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SCREEN PSEUDO-SLANT LIGHTLIKE
SUBMANIFOLDS OF INDEFINITE KAEHLER

MANIFOLDS

S.S. Shukla1 and Akhilesh Yadav2

Abstract. In this paper we introduce the notion of screen pseudo-slant
lightlike submanifolds of indefinite Kaehler manifolds giving characte-
rization theorem with some non-trivial examples of such submanifolds.
Integrability conditions of distributions D1, D2 and RadTM on screen
pseudo-slant lightlike submanifolds of an indefinite Kaehler manifold have
been obtained. Further, we obtain necessary and sufficient conditions for
foliations determined by above distributions to be totally geodesic.
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1. Introduction

The theory of lightlike submanifolds of a semi-Riemannian manifold was intro-
duced by Duggal and Bejancu [3]. In [2], B.Y. Chen defined slant immersions in
complex geometry as a natural generalization of both holomorphic immersions
and totally real immersions. In [5], A. Lotta introduced the concept of slant
immersion of a Riemannian manifold into an almost contact metric manifold.
A. Carriazo defined and studied bi-slant submanifolds of almost Hermitian and
almost contact metric manifolds and further gave the notion of pseudo-slant
submanifolds [1]. On other hand, the theory of invariant, screen slant, screen
real, screen Cauchy-Riemann lightlike submanifolds have been studied in [4].
Thus motivated sufficiently, we introduce the notion of screen pseudo-slant
lightlike submanifolds of indefinite Kaehler manifolds. This new class of light-
like submanifolds of an indefinite Kaehler manifold includes invariant, screen
slant, screen real, screen Cauchy-Riemann lightlike submanifolds as its sub-
cases. The paper is arranged as follows. There are some basic results in section
2. In section 3, we study screen pseudo-slant lightlike submanifolds of an in-
definite Kaehler manifold, giving some examples. Section 4 is devoted to the
study of foliations determined by distributions on screen pseudo-slant lightlike
submanifolds of indefinite Kaehler manifolds.
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2. Preliminaries

A submanifold (Mm, g) immersed in a semi-Riemannian manifold (M
m+n

, g)
is called a lightlike submanifold [3] if the metric g induced from g is degenerate
and the radical distribution RadTM is of rank r, where 1 ≤ r ≤ m. Let
S(TM) be a screen distribution which is a semi-Riemannian complementary
distribution of RadTM in TM, that is

(2.1) TM = RadTM ⊕orth S(TM).

Now consider a screen transversal vector bundle S(TM⊥), which is a semi-
Riemannian complementary vector bundle of RadTM in TM⊥. Since for
any local basis {ξi} of RadTM , there exists a local null frame {Ni} of sec-
tions with values in the orthogonal complement of S(TM⊥) in [S(TM)]⊥ such
that g(ξi, Nj) = δij and g(Ni, Nj) = 0, it follows that there exists a lightlike
transversal vector bundle ltr(TM) locally spanned by {Ni}. Let tr(TM) be
complementary (but not orthogonal) vector bundle to TM in TM |M . Then

(2.2) tr(TM) = ltr(TM)⊕orth S(TM⊥),

(2.3) TM |M = TM ⊕ tr(TM),

(2.4) TM |M = S(TM)⊕orth [RadTM ⊕ ltr(TM)]⊕orth S(TM⊥).

Following are four cases of a lightlike submanifold
(
M, g, S(TM), S(TM⊥)

)
:

Case.1 r-lightlike if r < min (m,n),
Case.2 co-isotropic if r = n < m, S

(
TM⊥) = {0},

Case.3 isotropic if r = m < n, S (TM) = {0},
Case.4 totally lightlike if r = m = n, S(TM) = S(TM⊥) = {0}.
The Gauss and Weingarten formulae are given as

(2.5) ∇XY = ∇XY + h(X,Y ),

(2.6) ∇XV = −AV X +∇t
XV,

for allX,Y ∈ Γ(TM) and V ∈ Γ(tr(TM)), where∇XY,AV X belong to Γ(TM)
and h(X,Y ),∇t

XV belong to Γ(tr(TM)). ∇ and ∇t are linear connections on
M and on the vector bundle tr(TM), respectively. The second fundamental
form h is a symmetric F (M)-bilinear form on Γ(TM) with values in Γ(tr(TM))
and the shape operator AV is a linear endomorphism of Γ(TM). From (2.5)
and (2.6), for any X,Y ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)), we
have

(2.7) ∇XY = ∇XY + hl (X,Y ) + hs (X,Y ) ,

(2.8) ∇XN = −ANX +∇l
XN +Ds (X,N) ,
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(2.9) ∇XW = −AWX +∇s
XW +Dl (X,W ) ,

where hl(X,Y ) = L (h(X,Y )), hs(X,Y ) = S (h(X,Y )),Dl(X,W ) = L(∇t
XW ),

Ds(X,N) = S(∇t
XN). L and S are the projection morphisms of tr(TM) on

ltr(TM) and S(TM⊥), respectively. ∇l and ∇s are linear connections on
ltr(TM) and S(TM⊥) called the lightlike connection and screen transversal
connection on M , respectively.
Now by using (2.5), (2.7)-(2.9) and metric connection ∇, we obtain

(2.10) g(hs(X,Y ),W ) + g(Y,Dl(X,W )) = g(AWX,Y ),

(2.11) g(Ds(X,N),W ) = g(N,AWX).

Denote the projection of TM on S(TM) by P . Then from the decomposition
of the tangent bundle of a lightlike submanifold, for any X,Y ∈ Γ(TM) and
ξ ∈ Γ(RadTM), we have

(2.12) ∇XPY = ∇∗
XPY + h∗(X,PY ),

(2.13) ∇Xξ = −A∗
ξX +∇∗t

Xξ,

By using above equations, we obtain

(2.14) g(hl(X,PY ), ξ) = g(A∗
ξX,PY ),

(2.15) g(h∗(X,PY ), N) = g(ANX,PY ),

(2.16) g(hl(X, ξ), ξ) = 0, A∗
ξξ = 0.

It is important to note that in general ∇ is not a metric connection. Since ∇
is a metric connection, by using (2.7), we get

(2.17) (∇Xg)(Y,Z) = g(hl(X,Y ), Z) + g(hl(X,Z), Y ).

An indefinite almost Hermitian manifold (M, g, J) is a 2m-dimensional semi-
Riemannian manifold M with semi-Riemannian metric g of constant index q,
0 < q < 2m and a (1, 1) tensor field J on M such that following conditions are
satisfied:

(2.18) J
2
X = −X,

(2.19) g(JX, JY ) = g(X,Y ),

for all X,Y ∈ Γ(TM).
An indefinite almost Hermitian manifold (M, g, J) is called an indefinite Kaehler
manifold if J is parallel with respect to ∇, i.e.,

(2.20) (∇XJ)Y = 0,

for all X,Y ∈ Γ(TM), where ∇ is Levi-Civita connection with respect to g.
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3. Screen Pseudo-Slant Lightlike Submanifolds

In this section, we introduce the notion of screen pseudo-slant lightlike subman-
ifolds of indefinite Kaehler manifolds. At first, we state the following Lemma
for later use:

Lemma 3.1. Let M be a 2q-lightlike submanifold of an indefinite Kaehler
manifold M of index 2q such that 2q < dim(M). Then the screen distribution
S(TM) of lightlike submanifold M is Riemannian.

The proof of above Lemma follows as in Lemma 3.1 of [6], so we omit it.

Definition 1. Let M be a 2q-lightlike submanifold of an indefinite Kaehler
manifold M of index 2q such that 2q < dim(M). Then we say that M is a
screen pseudo-slant lightlike submanifold of M if the following conditions are
satisfied:
(i) RadTM is invariant with respect to J , i.e. J(RadTM) = RadTM ,
(ii) there exists non-degenerate orthogonal distributions D1 and D2 on M such
that S(TM) = D1 ⊕orth D2,
(iii) the distribution D1 is anti-invariant, i.e. JD1 ⊂ S(TM⊥),
(iv) the distribution D2 is slant with angle θ( ̸= π/2), i.e. for each x ∈ M
and each non-zero vector X ∈ (D2)x, the angle θ between JX and the vector
subspace (D2)x is a constant(̸= π/2), which is independent of the choice of
x ∈ M and X ∈ (D2)x.
This constant angle θ is called the slant angle of distribution D2. A screen
pseudo-slant lightlike submanifold is said to be proper if D1 ̸= {0}, D2 ̸= {0}
and θ ̸= 0.

From the above definition, we have the following decomposition

(3.1) TM = RadTM ⊕orth D1 ⊕orth D2.

In particular, we have
(i) if D1 = 0, then M is a screen slant lightlike submanifold,
(ii) if D2 = 0, then M is a screen real lightlike submanifold,
(iii) if D1 = 0 and θ = 0, then M is an invariant lightlike submanifold,
(iv) if D1 ̸= 0 and θ = 0, then M is a screen CR-lightlike submanifold.
Thus the above new class of lightlike submanifolds of an indefinite Kaehler
manifold includes invariant, screen slant, screen real, screen Cauchy-Riemann
lightlike submanifolds as its sub-cases which have been studied in [4].
Let (R2m

2q , g, J) denote the manifold R2m
2q with its usual Kaehler structure given

by
g = 1

4 (−
∑q

i=1 dx
i ⊗ dxi + dyi ⊗ dyi +

∑m
i=q+1 dx

i ⊗ dxi + dyi ⊗ dyi),

J(
∑m

i=1(Xi∂xi + Yi∂yi)) =
∑m

i=1(Yi∂xi −Xi∂yi),
where (xi, yi) are the cartesian coordinates on R2m

2q . Now, we construct some
examples of screen pseudo-slant lightlike submanifolds of an indefinite Kaehler
manifold.
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Example 1. Let (R12
2 , g, J) be an indefinite Kaehler manifold, where g is

of signature (−,+,+,+,+,+,−,+,+,+,+,+) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6}.
Suppose M is a submanifold of R12

2 given by x1 = y2 = u1, x
2 = −y1 = u2,

x3 = u3 cosβ, y3 = u3 sinβ, x4 = u4 sinβ, y4 = u4 cosβ, x5 = u5 cos θ,
y5 = u6 cos θ, x

6 = u6 sin θ, y
6 = u5 sin θ.

The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6}, where
Z1 = 2(∂x1 + ∂y2), Z2 = 2(∂x2 − ∂y1),

Z3 = 2(cosβ∂x3 + sinβ∂y3), Z4 = 2(sinβ∂x4 + cosβ∂y4),

Z5 = 2(cos θ∂x5 + sin θ∂y6), Z6 = 2(sin θ∂x6 + cos θ∂y5).

Hence RadTM = span {Z1, Z2} and S(TM) = span {Z3, Z4, Z5, Z6}.
Now ltr(TM) is spanned by N1 = −∂x1+∂y2, N2 = −∂x2−∂y1. S(TM

⊥)
is spanned by

W1 = 2(sinβ∂x3 − cosβ∂y3), W2 = 2(cosβ∂x4 − sinβ∂y4),

W3 = 2(sin θ∂x5 − cos θ∂y6), W4 = 2(cos θ∂x6 − sin θ∂y5).

It follows that JZ1 = Z2 and JZ2 = −Z1, which implies that RadTM is
invariant, i.e. JRadTM = RadTM . On the other hand, we can see that D1 =
span {Z3, Z4} such that JZ3 = W1 and JZ4 = W2, which implies that D1 is
anti-invariant with respect to J and D2 = span {Z5, Z6} is a slant distribution
with slant angle 2θ. Hence M is a screen pseudo-slant 2-lightlike submanifold
of R12

2 .

Example 2. Let (R12
2 , g, J) be an indefinite Kaehler manifold, where g is

of signature (−,+,+,+,+,+,−,+,+,+,+,+) with respect to the canonical
basis {∂x1, ∂x2, ∂x3, ∂x4, ∂x5, ∂x6, ∂y1, ∂y2, ∂y3, ∂y4, ∂y5, ∂y6}.
Suppose M is a submanifold of R12

2 given by x1 = u1, y1 = −u2, x2 =
−u1 cosα − u2 sinα, y

2 = −u1 sinα + u2 cosα, x
3 = y4 = u3, x

4 = y3 = u4,
x5 = u5 cosu6, y

5 = u5 sinu6, x
6 = cosu5, y

6 = sinu5.

The local frame of TM is given by {Z1, Z2, Z3, Z4, Z5, Z6}, where
Z1 = 2(∂x1 − cosα∂x2 − sinα∂y2),

Z2 = 2(−∂y1 − sinα∂x2 + cosα∂y2),

Z3 = 2(∂x3 + ∂y4), Z4 = 2(∂x4 + ∂y3),

Z5 = 2(cosu6∂x5 + sinu6∂y5 − sinu5∂x6 + cosu5∂y6),

Z6 = 2(−u5 sinu6∂x5 + u5 cosu6∂y5).

Hence RadTM = span {Z1, Z2} and S(TM) = span {Z3, Z4, Z5, Z6}.
Now ltr(TM) is spanned by N1 = −∂x1 − cosα∂x2 − sinα∂y2, N2 = ∂y1 −
sinα∂x2 + cosα∂y2. S(TM

⊥) is spanned by

W1 = 2(∂x3 − ∂y4), W2 = 2(∂x4 − ∂y3),

W3 = 2(cosu6∂x5 + sinu6∂y5 + sinu5∂x6 − cosu5∂y6),

W4 = 2(u5 cosu5∂x6 + u5 sinu5∂y6).

It follows that JZ1 = Z2 and JZ2 = −Z1, which implies that RadTM is
invariant, i.e. JRadTM = RadTM . On the other hand, we can see that D1 =
span {Z3, Z4} such that JZ3 = W2 and JZ4 = W1, which implies that D1 is
anti-invariant with respect to J and D2 = span {Z5, Z6} is a slant distribution
with slant angle π/4. Hence M is a screen pseudo-slant 2-lightlike submanifold
of R12

2 .



152 S.S. Shukla and Akhilesh Yadav

Now, for any vector field X tangent to M , we put JX = PX+FX, where PX
and FX are tangential and transversal parts of JX, respectively. We denote the
projections on RadTM , D1 and D2 in TM by P1, P2 and P3, respectively. Si-
milarly, we denote the projections of tr(TM) on ltr(TM), J(D1) and D′ by Q1,
Q2 andQ3, respectively, whereD

′ is non-degenerate orthogonal complementary
subbundle of J(D1) in S(TM⊥). Then, for any X ∈ Γ(TM), we get

(3.2) X = P1X + P2X + P3X.

Now applying J to (3.2), we have

(3.3) JX = JP1X + JP2X + JP3X,

which gives

(3.4) JX = JP1X + JP2X + fP3X + FP3X,

where fP3X (resp. FP3X) denotes the tangential (resp. transversal) com-
ponent of JP3X. Thus we get JP1X ∈ Γ(RadTM), JP2X ∈ Γ(J(D1)) ⊂
Γ(S(TM⊥)), fP3X ∈ Γ(D2) and FP3X ∈ Γ(D′). Also, for anyW ∈ Γ(tr(TM)),
we have

(3.5) W = Q1W +Q2W +Q3W.

Applying J to (3.5), we obtain

(3.6) JW = JQ1W + JQ2W + JQ3W,

which gives

(3.7) JW = JQ1W + JQ2W +BQ3W + CQ3W,

where BQ3W (resp. CQ3W ) denotes the tangential (resp. transversal) com-
ponent of JQ3W . Thus we get JQ1W ∈ Γ(ltr(TM)), JQ2W ∈ Γ(D1),
BQ3W ∈ Γ(D2) and CQ3W ∈ Γ(D′).
Now, by using (2.20), (3.4), (3.7) and (2.7)-(2.9) and identifying the compo-
nents on RadTM , D1, D2, ltr(TM), J(D1) and D′, we obtain

∇∗t
XJP1Y + P1(∇XfP3Y ) =P1(AFP3Y X) + P1(AJP2Y

X)

+ JP1∇XY,
(3.8)

P2(A
∗
JP1Y

X) + P2(AJP2Y
X) + P2(AFP3Y X) = P2(∇XfP3Y )

− JQ2h
s(X,Y ),

(3.9)

P3(A
∗
JP1Y

X)+P3(AJP2Y
X) + P3(AFP3Y X) = P3(∇XfP3Y )

− fP3(∇XY )−BQ3h
s(X,Y ),

(3.10)

hl(X, JP1Y ) +Dl(X, JP2Y ) + hl(X, fP3Y ) +Dl(X,FP3Y )

= Jhl(X,Y ),
(3.11)



Screen pseudo-slant lightlike submanifolds of indefinite Kaehler manifolds 153

Q2∇s
XJP2Y +Q2∇s

XFP3Y = JP2∇XY −Q2h
s(X, JP1Y )

−Q2h
s(X, fP3Y ),

(3.12)

Q3∇s
XJP2Y+Q3∇s

XFP3Y − FP3∇XY = CQ3h
s(X,Y )

−Q3h
s(X, fP3Y )−Q3h

s(X, JP1Y ).
(3.13)

Theorem 3.2. Let M be a 2q-lightlike submanifold of an indefinite Kaehler
manifold M . Then M is a screen pseudo-slant lightlike submanifold of M if
and only if

(i) ltr(TM) is invariant and D1 is anti-invariant with respect to J ,
(ii) there exists a constant λ ∈ (0, 1] such that P 2X = −λX.

Moreover, there also exists a constant µ ∈ [0, 1) such that BFX = −µX, for
all X ∈ Γ(D2), where D1 and D2 are non-degenerate orthogonal distributions
on M such that S(TM) = D1 ⊕orth D2 and λ = cos2 θ, θ is slant angle of D2.

Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then D1 is anti-invariant and RadTM is invariant with
respect to J . For any N ∈ Γ(ltr(TM)) and X ∈ Γ(S(TM)), using (2.19) and
(3.4), we obtain g(JN,X) = −g(N, JX) = −g(N, JP2X + fP3X + FP3X) =
0. Thus JN does not belong to Γ(S(TM)). For any N ∈ Γ(ltr(TM)) and
W ∈ Γ(S(TM⊥)), from (2.19) and (3.7), we have g(JN,W ) = −g(N, JW ) =
−g(N, JQ2W +BQ3W + CQ3W ) = 0. Hence, we conclude that JN does not
belong to Γ(S(TM⊥)).

Now suppose that JN ∈ Γ(RadTM). Then J(JN) = J
2
N = −N ∈ Γ(ltrTM),

which contradicts that RadTM is invariant. Thus ltr(TM) is invariant with
respect to J . Now for anyX ∈ Γ(D2) we have |PX| = |JX| cos θ, which implies

(3.14) cos θ =
|PX|
|JX|

.

In view of (3.14), we get cos2 θ =
|PX|2

|JX|2
=

g(PX,PX)

g(JX, JX)
=

g(X,P 2X)

g(X, J
2
X)

, which

gives

(3.15) g(X,P 2X) = cos2 θ g(X, J
2
X).

Since M is a screen pseudo-slant lightlike submanifold, cos2 θ = λ(constant) ∈
(0, 1] and therefore from (3.15), we get g(X,P 2X) = λg(X, J

2
X) = g(X,λJ

2
X),

which implies

(3.16) g(X, (P 2 − λJ
2
)X) = 0.

Since (P 2 − λJ
2
)X ∈ Γ(D2) and the induced metric g = g|D2×D2 is non-

degenerate (positive definite), from (3.16), we have (P 2 − λJ
2
)X = 0, which

implies

(3.17) P 2X = λJ
2
X = −λX.
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Now, for any vector field X ∈ Γ(D2), we have

(3.18) JX = PX + FX,

where PX and FX are tangential and transversal parts of JX, respectively.
Applying J to (3.18) and taking tangential component, we get

(3.19) −X = P 2X +BFX.

From (3.17) and (3.19), we get

(3.20) BFX = −µX, ∀X ∈ Γ(D2),

where 1− λ = µ(constant) ∈ [0, 1). This proves (ii).
Conversely suppose that conditions (i) and (ii) are satisfied. We can show that
RadTM is invariant in similar way that ltr(TM) is invariant. From (3.19), for
any X ∈ Γ(D2), we get

(3.21) −X = P 2X − µX,

which implies

(3.22) P 2X = −λX,

where 1− µ = λ(constant) ∈ (0, 1].

Now cos θ = g(JX,PX)

|JX||PX| = − g(X,JPX)

|JX||PX| = − g(X,P 2X)

|JX||PX| = −λ g(X,J
2
X)

|JX||PX| = λ g(JX,JX)

|JX||PX| .

From above equation, we get

(3.23) cos θ = λ
|JX|
|PX|

.

Therefore (3.14) and (3.23) give cos2 θ = λ(constant).
Hence M is a screen pseudo-slant lightlike submanifold.

Corollary 3.1. Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M with slant angle θ, then for any X,Y ∈ Γ(D2),
we have

(i) g(PX,PY ) = cos2 θ g(X,Y ),
(ii) g(FX,FY ) = sin2 θ g(X,Y ).

The proof of above Corollary follows by using similar steps as in proof of Corol-
lary 3.2 of [6].

Theorem 3.3. Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M . Then RadTM is integrable if and only if

(i) Q2h
s(Y, JP1X) = Q2h

s(X, JP1Y ),
(ii) Q3h

s(Y, JP1X) = Q3h
s(X, JP1Y ),

(iii) P3A
∗
JP1X

Y = P3A
∗
JP1Y

X, for all X,Y ∈ Γ(RadTM).
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Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefini-
te Kaehler manifold M . Let X,Y ∈ Γ(RadTM). From (3.12), we have
Q2h

s(X, JP1Y ) = JP2∇XY , which gives Q2h
s(X, JP1Y )−Q2h

s(Y, JP1X) =
JP2[X,Y ]. In view of (3.13), we getQ3h

s(X, JP1Y ) = CQ3h
s(X,Y )+FP3∇XY ,

which implies Q3h
s(X, JP1Y ) − Q3h

s(Y, JP1X) = FP3[X,Y ]. Also from
(3.10), we have P3A

∗
JP1Y

X = fP3∇XY+BQ3h
s(X,Y ), which gives P3A

∗
JP1Y

X−
P3A

∗
JP1X

Y = fP3[X,Y ]. Thus, we obtain the required results.

Theorem 3.4. Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M . Then D1 is integrable if and only if

(i) P1AJP2X
Y = P1AJP2Y

X and P3AJP2X
Y = P3AJP2Y

X,

(ii) Q3(∇s
Y JP2X) = Q3(∇s

XJP2Y ), for all X,Y ∈ Γ(D1).

Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Let X,Y ∈ Γ(D1). From (3.8), we have P1AJP2Y

X =

−JP1∇XY , which gives P1AJP2X
Y − P1AJP2Y

X = JP1[X,Y ]. In view of
(3.10), we obtain P3AJP2Y

X + BQ3h
s(X,Y ) = −fP3∇XY , which implies

P3AJP2X
Y−P3AJP2Y

X = fP3[X,Y ]. Also from (3.13), we getQ3(∇s
XJP2Y )+

CQ3h
s(X,Y ) = −FP3∇XY , which gives Q3(∇s

Y JP2X) − Q3(∇s
XJP2Y ) =

FP3[X,Y ]. This proves the theorem.

Theorem 3.5. Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M . Then D2 is integrable if and only if

(i) P1(∇XfP3Y −∇Y fP3X) = P1(AFP3Y X −AFP3XY ),
(ii) Q2(∇s

XFP3Y −∇s
Y FP3X) = Q2(h

s(Y, fP3X)− hs(X, fP3Y )),
for all X,Y ∈ Γ(D2).

Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Let X,Y ∈ Γ(D2). In view of (3.8), we get P1(∇XfP3Y )
= P1(AFP3Y X)+JP1∇XY , thus P1(∇XfP3Y )−P1(∇Y fP3X)−P1(AFP3Y X)+
P1(AFP3XY ) = JP1[X,Y ]. From (3.12), we get Q2∇s

XFP3Y +Q2h
s(X, fP3Y )

= JP2∇XY , which implies Q2∇s
XFP3Y − Q2∇s

Y FP3X + Q2h
s(X, fP3Y ) −

Q2h
s(Y, fP3X) = JP2[X,Y ]. This concludes the theorem.

Theorem 3.6. Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M . Then the induced connection ∇ is a metric
connection if and only if

(i) JQ2h
s(X,Y ) = 0 and BQ3h

s(X,Y ) = 0,
(ii) A∗

Y vanishes on Γ(TM), for all X ∈ Γ(TM) and Y ∈ Γ(RadTM).

Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then the induced connection ∇ on M is a metric con-
nection if and only if RadTM is a parallel distribution with respect to ∇ [6].
From (2.7), (2.13) and (2.20), for any X ∈ Γ(TM) and Y ∈ Γ(RadTM), we
have ∇XJY = J∇∗t

XY − JA∗
Y X + Jhl(X,Y ) + JQ2h

s(X,Y ) + JQ3h
s(X,Y ).

On comparing tangential components of both sides of the above equation, we
get ∇XJY = J∇∗t

XY −JA∗
Y X+JQ2h

s(X,Y )+BQ3h
s(X,Y ), which completes

the proof.
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4. Foliations Determined by Distributions

In this section, we obtain necessary and sufficient conditions for foliations de-
termined by distributions on a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold to be totally geodesic.

Definition 2. A screen pseudo-slant lightlike submanifold M of an indefinite
Kaehler manifold M is said to be a mixed geodesic screen pseudo-slant lightlike
submanifold if its second fundamental form h satisfies h(X,Y ) = 0, for all
X ∈ Γ(D1) and Y ∈ Γ(D2). Thus M is mixed geodesic screen pseudo-slant
lightlike submanifold if hl(X,Y ) = 0 and hs(X,Y ) = 0, for all X ∈ Γ(D1) and
Y ∈ Γ(D2).

Theorem 4.1. Let M be a screen pseudo-slant lightlike submanifold of an in-
definite Kaehler manifold M . Then RadTM defines a totally geodesic foliation
if and only if g(Dl(X,P2Z) +Dl(X,FP3Z), JY ) = −g(hl(X, fP3Z), JY ), for
all X,Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)).

Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . To prove the distribution RadTM defines a totally
geodesic foliation, it is sufficient to show that ∇XY ∈ Γ(RadTM), for all
X,Y ∈ Γ(RadTM). Since ∇ is a metric connection, using (2.7), (2.19),
(2.20) and (3.4), for any X,Y ∈ Γ(RadTM) and Z ∈ Γ(S(TM)), we get
g(∇XY, Z) = −g(∇X(JP2Z + fP3Z + FP3Z), JY ), which gives g(∇XY, Z) =
−g(Dl(X, JP2Z)+hl(X, fP3Z)+Dl(X,FP3Z), JY ). This completes the proof.

Theorem 4.2. Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M . Then D1 defines a totally geodesic foliation if
and only if

(i) g(hs(X, fZ), JY ) = −g(∇s
XFZ, JY ),

(ii) Ds(X, JN) has no component in J(D1),
for all X,Y ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)).

Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . It is easy to see that the distribution D1 defines a totally
geodesic foliation if and only if ∇XY ∈ Γ(D1), for all X,Y ∈ Γ(D1). Since ∇ is
a metric connection, using (2.7), (2.19) and (2.20), for any X,Y ∈ Γ(D1) and
Z ∈ Γ(D2), we obtain g(∇XY, Z) = −g(∇XJZ, JY ), which gives g(∇XY, Z) =
g(hs(X, fZ) +∇s

XFZ, JY ). Now, from (2.7), (2.19) and (2.20), for all X,Y ∈
Γ(D1) and N ∈ Γ(ltr(TM)), we get g(∇XY,N) = −g(JY,∇XJN), which
implies g(∇XY,N) = −g(JY,Ds(X, JN)). Thus, the theorem is completed.

Theorem 4.3. Let M be a screen pseudo-slant lightlike submanifold of an
indefinite Kaehler manifold M . Then D2 defines a totally geodesic foliation if
and only if

(i) g(fY,AJZX) = g(FY,∇s
XJZ),

(ii) g(fY,AJNX) = g(FY,Ds(X, JN)),
for all X,Y ∈ Γ(D2), Z ∈ Γ(D1) and N ∈ Γ(ltr(TM)).
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Proof. Let M be a screen pseudo-slant lightlike submanifold of an indefinite
Kaehler manifold M . Then the distribution D2 defines a totally geodesic fo-
liation if and only if ∇XY ∈ Γ(D2), for all X,Y ∈ Γ(D2). Since ∇ is a
metric connection, using (2.7), (2.19) and (2.20), for any X,Y ∈ Γ(D2) and
Z ∈ Γ(D1), we get g(∇XY, Z) = −g(JY,∇XJZ), which gives g(∇XY, Z) =
g(fY,AJZX) − g(FY,∇s

XJZ). In view of (2.7), (2.19) and (2.20), for any
X,Y ∈ Γ(D2) and N ∈ Γ(ltr(TM)), we obtain g(∇XY,N) = −g(JY,∇XJN),
which implies g(∇XY,N) = g(fY,AJNX)− g(FY,Ds(X, JN)). Thus, we ob-
tain the required results.

Theorem 4.4. Let M be a mixed geodesic screen pseudo-slant lightlike subma-
nifold of an indefinite Kaehler manifold M . Then D1 defines a totally geodesic
foliation if and only if ∇s

XFZ and Ds(X, JN) have no components in J(D1),
for all X ∈ Γ(D1), Z ∈ Γ(D2) and N ∈ Γ(ltr(TM)).

Proof. Let M be a mixed geodesic screen pseudo-slant lightlike submanifold of
an indefinite Kaehler manifold M . Then the distribution D1 defines a totally
geodesic foliation if and only if ∇XY ∈ Γ(D1), for all X,Y ∈ Γ(D1). Since ∇ is
a metric connection, using (2.7), (2.19) and (2.20), for any X,Y ∈ Γ(D1) and
Z ∈ Γ(D2), we get g(∇XY, Z) = −g(JY,∇XJZ), which gives g(∇XY, Z) =
−g(∇s

XFZ + hs(X, fZ), JY ). Now, from (2.7), (2.19) and (2.20), for any
X,Y ∈ Γ(D1) and N ∈ Γ(ltr(TM)), we obtain g(∇XY,N) = −g(JY,∇XJN),
which implies g(∇XY,N) = −g(JY,Ds(X, JN)). This concludes the theorem.

Theorem 4.5. Let M be a mixed geodesic screen pseudo-slant lightlike sub-
manifold of an indefinite Kaehler manifold M . Then the induced connection ∇
on S(TM) is a metric connection if and only if

(i) g(fW,A∗
Jξ
Z) = g(FW,hs(Z, Jξ)),

(ii) hs(X, Jξ) has no component in J(D1),
for all X ∈ Γ(D1), Z,W ∈ Γ(D2) and ξ ∈ Γ(RadTM).

Proof. Let M be a mixed geodesic screen pseudo-slant lightlike submanifold of
an indefinite Kaehler manifold M . Then hl(X,Z) = 0, for all X ∈ Γ(D1)
and Z ∈ Γ(D2). Since ∇ is a metric connection, using (2.7), (2.19) and
(2.20), for any X,Y ∈ Γ(D1) and ξ ∈ Γ(RadTM), we obtain g(hl(X,Y ), ξ) =
−g(JY,∇XJξ), which implies g(hl(X,Y ), ξ) = −g(JY, hs(X, Jξ)). In view
of (2.7), (2.19) and (2.20), for any Z,W ∈ Γ(D2) and ξ ∈ Γ(RadTM), we
get g(hl(Z,W ), ξ) = −g(fW,∇ZJξ)−g(FW,hs(Z, Jξ)), thus g(hl(Z,W ), ξ) =
g(fW,A∗

Jξ
Z)− g(FW,hs(Z, Jξ)). This completes the proof.
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