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LÉVY PROCESSES, SUBORDINATORS
AND CRIME MODELLING

Tijana Levajković12, Hermann Mena13and Martin Zarfl1

Abstract. We investigate some properties of Lévy processes in the
context of subordinators. Lévy walks can be represented as subordina-
tors of random walks and Lévy flights are random walks with trajectories
composed of self-similar jumps. Lévy processes provide a framework for
modelling many physical phenomena. In this paper we consider, as an
illustration, crime models based on Brownian motion and Lévy flights.
We propose an efficient implementation of the models by using high per-
formance computing techniques. Numerical simulations on different sce-
narios allows us to analyze some properties of the processes, particularly
regimes of aggregation and first passage time.
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1. Introduction

Applications of probability theory and stochastic processes arise in science
and engineering, e.g. quantum mechanics, finance, biomathematics, etc. For
example, in financial mathematics modelling fluctuations rely on Lévy pro-
cesses. Lévy processes are stochastic processes with stationary and independent
increments, properties which satisfy a mild sample path regularity condition [1].
They are examples of random motion whose sample paths are right-continuous
and have at most countable number of random jump discontinuities occurring
at random times, on each finite time interval. Semimartingales and Markov
processes are special subclasses of Lévy processes, which include a number of
very important processes: Brownian motion, Poisson process, stable and self-
decomposable processes and subordinators [18]. Precisely, Brownian motion
and homogeneous Poisson process appear in models of finance and insurance.
The key difference between these two processes lies in the sample path behav-
ior, Brownian motion has continuous sample paths whereas Poisson process is
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a counting process, a jump process. Lévy flight is a class of random walks that
is characterized by a heavy tailed step length distribution [13].

Lévy processes have an important role in modelling social behavior, urban
evolution, phenomena and processes appearing in biology and natural sciences.
They appear, for example in predator-pray models, foraging patterns of animals
[23], plasma physics and cell science [7], solute transport in heterogeneous media
[24], social aspects, financial models [10], crime models [6, 22] etc.

Simple random walks models, also known as gambler ruin models, are used
to approximate one dimensional diffusions, such as Brownian motion, where
a physical particle is exposed to a great number of molecular collisions which
produce random motion. The variance of diffusion is scaled linearly with time.
Moreover, the Central limit theorem can be applied to random walks without
long-term correlations [8]. In this paper we focus on Lévy flights, stable pure
jump Lévy processes, which model anomalous diffusions, i.e. the diffusion
phenomena whose variance is not linear. The nonlinearity of variance is due
to non Gaussian power-law tails of the probability distribution function, i.e.
they are of the form tγ , γ 6= 1. Fractional diffusion equations are widely used
to describe anomalous diffusion processes [20, 25]. Especially, Lévy walks are
Lévy flights with finite velocity. The first found super diffusion phenomenon is
a fractional Brownian motion. The variance of fractional Brownian motion with
the Hurst parameter H ∈ (0, 1) can be related to the power scaling exponent,
i.e. t2H . For H = 1

2 we retain a standard Brownian motion. In [11] the
authors showed how a power law truncated Lévy stable distribution evolves in
time to a distribution with power law asymptotics. Subordination of a process
by another one, also called random time-change, is a technique from stochastic
analysis widely used for constructing new Markov processes or strongly conti-
nuous semigroups [18]. It was first introduced by Bochner. We study simple
random walks, continuous-time random walks and Lévy flights, where in the
subordination a new operational time scale is used to measure the time between
two steps of the random walk.

In the class of Lévy processes that can be written as Brownian motion time
changed by independent Lévy subordinator, a question concerning the precise
relation between the standard first passage time arise [12]. The first passage
time, also called the hitting time, is the time at which a given process reaches
a given subset of the state space. The first passage time is also referred as the
inverse subordinator [26]. Exit times and return times are also examples of
hitting times [8]. First passage problems arise in financial mathematics, e.g.
credit risk modelling, pricing barrier options etc. They also arise in the study
of fractional kinetics and the scaling limits of continuous random walks [26].

In this paper, we investigate the properties of different classes of Lévy pro-
cesses that are applied for modelling crime. Following [6, 22], we propose an
efficient implementation of the models by using high performance computing
techniques, in particular we speed up simulations of the Lévy flight model [6]
by using MEX functions. This allows us to perform simulations of the Lévy
model at the computational cost of the Brownian motion based model, making
it feasible to simulate crime modelling and other real life applications. We also
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discuss several regimes of aggregation, like hotspots of high criminal activity
and we provide a study of the first passage time. In addition we generalize the
one dimensional Lévy flight model proposed in [6] to a two dimensional one al-
lowing a detailed comparison with the model based on Brownian motion. The
latter together with the efficient implementation are the main contributions of
this paper. We point out that the same ideas can be applied straightforward
to other applications in financial mathematics or biology.

A strategy for the police to adapt dynamically to changing crime patterns
has been introduced in [29]. The authors use optimization techniques to solve
the problem numerically. In case when the resulting model is linear (or can be
linearized), a linear quadratic control problem approach can be used making
the computation with real data feasible as efficient numerical solvers have been
proposed, e.g. [2, 3, 4, 16]. These numerical solvers we intend to investigate in
our future work.

The paper is organized as follows: in Section 2 we present a brief overview
of Lévy processes, subordinators and random walks. Then, in Section 3 we
describe the crime models for burglar locomotion. Afterwards, in Section 4
we perform numerical simulations for different scenarios and we study the first
passage time. Finally, in Section 5 we present some conclusions.

2. Theoretical background

2.1. Lévy processes

Consider a complete probability space (Ω,F ,P) equipped with a filtration
(Ft)0≤t≤T , T > 0. The σ-algebra FT represents the information available in
the model up to time T . A real valued stochastic process X = Xt(ω) = (Xt)t≥0

defined on (Ω,F ,P) is called an one dimensional Lévy process if X0 = 0 a.s.,
X has independent and stationary increments and X is stochastically continu-
ous. Both Brownian motion and Poisson process are temporary homogeneous
Lévy processes, i.e. the probability distribution of the increment Xt+h − Xt,
for h > 0 is independent of t. Almost all trajectories of Brownian motion are
continuous, while those of Poisson process are discontinuous, and they increase
only by jumps of unit magnitude. Other important examples of Lévy pro-
cesses are compound Poisson process, Gamma process, α-stable processes, self
decomposable processes.

A real valued random variable Y has an infinitely divisible distribution if
for each n ∈ N there exist a sequence of independent identically distributed
random variables Y1,n, ..., Yn,n such that Y and Y1,n + ... + Yn,n have equal
distribution. Hence, the probability law µ of a real valued random variable
is infinitely divisible if it can be decomposed to n-fold convolution µ = µ∗nn ,
n ∈ N, for some probability law µn. The characteristic exponent of a random
variable Y is defined by

Ψ(u) = − logE(eiuY ), u ∈ R.

Therefore, Y has an infinitely divisible distribution if for all n ∈ N there
exists a characteristic exponent Ψn of a probability distribution such that
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Ψ(u) = nΨn(u), u ∈ R. Complete characterization of an infinitely divisible dis-
tribution in terms of its characteristic exponent is given by the Lévy-Khintchine
formula [1, 21]

Theorem 2.1 (The Lévy-Khintchine formula). The probability law µ of a real
valued random variable is infinitely divisible with the characteristic exponent Ψ

(2.1)

∫
R
eiθx µ(dx) = e−Ψ(θ), θ ∈ R

if and only if there exists the triplet (a, σ,Π), where a ∈ R, σ ≥ 0 and Π is the
Lévy measure, i.e. the measure concentrated on R \ {0} which satisfies

(2.2)

∫
R

(1 ∧ x2) Π(dx) < ∞,

such that

(2.3) Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫
R

(1− eiθx + iθx1|x|<1) Π(dx), θ ∈ R.

The proof of the Lévy-Khintchine formula can be found, for example in [1, 21].
It is clear that every Lévy process can be related to some infinite divisi-

ble distribution. If X is a Lévy process, then Xt has an infinitely divisible
distribution for each t ≥ 0. Moreover, for every infinite divisible process, it
is possible to construct a Lévy process Xt so that X1 has the given infinite
divisible distribution. This is the statement of the following theorem.

Theorem 2.2. Given a triplet (a, σ,Π), where a ∈ R, σ ≥ 0 and Π is the Lévy
measure such that (2.2) is satisfied. Then there exists a unique Lévy process X
such that (2.1) and (2.3) hold.

Note that every Lévy process can be decomposed into the sum of three
terms. The first term, seen as a continuous part of a Lévy process is represented
by a Brownian motion with drift, the second term represents a compensated
sum of small jumps, while the third term describes the large jumps and is
represented by compound Poisson process.

2.1.1. Subordinators

Lévy processes with almost sure nondecreasing paths are called subordinators.
Such processes can be thought of as random models of time evolution. Their
characteristic exponent (2.3) is of the form

Ψ(θ) = iaθ +

∫ +∞

0

(1− eixθ) Π(dx) .

A wide class of Lévy processes appearing in applications is obtained by subor-
dination of Brownian motion with drift [14, 18].
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Theorem 2.3. Let X = (Xt)t≥0 be a Lévy process with the characteristic
exponent Ψ and S = (Sτ )τ≥0 an independent subordinator defined on the same
probability space as X with the characteristic exponent Φ. Then, the process
Yτ = (XSτ )τ≥0 is a Lévy process with the characteristic exponent Φ ◦Ψ.

The proof of the previous theorem can be found for example in [1, 15]. In [9]
the authors suggested that the value of a risky asset can evolve as the process
on an abstract time scale suitable to the rate of business translations called the
business (operational) time. The subordinator S represents the link between
business time and real time. Particularly, in the models of crime activities we
are considering in Section 3, the position Y of the burglar at the certain time
is distributed by St and follows the process Yt = X ◦ St = XSt . This means
that at real time t > 0, St units of business (”robbing”) time pass and the
value of a burglar activity is positioned at XSt .

A stable Lévy process is a Lévy process X for which Xt is a stable random
variable for all t ≥ 0. These processes are important in applications because
they display the self-similarity property.

A random time τ taking values in [0,+∞) is a stopping time with respect
to the process X if {τ ≤ t} ∈ Ft for all t ≥ 0. The σ-algebra associated with
τ is defined by Fτ = {B ∈ F : B ∩ {τ ≤ t} ∈ Ft, for all t ≥ 0}. Stopping
time can be seen as a random time that does not require knowledge about the
future. From the available information we can only tell whether or not τ ≤ t
holds [18].

Example 2.4. Let Bt, t ≥ 0 be a standard Brownian motion, σ > 0, θ > 0
and S an independent subordinator. Then, Wt = σBt+θt, t ≥ 0 is a Brownian
motion with drift θ and scaling (dispersion) coefficient σ [14]. A subordinated
process BSt performs jumps in random time, where time is passing according to
St, t ≥ 0. For a linear transformation, when St = b2 t the process BSt = Bb2t,
b 6= 0 is a Brownian motion with drift b2 and dispersion coefficient b.
We subordinate Brownian motion and by time changing X = W ◦ S construct
a Lévy process Xt = WSt = σBSt + θSt. Let τ be a stopping time with respect
to the process W . Define a process Yt = Wt+τ −Wτ , t ≥ 0. Then Y = (Yt)t≥0

is also a Brownian motion with the same drift and scale parameter.

The first hitting time, also called the first passage time and the inverse
subordinator, is the time at which a given process reaches a given subset of
the state space. Let (Ω,F ,P) be a given probability space and let M be a
measurable state space. Let X : Ω × [0,+∞) → M be a stochastic process
and A a measurable subset of the state space M . Then, the first hitting time
τA : Ω→ [0,+∞) is the random variable defined by

τA(ω) = inf{t ≥ 0 : Xt(ω) ∈ A}.

Any stopping time is a hitting time for a properly chosen process and target set.
Precisely, the hitting time of a measurable set, for a progressively measurable
process, is a stopping time. Progressively measurable processes include, in
particular, all right and left-continuous adapted processes. The converse also
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holds, every stopping time defined with respect to a filtration over a real valued
time index set can be represented by a hitting time [1]. The mean first passage
time is called the renewal function. All the moments of the first passage time
can be computed if the renewal function is first computed [26].

Example 2.5. For α ∈ (0, 1) and u ≥ 0 it holds

uα =
α

Γ(1− α)

∫ +∞

0

(1− e−ux)
dx

x1+α
.

Thus, there exists α-stable subordinator S with the characteristic exponent
Ψ(u) = uα and the characteristics of S are (0, λ), where λ(dx) = α

Γ(1−α)
dx
x1+α .

Moreover, the renewal function for the α-stable subordinator is given by tα

Γ(α+1) .

The 1
2 -stable subordinator is called the Lévy subordinator and its probabilistic

interpretation is the first hitting time for one dimensional Brownian motion Bt,
i.e. St = inf{s > 0 : Bs = t√

2
}. Recall, the probability density function of a

random variable Sb
√

2 = inf{s > 0 : Bs = b} obtained by the reflection principle

is given in the close form |b|√
2πt3

e−
b2

2t . Moreover, for an α-stable subordinator

S independent on a Brownian motion B, the process Z = BSτ is rotationally
invariant 2α-stable process. For more details we refer to [1, 14, 18, 26].

2.2. Fractional Laplacian

We recall briefly some facts on fractional discrete Laplace operator. Let
Zh = {hj , j ∈ Z} be a mesh on R of size h > 0. The discrete Laplacian ∆h is
given by

−∆huj = − 1

h2
(uj+1 − 2uj + uj−1),

where uj , j ∈ Z ia a function on Zh. The fractional discrete Laplacian (−∆h)s

is defined by

(−∆h)s uj =
1

Γ(−s)

∫ ∞
0

(et∆h uj − uj)
dt

t1+s
,

where vj(t) = et∆)h uj is the solution of the semidiscrete heat equation

∂t vj = ∆h vj , in Zh × (0,∞),

vj(0) = uj , on Zh.

2.3. Random walk

Random walk is a process by which randomly moving objects wander away
from where they started. The simplest random walk is an one dimensional
simple random walk. Two or three dimensional random walks are commonly
found in nature. For example, when gas particles bounce around in a room,
changing direction every time they collide with another particle, it is random
walk that determines how long it will take them to travel from one location to
another. The particles in a drop of ink added to water will spread out partially
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due to a random walk [13]. For all random walks it holds that the total distance
traveled from where it started is approximately

√
N , where N is the number

of steps taken. This is called the universal scaling property [8]. Random walks
have various interesting mathematical properties that vary depending on the
dimension in which the walk occurs [5, 7, 13, 20].

Random walks generated by steps taken at regular intervals can be ge-
neralized by introducing a probability density function for pausing times be-
tween successive steps in the walk, i.e. the waiting time distribution [13].

2.3.1. Simple random walk

We recall briefly the concept of an one dimensional simple random walk [8, 13].
The walker starts at the zero on a number line. It can move one step, in each
moment of time, either forward or backward, with same probability. In this
case only the current location of the walker determines the random motion, the
past is not relevant. The position of the walk after N steps can be represented
as a sum of consecutive displacements ∆Xn, i.e.

(2.4) XN =

N∑
i=1

∆Xi,

where ∆Xi are independent identically distributed random variables with the
variance σ2. Each displacement has the same probability density function
p(∆x). In the case of symmetric single step, from the strong law of large num-
bers it follows that the average velocity vanishes, i.e. lim

N→∞
XN
N = E(∆X1) = 0,

where E is the expectation with respect to the measure P. Since the walker
makes large excursions both forward and backward, so that lim sup

N→∞
XN = +∞,

lim inf
N→∞

XN = −∞ P-a.s. a random walker visits the origin, and any other inte-

ger point on the line, infinitely often. Fluctuations of the random walk can be
characterized by the Central limit theorem. The distribution of XN is asymp-
totically normal with zero mean and variance σ2N . Clearly, the probability
density function fY (y,N) for the scaled position YN = XN√

N
= 1√

N

∑N
i=1 ∆Xi

is Gaussian and independent of N when N → ∞. Thus the universal scaling
relation for ordinary random walks XN ∼

√
N follows and the probability

density function fX(x,N) for the position XN is asymptotically Gaussian.

Example 2.6. Brownian motion is a process that could be obtain as a limit
of a simple random walk. Moreover, one dimensional Brownian motion can be
represented as a random Fourier series

Bt =

√
2

π

∞∑
n=0

sin (πt(n+ 1
2 ))

n+ 1
2

Zn,

for each t ≥ 0, where Zn, n ∈ N0 is a sequence of independent identically
distributed standardized Gaussian random variables [1].
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2.3.2. Lévy flights

Lévy flights are a class of non Gaussian random processes whose stationary
increments are distributed according to a Lévy stable distribution. The proba-
bility density functions of Lévy stable laws decay in asymptotic power law form
with diverging variance. Lévy flights are stochastic processes which satisfy the
Markov property, whose individual jumps have lengths that are distributed with
the probability density function decaying at large x as |x|−1−β with 0 ≤ β ≤ 2.
Due to the divergence of their variance, they can have extremely long jumps,
typical trajectories are self-similar. Similar to the emergence of the Gaussian
as limit distribution of independent identically distributed random variables
with finite variance due to the Central limit theorem, Lévy stable distributions
represent the limit distributions of independent identically distributed random
variables with diverging variance [13].

Lévy flights belong to a class of random walks for which the Central limit
theorem does not apply [13, 17]. They can be defined in a similar way as
simple random walks, by a sum of independent identically distributed random
increments (2.4). If the single step probability density functions have tails, i.e.
when the second moment of the single step is divergent

p(∆x) ∼ 1

∆x1+β
, 0 ≤ β ≤ 2,

one can apply the Lévy-Khinchin theorem. It is a generalization of the Central
limit theorem and it holds if the position of a Lévy flight is scaled by YN = XN

N
1
β

,

and the scaled variable has a probability density function independent of N
when N → ∞. The limiting density fY,β is refered as a stable Lévy law of
index β which is not Gaussian. Asymptotically, the limiting density has the
same power law behavior as the single step distribution fY,β ∼ 1

|y|1+β . Hence,

the position of a Lévy flight scales superdiffusively with step numberXN ∼ N
1
β .

(a) (b) (c)

Figure 1: Paths of a Brownian motion (a), a 2D Lévy flight (b) and a 3D Lévy
flight

Trajectories of a Lévy flight and a Brownian motion differ. For an illustra-
tion, in Figure 1 are ploted sample paths of a Brownian motion (a), of a Lévy
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flight of 1000 steps in two dimensions (b) and in three dimensions (c). Paths of
Brownian motion are continuous and almost nowhere differential. Each part of
the path is again a trajectory of a Brownian motion [14]. On the other hand,
Lévy flight is characterized by many small moves combined with a few longer
trajectories, i.e. longer rutes are taken on occasion. The characteristic size of
the Lévy flight is the size of the largest step and the flight is self- similar at
higher magnifications [13].

2.3.3. Continuous time random walks

Temporally continuous random walks can be constructed from time discrete
simple random walks by identifying the step number N with the time elapsed
t and associated time increment ∆t = t

N between successive steps. A gene-
ralization of this concept leads to the continuous time random walk [13]. Its
simple version is defined by two probability density functions, one for spa-
tial displacements g1(∆x) and one for random temporal increments g2(∆t).
Thus, continuous time random walk consists of pairwise random independent
events, spacial displacement ∆x and temporal increment ∆t and the probability
density functions

p(∆x,∆t) = g1(∆x) g2(∆t).

After N steps, the position of the walker is given by XN =
∑N
i=1 ∆xi and the

time elapsed is TN =
∑N
i=1 ∆ti. The probability density function f(x, t) of the

position Xt after time t is calculated in [17].
Particularly, the ordinary diffusion occurs when the variance of the spatial

steps and the expectation of the temporal increments exist. Then, the continu-
ous time random walks are equivalent to Brownian motion on large spatio-
temporal scales. When the spatial displacements are drawn from a power law
probability density function and the temporal increment have finite expecta-
tion, the continuous time random walk is equivalent to ordinary Lévy flights

with a superdiffusive scaling with time Xt ∼ t
1
β . When the ordinary spatial

steps are combined with a power law in the probability density function, the
time between successive spatial increments can be very long, effectively slowing
down the random walk. In this case one obtains the scaling relation Xt ∼ t

α
2 .

Since α < 1 these processes are subdiffusive and are refered to fractional Brow-
niam motion.

Random walks in random environments are studied in [5].

3. Crime modelling as an application

In this section as an application of Lévy proceses and Lévy flights we discuss
different models of criminal activity (residential burglaries where the targets
are stationary). In particular, we discuss models proposed in [6, 22]. The first
model, also called the UCLA model, describes the locomotion of criminal agents
by Brownian motion [22] and the second one is based on Lévy flights motion
[6]. The second model relies on the advantages of Lévy distributed excursion
lengths, which optimize the search compared to the Brownian search. The
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considered models may be also applied for modelling processes appearing in
nature such as the foraging behavior of bacteria and animals or the spreading
of diseases [7, 23].

Due to social, economic, geographic structure the criminal activity is not
distributed uniformly. The regions with elevated criminal activities are called
hotspots. Different spatial-temporal methods for crime analysis were studied in
details in [19, 28]. In [22] the authors proposed a discrete model of the formation
of hotspots of criminal activity based on a random walk biased toward the
attractive burglary sites, such that the criminals can move only to adjacent
cites in each time step. On the basis of the discrete system, a continuum model
is obtained as the limit of the discrete one. The continuous model is thus
based on biased Brownian motion and described by a system of coupled partial
differential equations (PDEs) for criminal density and the attractiveness field.
In [6] the authors assumed that criminals can make movements not only to the
neighborhood sites, but also can exhibit a long range of jumps. The model is
nonlocal and involves occasional long jumps spread with a local random walks,
i.e. in its continuous version it involves a Lévy flight motion. Criminals are able
to examine the potential robbery spots and have knowledge, beside their local
environment, also of far away surroundings. In this case the continuous model
is governed by PDEs involving a fractional Laplace operator, which allows the
superdiffusion of criminal density. Note that different mobility patterns are
due to different types of criminals [27].

Following [6, 22] we perform numerical simulations for different parameter
choices. This allows us to visualize several regimes of aggregation, like hotspots
of high criminal activity. In addition, we study the fist passage time. One of
the contributions of this paper is to generalize the one dimensional Lévy flight
model proposed in [6] to a two dimensional one allowing a detailed comparison
with the model based on Brownian motion.

Parameter Meaning

l grid spacing
∆t time step
ω attractiveness decay rate
η measurement of the neighborhood effects
θ increase of attractiveness due to one burglarisation
A0
s static attractiveness of site s

ns number of criminals at site s
Γ rate of burglars generation

Table 1: Parameters for the UCLA and Lévy flight models

3.1. UCLA model

We briefly describe the UCLA burglary hotspot model introduced in [22].
The model contains a two dimensional lattice with spacing l, where a house
is located at each grid point s and the burglars are imagined to walk on this
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lattice. Each house is assigned with an attractiveness As(t), which displays the
burglars thinking of the value of the house as a burglary target. The model is
based upon the assumption, that the attractiveness is not modeled by proper-
ties like value, security or location but rather with the broken windows effect
and near-repeated victimization, where the broken windows effect explains that
the inhibition threshold recedes due to previous burglaries. Therefore, the at-
tractiveness is divided into two parts, a static part A0

s and the dynamic part
Bs(t). Thus,

As(t) = A0
s +Bs(t).

The static parts A0
s measures values like e.g. location and accessibility, whereas

the dynamic part Bs(t) changes through interactions with the burglars.
In one time step a criminal agent can either decide to burglarize the house
where he is located or move on to an adjacent site. The probability for the
burglar to commit burglary in a time step of length ∆t is given by a standard
Poisson process

(3.1) ps(t) = 1− e−As(t)∆t,

where the expected value of events is As(t)∆t. It is assumed that a criminal
agent committed burglary, gets removed from the grid. Furthermore, burglars
are generated at each grid point with rate Γ. In the case that the burglar
does not burglarize, it moves to an adjacent site into direction of areas with
high attractiveness. The locomotion of the criminal agents follows a Brownian
motion. Hence, the transition probability to move from a site s to an adjacent
site n is given by

(3.2) qs,n(t) =
An(t)∑

s′∼s
As′(t)

,

with s′ ∼ s being all neighboring sites of s.
The dynamic part of the attractiveness Bs(t) depends on former burglaries

at site s. Thus, Bs(t) is increased every time the house is getting burglarized
by a value θ. For this increment affecting the attractiveness only for a finite
time period the dynamic part is modeled by

(3.3) Bs(t+ ∆t) = Bs(t)(1− ω∆t) + θEs(t),

where Es(t) is the number of burglaries, ∆t is the timescale and ω represents
the decay rate of the dynamic attractiveness field. For letting the attractiveness
spread over adjacent houses the dynamic part becomes

(3.4) Bs(t+ ∆t) =

[
(1− η)Bs(t) +

η

z

∑
s′∼s

Bs′(t)

]
(1− ω∆t) + θEs(t),

where z is the number of adjacent sites (four in two dimensions) and η ∈ [0, 1] is
a parameter to measure near repeated victimization, higher value of η leads to
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higher attractiveness generated by any burglary event, i.e. to more robberies.
Rewriting (3.4) using the discrete Laplacian operator (see Section 2.2),

∆Bs(t) =
1

l2
·

(∑
s′∼s

Bs′(t)− zBs(t),

)
with l being the grid spacing leads to

(3.5) Bs(t+ ∆t) =

[
Bs(t) +

ηl2

z
∆Bs(t)

]
(1− ω∆t) + θEs(t).

Further we consider the simplest version of the discrete system (3.5), i.e. we
will obtain an homogeneous equilibrium solution. We assume that all sites have
the same attractiveness Ā and same number of criminals n̄ on average. More
details are given in Section 4.

A continuous version of the discrete UCLA model is obtained as a limit of
the discrete one. It corresponds to the reaction diffusion model of the form

∂B

∂t
=
ηD

z
O2B − ωB + εDρA

∂ρ

∂t
=
D

z
~O ·
(
~Oρ− 2ρ

A
~OA

)
− ρA+ γ

(3.6)

where ρ = ns(t)
l2 , γ = Γ

l2 and fixed values D = l2

∆t and ε = θ∆t. In (3.6),
the first equation gives the dynamics of the attractiveness and the second one
the criminal activity. The attractiveness diffuses throughout the environment
and simultaneously decays in time and reacts with criminals to create more
attractiveness [22].

3.2. Crime models with Lévy flights

In [6] the authors presented an one dimensional approach for the locomotion
of the criminal agents and suggested a model involving Lévy flights. Allowing
the burglars to move via Lévy flights, the burglars can search more efficiently
for houses with high attractiveness by doing larger jumps. Thereby the distri-
bution of step lengths obeys a power law. In this paper, we expand the model
described in [6] to a two dimensional model. Moreover we compare the results
of simulations of two dimensional UCLA and Lévy flight models.

Each time step, every burglar in the system either choose to move from his
location to a new site or to commit a crime. Burglars are appearing randomly
with the probability (3.1). Let Es(t) denote the number of crimes at each site
s during the time interval (t, t+∆t) and Ns(t) the average number of criminals
at the site s in the time interval (t, t + ∆t). Then, the dynamic part of the
attractiveness is given by (3.3).

The relative weight of a criminal moving from a site s = (s1, s2) to a different
site s′ = (s′1, s

′
2) is given by

(3.7) ws,s′ =
As′

lµ‖s− s′‖µ
=

As′

lµ
√

(s1 − s′1)2 + (s2 − s′2)2
µ ,
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where µ is the exponent of the underlying power law for the Lévy flight and l
is the grid spacing. The transition probability qs,s′ for a burglar to move from
site s to a different site s′ is then

(3.8) qs,s′ =
ws,s′∑

r∈Z2,r 6=s
ws,r

.

As in the UCLA model, here is also assumed that during the time interval ∆t
the burglar either commits a crime or else moves on according to a biased flight.
New criminals appear with the rate Γ. The modelling of the attractiveness
follows the same way as in the UCLA model.

Since the criminals can appear at the site s by moving there from some site
ŝ, as is governed by qŝ,s, or by the birth with Γ∆t, it follows

Ns(t+ ∆t) =
∑

y∈Z, i 6=s
Ni (1−Ai∆t) · qi,s + Γ∆t.

The corresponding continuum version of the model is again reaction diffu-
sion system that involves in this case the fractional Laplace operator, i.e.

∂A

∂t
= ηAxx −A+ α+Aρ

∂ρ

∂t
= D ·

(
A(−∆)s (

ρ

A
)− ρ

A
(−∆)s (A)

)
−Aρ+ β,

(3.9)

for a suitable choice of the parameters η = l2η̂
2ω∆t , D = l2s

22s∆t

√
π|Γ(−s)|

zωΓ(2s+1) , α = A0

ω

and β = Γθ
ω2 . For more details on the derivation of the system (3.9) and its

stability properties we refer to [6].

In Algorithm 1 we sketch the UCLA and Lévy flight models.

Algorithm 1 UCLA and Lev́y flight model

t← 0 . Time
A = A0 +B . A = Field of attractiveness
while t <= tmax do

for all Burglars do . Criminal loop
if RandomNumber <= ProbabilityForBurglary then

Burglar commit burglary and gets removed from field
Save position of burglary

else
Compute probability of moving to adjacent sites
Move burglar to one site according to probability

Compute dynamic part of field of attractiveness B and set A← A0 +B
Place new burglars on the field with rate Γ
t← t+ ∆t
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As UCLA and Lévy flight models differ only in the way the burglar locomotion
is computed, we sketch these procedures in Algorithm 2 and Algorithm 3,
respectively.

Algorithm 2 Burglar locomotion for the UCLA model

for all Burglars do
Get position of a burglar
Compute probability to move to one of the four adjacent sites by
the formula (3.2)
Decide where burglar moves

Algorithm 3 Burglar locomotion for the Lévy flight model

for all Burglars do
Get position of a burglar
Compute the weights (3.7)
Compute the probability to move to one site on grid by using
the formula (3.8)
Decide where the burglar moves

3.3. High performance computing implementation

The numerical treatment of the UCLA and Lévy flight models is a chal-
lenging task, specially in the Lévy flight model. Note that although these
models differ only in the way the burglar locomotion is computed, the com-
putational cost of the Lévy flight model grows exponentially comparing to the
UCLA model, see Figure 2. There, we plot the computing time vs grid size
for different computing blocks for a given set of parameters. On the other
hand, although storage is in principle not a problem, a careful implementation
is required in both models. We point out that a Matlab implementation of the
UCLA model seems to provide accurate results even for simulations involving
real data, i.e. larger domains. Thus, in this case the use of high performance
computing (HPC) implementation techniques is not needed. The latter does
not apply to the Lévy flight model as it can be visualized in Figure 2.

Therefore, following Algorithm 3, we develop a HPC implementation based
on MEX functions, i.e. we use subroutines implemented on C that take ad-
vantage of the structure and the potential parallelization of the problem. Our
approach reduces the computing time in approximately one order. This can be
verified for all computing blocks: complete simulation (Full), the dynamic part
(Dynamic part), the criminal locomotion (Criminal loop), the burglary and
movement, see Figure 2. Note that by using our HPC implementation we are
able to simulate the Lévy flight model at essentially the same computational
cost of the ULCA model, this was verified for different set of parameters.
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Figure 2: Computing time vs grid size for different parameter choices in the
models.

4. Numerical simulations

We perform numerical simulations for different choices of the parameters
given in Table 1. In Subsection 4.2 we generalize the one dimensional Lévy flight
model proposed in [6] to a two dimensional one allowing a detailed comparison
with the UCLA model from Subsection 4.1. A comparison of the burglar loco-
motion is provided in Subsection 4.3. Finally, in Subsection 4.4 we present a
study of the first passage time.

All the experiments in this section were performed in Matlab. The value
tmax in Algorithm 1, represents the number of days that the simulation ran.
Double-precision floating-point arithmetic was employed in all cases. An effi-
cient implementation on C of the main routines was developed.

4.1. UCLA model

All simulations were performed with l = 1, ∆t = 1/100, ω = 1/15 and
A0 = 1/30. The variation of the parameters η, θ and Γ can be seen in each
figure description.

While in Figure 3 one can observe no hotspot forming, the other simulations
form hotspots in different ways. Figure 4 exhibit dynamic hotspots, whilst in
contrary Figure 5 leads to static hotspots. Finally, Figure 6 form spatially
static hotspots with more deformations over time.
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Figure 3: UCLA-η = 0.2, θ = 0.56,Γ = 0.019
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Figure 4: UCLA-η = 0.2, θ = 5.6,Γ = 0.002
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Figure 5: UCLA-η = 0.03, θ = 0.56,Γ = 0.019

4.2. Lévy flight model

The numerical simulations of the Lévy flight model were run with the same
parameters as for the UCLA models. We observe that for all the parameter
setting the systems exhibit less number of hotspots. The simulations of the one
dimensional model exhibit also only one or two hotspots, which is shown also
in [22]. This is due to the different types of burglar locomotion. In the Lévy
flight model, a criminal agent can make larger jumps and therefore all burglars
move to the area of highest attractiveness.
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Figure 6: UCLA-η = 0.03, θ = 5.6,Γ = 0.002
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Figure 7: Lévy flight-η = 0.2, θ = 0.56,Γ = 0.019
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Figure 8: Lévy flight-η = 0.2, θ = 5.6,Γ = 0.002
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Figure 9: Lévy flight-η = 0.03, θ = 0.56,Γ = 0.019
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Figure 10: Lévy flight-η = 0.03, θ = 5.6,Γ = 0.002

4.3. Comparison of burglar locomotion

In order to compare the locomotion in the two models, we displayed the
motion of two burglars for three different sets of parameters. One is moving
according to the UCLA model while the other is moving via the Lévy flight
model. The output of these simulations are presented in Figure 11, Figure 12
and Figure 13. We observe that for the burglar moving via the Lévy flight model
(blue) the areas with dense motion activity fits to the areas of the hotspots.
Furthermore the burglar moving via the UCLA model, i.e. via Brownian motion
(red) stays in the area of the same hotspot the whole time, for all parameter
choices.

4.4. First passage time

We have computed the first passage times as the mean value of the time
differences between the times where the burglars enter and where they leave
(cross the border) the system. Our main conclusion is that all first passage
times have essentially the same value, which verifies the theoretical results
from [12, 14, 26]. In Figure 14, we plot the field of attractiveness for different
times. Subfigures at time t = 10, t = 100 and t = 200 look very similar.
This it due to the fact that as soon as the time is long enough (in subfigures
t = 0 and t = 1 the dynamics has not evolved completely) the behavior of the
first passage time is the same. The high peaks, represent that the burglar is
approaching to the border.
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Figure 11: Comparison of burglar locomotion-η = 0.1, θ = 8, Γ = 0.004
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Figure 12: Comparison of burglar locomotion-η = 0.1, θ = 10, Γ = 0.0005
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Figure 13: Comparison of burglar locomotion-η = 0.03, θ = 0.56, Γ = 0.019
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Figure 14: Field of attractiveness for different number of days.

5. Conclusion

In this paper, we studied random walks, subordinated Lévy processes and
Lévy flights. We considered models based on Brownian motion and Lévy flights.
Following [6, 22] we performed numerical simulations of the models with dif-
ferent parameter choices. This allowed us to visualize several regimes of aggre-
gation, like hotspots of high criminal activity. In addition, we studied the first
passage time and we generalize the one dimensional Lévy flight model proposed
in [6] to a two dimensional one. We provided an efficient implementation of the
models, which allowed us to compare the models. The model based on Brown-
ian motion is suitable for small environments where only few hotspots arise. In
the presence of many hotspots, the model based on Lévy flight motion is more
appropriate. In addition, we proposed an efficient implementation of the Lévy
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model by using high performance computing techniques. This allowed us to
perform numerical simulations with the Lévy model at the computational cost
of the Brownian motion based model, making feasible for real life applications.

Acknowledgement

The paper was supported by the project Numerical methods in Simula-
tion and Optimal Control through the program Nachwuchsförderung 2014 at
University of Innsbruck.

References
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