an open non-empty subset of C inter-
secting the imaginary axis, f : Ω → E is an analytic mapping, λf(λ) ∈
Af(λ), λ ∈ Ω, Pi(z) is a non-zero complex polynomial (0 ≤ i ≤ n) and

(6.1) znPn(z) +
n−1∑
i=1

ziPi(z)− P0(z) ≡ 0.

Set Ai := Pi(A), i ∈ N0
n. Then for any non-zero complex polynomial

P (z) we have P (λ)f(λ) ∈ P (A)f(λ), λ ∈ Ω so that (6.1) implies

0 ∈

(
λnB +

n−1∑
i=1

λiAi −A

)
f(λ), λ ∈ Ω.

Hence, Theorem 6.3 is susceptible to applications.

Besides hypercyclicity and topologically mixing property, which have been
analyzed in this paper, there exist a great number of other known concepts
in the theory of topological dynamics of linear operators, like Li-Yorke chaos,
distributional chaos and frequent hypercyclicity. We refer the interested reader
to [1, 4, 7, 8, 10, 26, 29, 33] for some references in this direction, closing the
paper with the observation that it could be very interesting to further analyze
the above-mentioned concepts from the point of view of the theory of abstract
degenerate Volterra integro-differential equations.
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