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ON K-CONTACT EINSTEIN MANIFOLDS

U.C. De1 and Krishanu Mandal2

Abstract. The object of the present paper is to characterize K-contact
Einstein manifolds satisfying the curvature condition R · C = Q(S,C),
where C is the conformal curvature tensor and R the Riemannian curva-
ture tensor. Next we study K-contact Einstein manifolds satisfying the
curvature conditions C ·S = 0 and S ·C = 0, where S is the Ricci tensor.
Finally, we consider K-contact Einstein manifolds satisfying the curva-
ture condition Z · C = 0, where Z is the concircular curvature tensor.
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1. Introduction

An emerging branch of modern mathematics is the geometry of contact
manifolds. The notion of contact geometry has evolved from the mathematical
formalism of classical mechanics [8]. Two important classes of contact mani-
folds are K-contact manifolds and Sasakian manifolds ([1], [14]). K-contact
and Sasakian manifolds have been studied by several authors such as De and
Biswas [5], De and De [6], Tarafdar and De [17], Tanno [16], Yildiz et al [21],
Prasad et al [13] and many others. It is clear that every Sasakian manifold
is a K-contact manifold but the converse is not always true, as it is shown in
the three dimensional case [10]. Also a compact K-contact Einstein manifold
is Sasakian [3].

The nature of a manifold mostly depends on its curvature tensor. Using the
tools of conformal transformation geometers have deduced conformal curvature
tensor. Apart from conformal curvature tensor, the concircular curvature ten-
sor is another important tensor from the differential geometric point of view.

Let M be an n(= 2m + 1)-dimensional differentiable manifold. Suppose
that (ϕ, ξ, η, g) is an almost contact metric structure on M . This means that
(ϕ, ξ, η, g) is a quadruple consisting of a (1, 1)-tensor field ϕ, an associated
vector field ξ, a 1-form η and a Riemannian metric g on M satisfying the
following relations

(1.1) ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),
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where X,Y are smooth vector fields on M . In the addition we have

(1.2) ϕξ = 0, η(ϕX) = 0, g(X, ξ) = η(X), g(ϕX, Y ) = −g(X,ϕY ).

An almost contact structure is said to be a contact structure if g(X,ϕY ) =
dη(X,Y ). A contact metric structure is said to be normal if the induced almost
complex structure J on the product manifold Mn × R defined by

J(X, f
d

dt
) = (ϕX − fξ, η(X)

d

dt
)

is integrable where X is tangent to M , t is the coordinate of R and f is a
smooth function on Mn × R. A normal contact metric manifold is called a
Sasakian manifold. If ξ is a Killing vector field on a contact metric manifold
(Mn, g) then the manifold is called a K-contact metric manifold or simply a
K-contact manifold ([1], [14]). An almost contact manifold is Sasakian [1], if
and only if

(1.3) (∇Xϕ)(Y ) = g(X,Y )ξ − η(Y )X,

where ∇ is the Levi-Civita connection. It is well known that K-contact mani-
fold is Sasakian if and only if

(1.4) R(X,Y )ξ = η(Y )X − η(X)Y,

for any vector fields X,Y on (Mn, g), where R is the Riemannian curvature
tensor of type (1, 3) defined by

R(X,Y )W = ∇X∇Y W −∇Y ∇XW −∇[X,Y ]W.

A complete regular contact metric manifold M2m+1 carries a K-contact
structure (ϕ, ξ, η, g), defined in terms of the almost Käehler structure (J,G) of
the base manifold M2m. Here the K-contact structure (ϕ, ξ, η, g) is Sasakian if
and only if the base manifold (M2m, J,G) is Kaehlerian. If (M2m, J,G) is only
almost Käehler, then (ϕ, ξ, η, g) is only K-contact [1]. In a Sasakian manifold
the Ricci operator Q commutes with ϕ, that is, Qϕ = ϕQ. Recently in [11], it
has been shown that there exists K-contact manifold with Qϕ = ϕQ which are
not Sasakian. It is seen that K-contact structure is the intermediate between
contact and Sasakian structure.

A Riemannian manifold (M, g) is called locally symmetric if its curvature
tensor R is parallel, that is, ∇R = 0. The notion of semisymmetric, a proper
generalization of locally symmetric manifold, is defined by R(X,Y ) · R = 0,
where R(X,Y ) acts on R as a derivation. A complete intrinsic classification
of these manifolds was given by Szabó in [15]. In contact geometry Tanno [16]
showed that a semisymmetric K-contact manifold M is locally isometric to
the unit sphere Sn(1). In [4], Chaki and Tarafdar studied a Sasakian manifold
satisfying the condition R(X,Y ) ·C = 0, where C denotes the Weyl conformal
curvature tensor defined by

C(X,Y )W = R(X,Y )W − 1

n− 2
{S(Y,W )X − S(X,W )Y + g(Y,W )QX

−g(X,W )QY } +
r

(n− 1)(n− 2)
{g(Y,W )X − g(X,W )Y },(1.5)
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S is the Ricci tensor of type (0, 2), Q is the Ricci operator defined by

S(X,Y ) = g(QX,Y )

and r is the scalar curvature of M . Generalizing the result of Chaki and Taraf-
dar [4], Guha and De [9] proved that if a K-contact manifold with characteris-
tic vector field ξ belonging to the k-nullity distribution satisfies the condition
R(ξ,X) · C = 0, then C(ξ,X)Y = 0 for any vector fields X,Y. In [7], De and
Ghosh studied contact manifold satisfying the condition R(ξ,X) ·R = 0, where
ξ belongs to the k-nullity distribution.

For a (0, k)-tensor field T, k ≥ 1, on (Mn, g) we define the tensors R · T
and Q(S, T ) by

(R(X,Y ) · T )(X1, X2, ..., Xk) = −T (R(X,Y )X1, X2, ..., Xk)

−T (X1, R(X,Y )X2, ..., Xk)

− · · · − T (X1, X2, ..., R(X,Y )Xk)(1.6)

and

Q(S, T )(X1, X2, ..., Xk) = −T ((X ∧S Y )X1, X2, ..., Xk)

−T (X1, (X ∧S Y )X2, ..., Xk)

− · · · − T (X1, X2, ..., (X ∧S Y )Xk),(1.7)

respectively [18].
Furthermore we define endomorphism X ∧A Y by

(1.8) (X ∧A Y )W = A(Y,W )X −A(X,W )Y,

where X,Y,W ∈ χ(M), χ(M) is the Lie algebra of vector fields on M and A is
a symmetric (0, 2)-tensor. In the present paper our aim is to investigate under
what conditions a K-contact manifold will be a Sasakian manifold. This paper
is organized as follows:
After preliminaries in section 2, we consider a K-contact Einstein manifold
satisfying the curvature condition R · C = Q(S,C) and in this case we have
shown that the manifold becomes a Sasakian manifold. In section 4, we prove
that in a K-contact Einstein manifold the curvature condition C ·S = 0 holds.
In section 5, we discuss K-contact Einstein manifold satisfying the curvature
condition S · C = 0 and prove that under this condition a K-contact Einstein
manifold is Sasakian. Finally, in section 6, we have shown that if a K-contact
Einstein manifold satisfies the curvature condition Z · C = 0, then either the
manifold is Sasakian, or, the scalar curvature of the manifold is constant.

2. Preliminaries

Besides the above results in an n(= 2m+ 1)-dimensional K-contact mani-
fold, the following results hold ([1], [20])

(2.1) ∇Xξ = −ϕX,
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(2.2) g(R(ξ,X)Y, ξ) = η(R(ξ,X)Y ) = g(X,Y )− η(X)η(Y ),

(2.3) R(ξ,X)ξ = −X + η(X)ξ,

(2.4) S(X, ξ) = (n− 1)η(X),

(2.5) (∇Xϕ)Y = R(ξ,X)Y,

for any vector fields X,Y ∈ χ(M).
A K-contact manifold M of dimension > 3 is said to be Einstein if its Ricci
tensor S is of the form S = λg, where λ is a constant.
In this case we have

(2.6) S(X,Y ) = λg(X,Y ).

Substituting X = Y = ξ in (2.6) and then using (2.4) and (1.1), we get

(2.7) λ = (n− 1).

Thus using (2.7) we obtain from (2.6)

(2.8) S(X,Y ) = (n− 1)g(X,Y ).

Again we have from (2.8)

(2.9) QX = (n− 1)X.

Using (2.8), (2.9) in (1.5), we get

(2.10) C(X,Y )W = R(X,Y )W − [g(Y,W )X − g(X,W )Y ].

Further using (2.3), (2.4) and (1.1), we have from (2.10)

(2.11) C(X,Y )ξ = R(X,Y )ξ − η(Y )X + η(X)Y,

(2.12) C(ξ, Y )W = R(ξ, Y )W − [g(Y,W )ξ − η(W )Y ],

(2.13) C(ξ, Y )ξ = 0,

for all vector fields X,Y and W on M .
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3. K-contact Einstein manifolds satisfying
R(ξ, Y ) · C = Q(S,C)

A Riemannian or a semi-Riemannian manifold (Mn, g), n > 3, is said to be
Ricci generalized pseudosymmetric [22] if and only if the relation

(3.1) R ·R = fQ(S,R)

holds on the set UR = {x ∈ M : R ̸= 0 at x}, where f is some function on UR.
A very important subclass of this class of manifolds realizing the condition is

(3.2) R ·R = Q(S,R).

Every three dimensional manifold satisfies the equation (3.2) identically.
Other examples are the semi-Riemannian manifolds (M, g) admitting a non-
zero 1-form ω such that the equality

ω(X)R(Y, Z) + ω(Y )R(Z,X) + ω(Z)R(X,Y ) = 0

holds on M. The condition (3.2) also appears in theory of plane gravitational
wave. This section is devoted to study K-contact Einstein manifolds satisfying
the curvature condition

R(ξ, Y ) · C = Q(S,C),

that is,
(R(ξ, Y ) · C)(U, V )W = Q(S,C)(U, V )W,

for all Y, U, V and W ∈ χ(M).
The above equation implies

R(ξ, Y )C(U, V )W − C(R(ξ, Y )U, V )W

−C(U,R(ξ, Y )V )W − C(U, V )R(ξ, Y )W

= (ξ ∧S Y )C(U, V )W − C((ξ ∧S Y )U, V )W

−C(U, (ξ ∧S Y )V )W − C(U, V )(ξ ∧S Y )W.(3.3)

Making use of (1.8) and (2.8) we obtain from (3.3)

R(ξ, Y )C(U, V )W − C(R(ξ, Y )U, V )W

−C(U,R(ξ, Y )V )W − C(U, V )R(ξ, Y )W

= S(Y,C(U, V )W )ξ − (n− 1)η(C(U, V )W )Y

−S(Y, U)C(ξ, V )W + (n− 1)η(U)C(Y, V )W

−S(Y, V )C(U, ξ)W + (n− 1)η(V )C(U, Y )W

−S(Y,W )C(U, V )ξ + (n− 1)η(W )C(U, V )Y.(3.4)

Substituting U = W = ξ in (3.4) and using (2.3) and (2.13) yields

(3.5) C(Y, V )ξ + C(ξ, V )Y = (n− 1)C(Y, V )ξ + (n− 1)C(ξ, V )Y.
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Hence for n > 3, it follows from (3.5) that

(3.6) C(Y, V )ξ + C(ξ, V )Y = 0.

With the help of (2.11) and (2.12) we obtain from (3.6)

(3.7) R(Y, V )ξ +R(ξ, V )Y − g(V, Y )ξ + 2η(Y )V − η(V )Y = 0.

Interchanging Y and V in (3.7) yields

(3.8) R(V, Y )ξ +R(ξ, Y )V − g(Y, V )ξ + 2η(V )Y − η(Y )V = 0.

Subtracting (3.8) from (3.7) and using the Bianchi’s 1st identity we have

R(Y, V )ξ = η(V )Y − η(Y )V,

which implies that the manifold is Sasakian.
This leads to the following:

Theorem 3.1. Let (M, g) be an n(> 3)-dimensional K-contact Einstein mani-
fold satisfying the curvature condition R(ξ, Y )·C = Q(S,C). Then the manifold
is a Sasakian manifold.

4. K-contact Einstein manifolds

In this section we consider a K-contact Einstein manifold.
From (2.10) we have

(4.1) C(X,Y )U = R(X,Y )U − [g(Y,U)X − g(X,U)Y ].

Taking inner product of (4.1) with V yields

(4.2) g(C(X,Y )U, V ) = g(R(X,Y )U, V )− [g(Y, U)g(X,V )−g(X,U)g(Y, V )].

Interchanging U and V in (4.2) we have

(4.3) g(C(X,Y )V,U) = g(R(X,Y )V,U)− [g(Y, V )g(X,U)− g(X,V )g(Y,U)].

Adding (4.2) and (4.3) we get

(4.4) g(C(X,Y )U, V ) + g(C(X,Y )V,U) = 0.

Now we have

(4.5) (C(X,Y ) · S)(U, V ) = −S(C(X,Y )U, V )− S(U,C(X,Y )V ).

Using (2.8) we obtain from (4.5)

(4.6) (C(X,Y ) · S)(U, V ) = −(n− 1)[g(C(X,Y )U, V ) + g(C(X,Y )V,U)]

From (4.4) and (4.6) it follows that

C(X,Y ) · S = 0.

By the above discussions we have the following:

Theorem 4.1. Let (M, g) be an n(= 2m+1)-dimensional K-contact Einstein
manifold. Then the curvature condition C(X,Y ) · S = 0 holds on M .
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5. K-contact Einstein manifolds satisfying S · C = 0

In this section we investigate K-contact Einstein manifolds satisfying the
curvature condition S · C = 0, where S is the Ricci tensor of type (0, 2). Let
the manifold (M, g) satisfies the condition

(S(X,Y ) · C)(U, V )W = 0,

where X,Y, U, V and W ∈ χ(M). The above equation implies

(X ∧S Y )C(U, V )W + C((X ∧S Y )U, V )W

+C(U, (X ∧S Y )V )W + C(U, V )(X ∧S Y )W = 0.(5.1)

Using (1.8) and (5.1) we obtain

S(Y,C(U, V )W )X − S(X,C(U, V )W )Y + S(Y,U)C(X,V )W

−S(X,U)C(Y, V )W + S(Y, V )C(U,X)W − S(X,V )C(U, Y )W

+S(Y,W )C(U, V )X − S(X,W )C(U, V )Y = 0.(5.2)

Putting X = ξ in (5.2) yields

S(Y,C(U, V )W )ξ − S(ξ, C(U, V )W )Y + S(Y,U)C(ξ, V )W

−S(ξ, U)C(Y, V )W + S(Y, V )C(U, ξ)W − S(ξ, V )C(U, Y )W

+S(Y,W )C(U, V )ξ − S(ξ,W )C(U, V )Y = 0.(5.3)

Next substituting U = W = ξ in (5.3) and then using (2.4) and (2.13) we have

(5.4) (n− 1)[C(Y, V )ξ + C(ξ, V )Y ] = 0.

For n > 3, the above equation implies

(5.5) C(Y, V )ξ + C(ξ, V )Y = 0.

Now computing in the same way as in Theorem 3.1 we obtain

R(Y, V )ξ = η(V )Y − η(Y )V,

which implies the manifold is a Sasakian manifold.
Thus we have the following:

Theorem 5.1. If a K-contact Einstein manifold (Mn, g), (n = 2m + 1 > 3)
satisfies the curvature condition S · C = 0, then the manifold is a Sasakian
manifold.

6. K-contact Einstein manifolds satisfying Z · C = 0

A transformation which transform every geodesic circle of an n-dimensional
Riemannian manifold M into a geodesic circle is called a concircular transfor-
mation ([19],[12]). A concircular transformation is always a conformal transfor-
mation [12]. Here, a geodesic circle means a curve in M whose first curvature
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is constant and whose second curvature is identically zero. Thus the geome-
try of concircular transformation is the generalization of inversive geometry in
the sense that the change of metric is more general than that induced by a
circle preserving diffeomorphism [2]. An important invariant of a concircular
transformation is the concircular curvature tensor Z, defined by [19]

(6.1) Z(X,Y )W = R(X,Y )W − r

n(n− 1)
[g(Y,W )X − g(X,W )Y ],

where X,Y,W ∈ χ(M). A Riemannian manifold with vanishing concircular
curvature tensor is of constant curvature. Thus, the concircular curvature
tensor is the measure of the failure of a Riemannian manifold to be of constant
curvature. Now in this stage we considerK-contact Einstein manifold satisfying
the curvature condition

(6.2) Z(X,Y ) · C = 0,

where Z and C defined in (6.1) and (2.10) respectively.
Substituting X = ξ in (6.2) we have

(6.3) (Z(ξ, Y ) · C)(U, V )W = 0.

This implies

Z(ξ, Y )C(U, V )W − C(Z(ξ, Y )U, V )W

−C(U,Z(ξ, Y )V )W − C(U, V )Z(ξ, Y )W = 0.(6.4)

Again putting U = W = ξ in (6.4) and using (2.13) yields

(6.5) − C(Z(ξ, Y )ξ, V )ξ − C(ξ, Z(ξ, Y )V )ξ − C(ξ, V )Z(ξ, Y )ξ = 0.

With the help of (6.1), (2.3) and (1.2) we obtain from (6.5)

(6.6) (1− r

n(n− 1)
)[C(Y, V )ξ−η(Y )C(ξ, V )ξ+C(ξ, V )Y −η(Y )C(ξ, V )ξ] = 0.

Applying (2.13) in (6.6) gives

(1− r

n(n− 1)
)[C(Y, V )ξ + C(ξ, V )Y ] = 0.

Then either r = n(n− 1), or,

C(Y, V )ξ + C(ξ, V )Y = 0.

Now computing in the same way as in Theorem 3.1 we have

R(Y, V )ξ = η(V )Y − η(Y )V,

which implies that the manifold is a Sasakian manifold.
By the above discussions we have the following:

Theorem 6.1. Let M be an n-dimensional K-contact Einstein manifold sat-
isfying the curvature condition Z(ξ, Y ) · C = 0. Then either the manifold is
Sasakian, or, the scalar curvature of the manifold is constant.
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