CANONICAL CONNECTIONS ON PARA-KENMOTSU MANIFOLDS ${ }^{\text {W }}$

Adara M. Blaga ${ }^{\text {D }}$

Abstract

In the context of para-Kenmotsu geometry, properties of the φ-conjugate connections of some canonical linear connections (LeviCivita, Schouten-van Kampen, Golab and Zamkovoy canonical paracontact connections) are established, underlining the relations between them and between their structure and virtual tensors. The case of projectively and dual-projectively equivalent connections is also treated. In particular, it is proved that the structure tensor is invariant under dualprojective transformations.

AMS Mathematics Subject Classification (2010): 53C21, 53C25, 53C44
Key words and phrases: linear connections; para-Kenmotsu structure

1. Introduction

The present paper is dedicated to a brief study of some canonical connections defined on a para-Kenmotsu manifold: Levi-Civita, Schouten-van Kampen, Golab and Zamkovoy canonical paracontact connections with a special view towards φ-conjugation. The structure and the virtual tensors attached to these connections are considered and in the last section, the invariance of the structure tensor under dual-projective transformations is proved. Note that the para-Kenmotsu structure was introduced by J. Wełyczko in [13] for 3-dimensional normal almost paracontact metric structures. A similar notion called P-Kenmotsu structure appears in the paper of B. B. Sinha and K. L. Sai Prasad [I2].

Let M be a $(2 n+1)$-dimensional smooth manifold, φ a tensor field of $(1,1)$ type, ξ a vector field, η a 1-form and g a pseudo-Riemannian metric on M of signature $(n+1, n)$.

Definition 1.1. [44] We say that (φ, ξ, η, g) defines an almost paracontact metric structure on M if

$$
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad \eta(\xi)=1, \quad \varphi^{2}=I_{\mathfrak{X}(M)}-\eta \otimes \xi, \quad g(\varphi \cdot, \varphi \cdot)=-g+\eta \otimes \eta
$$

and φ induces on the $2 n$-dimensional distribution $\mathcal{D}:=\operatorname{ker} \eta$ an almost paracomplex structure P; i.e. $P^{2}=I_{\mathfrak{X}(M)}$ and the eigensubbundles $\mathcal{D}^{+}, \mathcal{D}^{-}$, corresponding to the eigenvalues $1,-1$ of P, respectively, have equal dimension n; hence $\mathcal{D}=\mathcal{D}^{+} \oplus \mathcal{D}^{-}$.

[^0]In this case, $(M, \varphi, \xi, \eta, g)$ is called an almost paracontact metric manifold, φ the structure endomorphism, ξ the characteristic vector field, η the paracontact form and g compatible metric.

Examples of almost paracontact metric structures can be found in $[8]$ and [6]. From the definition it follows that η is the g-dual of the unitary vector field ξ :

$$
\begin{equation*}
\eta(X)=g(X, \xi) \tag{1.1}
\end{equation*}
$$

and φ is a g-skew-symmetric operator,

$$
\begin{equation*}
g(\varphi X, Y)=-g(X, \varphi Y) \tag{1.2}
\end{equation*}
$$

Note that the canonical distribution \mathcal{D} is φ-invariant since $\mathcal{D}=\operatorname{Im} \varphi$. Moreover, ξ is orthogonal to \mathcal{D} and therefore the tangent bundle splits orthogonally:

$$
\begin{equation*}
T M=\mathcal{D} \oplus\langle\xi\rangle \tag{1.3}
\end{equation*}
$$

An analogue of the Kenmotsu manifold [g] in paracontact geometry will be further considered.

Definition 1.2. [II] We say that the almost paracontact metric structure (φ, ξ, η, g) is para-Kenmotsu if the Levi-Civita connection ∇ of g satisfies $\left(\nabla_{X} \varphi\right) Y=g(\varphi X, Y) \xi-\eta(Y) \varphi X$, for any $X, Y \in \mathfrak{X}(M)$.
Example 1.3. Let $M=\left\{(x, y, z) \in \mathbb{R}^{3}: z \neq 0\right\}$ where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. Set

$$
\begin{gathered}
\varphi:=\frac{\partial}{\partial y} \otimes d x+\frac{\partial}{\partial x} \otimes d y, \quad \xi:=-\frac{\partial}{\partial z}, \quad \eta:=-d z \\
g:=d x \otimes d x-d y \otimes d y+d z \otimes d z .
\end{gathered}
$$

Then (φ, ξ, η, g) defines a para-Kenmotsu structure on \mathbb{R}^{3}.
Properties of this structure will be given in the next Proposition.
Proposition 1.4. [7] On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the following relations hold:

$$
\begin{gather*}
\nabla \xi=I_{\mathfrak{X}(M)}-\eta \otimes \xi \tag{1.4}\\
\eta\left(\nabla_{X} \xi\right)=0, \tag{1.5}\\
R_{\nabla}(X, Y) \xi=\eta(X) Y-\eta(Y) X, \tag{1.6}\\
\eta\left(R_{\nabla}(X, Y) W\right)=-\eta(X) g(Y, W)+\eta(Y) g(X, W), \tag{1.7}\\
\nabla \eta=g-\eta \otimes \eta, \tag{1.8}\\
L_{\xi} \varphi=0, \quad L_{\xi} \eta=0, \quad L_{\xi} g=2(g-\eta \otimes \eta), \tag{1.9}
\end{gather*}
$$

where R_{∇} is the Riemann curvature tensor field of the Levi-Civita connection ∇ associated to g. Moreover, η is closed, the distribution \mathcal{D} is involutive and the Nijenhuis tensor field of φ vanishes identically.

2. Canonical connections on $(M, \varphi, \xi, \eta, g)$

Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold. From [IT], [II], [7], [IT] we get the expressions and the relations with the para-Kenmotsu structure of the canonical connections on M we are interested in.

1. Levi-Civita connection ∇ satisfies [T]:
(2.1) $\nabla \varphi=g(\varphi \cdot, \cdot) \otimes \xi-\varphi \otimes \eta, \quad \nabla \xi=I_{\mathfrak{X}(M)}-\eta \otimes \xi, \quad \nabla \eta=g-\eta \otimes \eta, \quad \nabla g=0$, its torsion and curvature being given by

$$
\begin{equation*}
T_{\nabla}=0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\eta\left(R_{\nabla}(X, Y) W\right)=-\eta(X) g(Y, W)+\eta(Y) g(X, W) \tag{2.3}
\end{equation*}
$$

2. Schouten-van Kampen connection $\tilde{\nabla}$ equals to [II]:

$$
\begin{equation*}
\tilde{\nabla}:=\nabla-I_{\mathfrak{X}(M)} \otimes \eta+g \otimes \xi \tag{2.4}
\end{equation*}
$$

and satisfies [II]:

$$
\begin{equation*}
\tilde{\nabla} \varphi=0, \quad \tilde{\nabla} \xi=0, \quad \tilde{\nabla} \eta=0, \quad \tilde{\nabla} g=0 \tag{2.5}
\end{equation*}
$$

its torsion and curvature being given by

$$
\begin{equation*}
T_{\tilde{\nabla}}=\eta \otimes I_{\mathfrak{X}(M)}-I_{\mathfrak{X}(M)} \otimes \eta \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
R_{\tilde{\nabla}}(X, Y) W=R_{\nabla}(X, Y) W-g(W, X) Y+g(Y, W) X-\eta(W) g(X, Y) \xi \tag{2.7}
\end{equation*}
$$

3. Golab connection ∇^{G} equals to [7]:

$$
\begin{equation*}
\nabla^{G}:=\nabla-\eta \otimes \varphi \tag{2.8}
\end{equation*}
$$

and satisfies [Z]:

$$
\begin{equation*}
\nabla^{G} \varphi=\nabla \varphi, \quad \nabla^{G} \xi=\nabla \xi, \quad \nabla^{G} \eta=\nabla \eta, \quad \nabla^{G} g=\nabla g=0 \tag{2.9}
\end{equation*}
$$

its torsion and curvature being given by

$$
\begin{equation*}
T_{\nabla^{G}}=\varphi \otimes \eta-\eta \otimes \varphi \tag{2.10}
\end{equation*}
$$

$R_{\nabla^{G}}(X, Y) W=R_{\nabla}(X, Y) W+g(T, W) \xi-g(\xi, W) T$, where $T:=-T_{\nabla^{G}}(X, Y)$.
4. Zamkovoy canonical paracontact connection ∇^{Z} equals to [T4]:

$$
\begin{equation*}
\nabla_{X}^{Z} Y:=\nabla_{X} Y+\eta(X) \varphi Y-\eta(Y) \nabla_{X} \xi+\left(\nabla_{X} \eta\right) Y \cdot \xi \tag{2.12}
\end{equation*}
$$

equivalent to

$$
\begin{equation*}
\nabla^{Z}=\nabla-I_{\mathfrak{X}(M)} \otimes \eta+g \otimes \xi+\eta \otimes \varphi \tag{2.13}
\end{equation*}
$$

and satisfies [14]:

$$
\begin{equation*}
\nabla^{Z} \varphi=0, \quad \nabla^{Z} \xi=0, \quad \nabla^{Z} \eta=0, \quad \nabla^{Z} g=0 \tag{2.14}
\end{equation*}
$$

its torsion and curvature being given by

$$
\begin{align*}
& T_{\nabla^{Z}}=\eta \otimes\left(\varphi+I_{\mathfrak{X}(M)}\right)-\left(\varphi+I_{\mathfrak{X}(M)}\right) \otimes \eta\left(=-T_{\left(\nabla^{G}\right)^{*}}\right) \tag{2.15}\\
& \quad R_{\nabla^{Z}}(X, Y) W=R_{\nabla}(X, Y) W+g(Y, W) X-g(X, W) Y . \tag{2.16}
\end{align*}
$$

3. φ-conjugate connections

In this section we shall consider the φ-conjugate connections of the four canonical connections presented above on a para-Kenmotsu manifold.

Recall that for an arbitrary linear connection $\bar{\nabla}$, the φ-conjugate connection of $\bar{\nabla}$ is defined by

$$
\begin{equation*}
\bar{\nabla}^{(\varphi)}:=\bar{\nabla}+\varphi \circ \bar{\nabla} \varphi \tag{3.1}
\end{equation*}
$$

that is, $\bar{\nabla}_{X}^{(\varphi)} Y=\varphi\left(\bar{\nabla}_{X} \varphi Y\right)+\eta\left(\bar{\nabla}_{X} Y\right) \xi$, for any $X, Y \in \mathfrak{X}(M)$. Applying the φ-conjugation by n times, $n \in \mathbb{N}$, we can prove, by mathematical induction, that

$$
\begin{equation*}
\bar{\nabla}_{X}^{n(\varphi)} Y=\varphi^{n}\left(\bar{\nabla}_{X} \varphi^{n} Y\right)+\eta\left(\bar{\nabla}_{X} Y\right) \xi \tag{3.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\bar{\nabla}_{X}^{n(\varphi)} Y-\bar{\nabla}_{X}^{(\varphi)} Y=\varphi^{n}\left(\bar{\nabla}_{X} \varphi^{n} Y\right)-\varphi\left(\bar{\nabla}_{X} \varphi Y\right) \tag{3.3}
\end{equation*}
$$

for any $n \in \mathbb{N}$ and any $X, Y \in \mathfrak{X}(M)$.
Appearing in the theory of Courant algebroids, the φ-torsion of a linear connection can be expressed in terms of torsion of the φ-conjugate connection, namely:
Proposition 3.1. Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold, $\bar{\nabla}$ a linear connection on M and $\bar{\nabla}^{(\varphi)}$ its φ-conjugate connection. Then:
$T_{(\bar{\nabla}, \varphi)}(X, Y)=-T_{\bar{\nabla}(\varphi)}(X, Y)+T_{\bar{\nabla}}(X, Y)+\varphi\left(T_{\bar{\nabla}}(\varphi X, Y)\right)+\varphi\left(T_{\bar{\nabla}}(X, \varphi Y)\right)-$

$$
\begin{equation*}
-\varphi^{2}\left(T_{\bar{\nabla}}(X, Y)\right) \tag{3.4}
\end{equation*}
$$

for any $X, Y \in \mathfrak{X}(M)$.

Proof. For any $X, Y \in \mathfrak{X}(M)$, the φ-torsion of $\bar{\nabla}$ is defined by:

$$
T_{(\bar{\nabla}, \varphi)}(X, Y):=\varphi\left(\bar{\nabla}_{\varphi X} Y-\bar{\nabla}_{\varphi Y} X\right)-[\varphi X, \varphi Y]
$$

Observe that

$$
\begin{gathered}
T_{\bar{\nabla}}(X, Y)-T_{\bar{\nabla}(\varphi)}(X, Y)=\bar{\nabla}_{Y}^{(\varphi)} X-\bar{\nabla}_{Y} X-\bar{\nabla}_{X}^{(\varphi)} Y+\bar{\nabla}_{X} Y= \\
=(\varphi \circ \bar{\nabla} \varphi)(Y, X)-\left(\varphi \circ \bar{\nabla}_{\varphi}\right)(X, Y)= \\
=\varphi\left(\bar{\nabla}_{Y} \varphi X-\bar{\nabla}_{X} \varphi Y\right)-\varphi^{2}\left(\bar{\nabla}_{Y} X-\bar{\nabla}_{X} Y\right)= \\
=\varphi\left(T_{\bar{\nabla}}(Y, \varphi X)+\bar{\nabla}_{\varphi X} Y+[Y, \varphi X]-T_{\bar{\nabla}}(X, \varphi Y)-\bar{\nabla}_{\varphi Y} X-[X, \varphi Y]\right)+ \\
+\varphi^{2}\left(T_{\bar{\nabla}}(X, Y)+[X, Y]\right)= \\
=\varphi\left(\bar{\nabla}_{\varphi X} Y-\bar{\nabla}_{\varphi Y} X\right)-\varphi[\varphi X, Y]-\varphi[X, \varphi Y]+\varphi^{2}[X, Y]+ \\
+\varphi\left(T_{\bar{\nabla}}(Y, \varphi X)-T_{\bar{\nabla}}(X, \varphi Y)\right)+\varphi^{2}\left(T_{\bar{\nabla}}(X, Y)\right):= \\
=T_{(\bar{\nabla}, \varphi)}(X, Y)+N_{\varphi}(X, Y)+\varphi\left(T_{\bar{\nabla}}(Y, \varphi X)\right)-\varphi\left(T_{\bar{\nabla}}(X, \varphi Y)\right)+\varphi^{2}\left(T_{\bar{\nabla}}(X, Y)\right)= \\
=T_{(\bar{\nabla}, \varphi)}(X, Y)-\varphi\left(T_{\bar{\nabla}}(\varphi X, Y)\right)-\varphi\left(T_{\bar{\nabla}}(X, \varphi Y)\right)+\varphi^{2}\left(T_{\bar{\nabla}}(X, Y)\right) .
\end{gathered}
$$

Consider now the φ-conjugate connection of the Levi-Civita connection ∇

$$
\begin{equation*}
\nabla^{(\varphi)}:=\nabla+\varphi \circ \nabla \varphi \tag{3.5}
\end{equation*}
$$

which equals to

$$
\begin{equation*}
\nabla_{X}^{(\varphi)} Y=\nabla_{X} Y-\eta(Y) X+\eta(X) \eta(Y) \xi \tag{3.6}
\end{equation*}
$$

Note that $\nabla_{X}^{2(\varphi)} Y=\varphi\left(\nabla_{X} \varphi Y\right)+\eta\left(\nabla_{X} Y\right) \xi=\nabla_{X}^{(\varphi)} Y$, for any $X, Y \in \mathfrak{X}(M)$.
Proposition 3.2. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the φ-conjugate connection of the Levi-Civita connection ∇ satisfies:

1. $\nabla^{(\varphi)} \varphi=g(\varphi \cdot, \cdot) \otimes \xi ;$
2. $\nabla^{(\varphi)} \xi=0$;
3. $\nabla^{(\varphi)} \eta=\nabla \eta$;
4. $\nabla^{(\varphi)} g=g\left(\cdot, \eta \otimes I_{\mathfrak{X}(M)}+I_{\mathfrak{X}(M)} \otimes \eta-\eta \otimes \eta \otimes \xi\right) ;$
5. $T_{\nabla^{(\varphi)}}=\eta \otimes I_{\mathfrak{X}(M)}-I_{\mathfrak{X}(M)} \otimes \eta$ and $T_{(\nabla, \varphi)}=-T_{\nabla^{(\varphi)}}$;
6. $R_{\nabla(\varphi)}(X, Y) W=R_{\nabla}(X, Y) W+\eta(W) R_{\nabla}(X, Y) \xi-g(X, W)(Y-\eta(Y) \xi)+$ $g(Y, W)(X-\eta(X) \xi)$, for any $X, Y, W \in \mathfrak{X}(M)$; in particular, $R_{\nabla(\varphi)}(X, Y) \xi=R_{\nabla}(X, Y) \xi$.

Proof. 1.

$$
\begin{gathered}
\left(\nabla_{X}^{(\varphi)} \varphi\right) Y:=\nabla_{X}^{(\varphi)} \varphi Y-\varphi\left(\nabla_{X}^{(\varphi)} Y\right)=\nabla_{X} \varphi Y-\varphi\left(\nabla_{X} Y\right)+\eta(Y) \varphi X:= \\
:=\left(\nabla_{X} \varphi\right) Y+\eta(Y) \varphi X=g(\varphi X, Y) \xi
\end{gathered}
$$

2.

$$
\nabla_{X}^{(\varphi)} \xi=\nabla_{X} \xi-X+\eta(X) \xi
$$

3.

$$
\left(\nabla_{X}^{(\varphi)} \eta\right) Y:=X(\eta(Y))-\eta\left(\nabla_{X}^{(\varphi)} Y\right)=X(\eta(Y))-\eta\left(\nabla_{X} Y\right):=\left(\nabla_{X} \eta\right) Y
$$

4.

$$
\begin{gathered}
\left(\nabla_{X}^{(\varphi)} g\right)(Y, W):=X(g(Y, W))-g\left(\nabla_{X}^{(\varphi)} Y, W\right)-g\left(Y, \nabla_{X}^{(\varphi)} W\right)= \\
\quad=\eta(Y) g(X, W)+\eta(W) g(X, Y)-2 \eta(X) \eta(Y) \eta(W)
\end{gathered}
$$

5.

$$
T_{\nabla(\varphi)}(X, Y):=\nabla_{X}^{(\varphi)} Y-\nabla_{Y}^{(\varphi)} X-[X, Y]=\eta(X) Y-\eta(Y) X
$$

6.

$$
R_{\nabla^{(\varphi)}}(X, Y) W:=\nabla_{X}^{(\varphi)} \nabla_{Y}^{(\varphi)} W-\nabla_{Y}^{(\varphi)} \nabla_{X}^{(\varphi)} W-\nabla_{[X, Y]}^{(\varphi)} W .
$$

We obtain

$$
\begin{gathered}
\nabla_{X}^{(\varphi)} \nabla_{Y}^{(\varphi)} W=\nabla_{X}^{(\varphi)}\left(\nabla_{Y} W\right)-\eta(W) \nabla_{X}^{(\varphi)} Y-X(\eta(W)) Y+\eta(Y) \eta(W) \nabla_{X}^{(\varphi)} \xi+ \\
\quad+X(\eta(Y)) \eta(W) \xi+X(\eta(W)) \eta(Y) \xi= \\
=\nabla_{X} \nabla_{Y} W-\eta\left(\nabla_{Y} W\right) X+\eta(X) \eta\left(\nabla_{Y} W\right) \xi-\eta(W) \nabla_{X} Y-\eta(Y) \eta(W) X- \\
-\eta(X) \eta(Y) \eta(W) \xi-X(\eta(W)) Y+X(\eta(Y)) \eta(W) \xi+X(\eta(W)) \eta(Y) \xi
\end{gathered}
$$

Similarly,

$$
\begin{gathered}
\nabla_{Y}^{(\varphi)} \nabla_{X}^{(\varphi)} W=\nabla_{Y} \nabla_{X} W-\eta\left(\nabla_{X} W\right) Y+\eta(Y) \eta\left(\nabla_{X} W\right) \xi-\eta(W) \nabla_{Y} X- \\
-\eta(X) \eta(W) Y-\eta(X) \eta(Y) \eta(W) \xi-Y(\eta(W)) X+ \\
+Y(\eta(X)) \eta(W) \xi+Y(\eta(W)) \eta(X) \xi
\end{gathered}
$$

Also,

$$
\nabla_{[X, Y]}^{(\varphi)} W=\nabla_{[X, Y]} W-\eta(W)[X, Y]+\eta([X, Y]) \eta(W) \xi
$$

It follows that

$$
\begin{gathered}
R_{\nabla(\varphi)}(X, Y) W=R_{\nabla}(X, Y) W+(d \eta)(X, Y) \eta(W) \xi+g\left(W, \nabla_{X} \xi\right) \eta(Y) \xi- \\
-g\left(W, \nabla_{Y} \xi\right) \eta(X) \xi-\eta\left(\nabla_{Y} W\right) X+\eta\left(\nabla_{X} W\right) Y+Y(\eta(W)) X-X(\eta(W)) Y- \\
-\eta(Y) \eta(W) X+\eta(X) \eta(W) Y=
\end{gathered}
$$

$$
\begin{gathered}
=R_{\nabla}(X, Y) W+g(W, X) \eta(Y) \xi-g(W, Y) \eta(X) \xi-g(W, X) Y+g(W, Y) X+ \\
+\eta(X) \eta(W) Y-\eta(Y) \eta(W) X= \\
=R_{\nabla}(X, Y) W-g(X, W)(Y-\eta(Y) \xi)+g(Y, W)(X-\eta(X) \xi)+ \\
+\eta(W)[\eta(X) Y-\eta(Y) X] .
\end{gathered}
$$

Concerning the Schouten-van Kampen, the Golab and the Zamkovoy canonical paracontact connections, we can state:

Proposition 3.3. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the φ-conjugate connections of $\tilde{\nabla}, \nabla^{G}$ and ∇^{Z} respectively, are given by:

$$
\begin{equation*}
\tilde{\nabla}^{(\varphi)}=\tilde{\nabla}, \quad\left(\nabla^{G}\right)^{(\varphi)}=\nabla^{(\varphi)}-\eta \otimes \varphi, \quad\left(\nabla^{Z}\right)^{(\varphi)}=\nabla^{Z} . \tag{3.7}
\end{equation*}
$$

Proof. They follow from relations ([2.4), (2.8), (2.[2) and (3.1)).
Remark 3.4. For $n \in \mathbb{N}$, applying the φ-conjugation n times, we obtain

$$
\nabla^{n(\varphi)}=\nabla^{(\varphi)}, \quad \tilde{\nabla}^{n(\varphi)}=\tilde{\nabla}, \quad\left(\nabla^{G}\right)^{n(\varphi)}=\left(\nabla^{G}\right)^{(\varphi)}, \quad\left(\nabla^{Z}\right)^{n(\varphi)}=\nabla^{Z}
$$

Indeed, for $\nabla, \tilde{\nabla}$ and ∇^{Z} follows immediately from the previous Proposition. For the Golab connection, notice that $\varphi^{2 n+1}=\varphi$, so

$$
\begin{gathered}
\left(\nabla^{G}\right)_{X}^{n(\varphi)} Y=\varphi^{n}\left(\nabla_{X}^{G} \varphi^{n} Y\right)+\eta\left(\nabla_{X}^{G} Y\right) \xi= \\
=\varphi^{n}\left(\nabla_{X} \varphi^{n} Y\right)+\eta\left(\nabla_{X} Y\right) \xi-\eta(X) \varphi^{2 n+1} Y= \\
=\nabla_{X}^{n(\varphi)} Y-\eta(X) \varphi Y=\left(\nabla^{(\varphi)}-\eta \otimes \varphi\right)(X, Y)=\left(\nabla^{G}\right)^{(\varphi)} .
\end{gathered}
$$

4. Relating $\nabla, \tilde{\nabla}, \nabla^{G}$ and ∇^{Z}. A view towards the structure and the virtual tensors

Remark that the Golab connection ∇^{G} is obtained by perturbing the LeviCivita connection ∇ with $\eta \otimes \varphi$, so the two connections coincide on \mathcal{D}. The same thing happens for the Schouten-van Kampen connection $\tilde{\nabla}$ and the Zamkovoy canonical paracontact connection ∇^{Z}

$$
\begin{equation*}
\nabla^{G}=\nabla-\eta \otimes \varphi, \quad \tilde{\nabla}=\nabla^{Z}-\eta \otimes \varphi . \tag{4.1}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\nabla+\tilde{\nabla}=\nabla^{G}+\nabla^{Z} \tag{4.2}
\end{equation*}
$$

 behave similarly with respect to (φ, ξ, η, g) :

$$
\begin{equation*}
\nabla \varphi=\nabla^{G} \varphi, \quad \nabla \xi=\nabla^{G} \xi, \quad \nabla \eta=\nabla^{G} \eta, \quad \nabla g=\nabla^{G} g=0 \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\nabla} \varphi=\nabla^{Z} \varphi=0, \quad \tilde{\nabla} \xi=\nabla^{Z} \xi=0, \quad \tilde{\nabla} \eta=\nabla^{Z} \eta=0, \quad \tilde{\nabla} g=\nabla^{Z} g=0 \tag{4.4}
\end{equation*}
$$

Other geometrical structures associated to a pair of a tensor field φ and a linear connection $\bar{\nabla}$ are the structure and the virtual tensors, respectively defined as follows:

$$
\begin{equation*}
C_{\bar{\nabla}}^{\varphi}(X, Y):=\frac{1}{2}\left[\left(\bar{\nabla}_{\varphi X} \varphi\right) Y+\left(\bar{\nabla}_{X} \varphi\right) \varphi Y\right] \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{\bar{\nabla}}^{\varphi}(X, Y):=\frac{1}{2}\left[\left(\bar{\nabla}_{\varphi X} \varphi\right) Y-\left(\bar{\nabla}_{X} \varphi\right) \varphi Y\right] . \tag{4.6}
\end{equation*}
$$

These tensors have been introduced in [[0]] for almost complex structures. They also appear in [3] and, in [4], for almost product structures.

In our context, we have:
Proposition 4.1. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the structure and the virtual tensors associated with $\nabla, \tilde{\nabla}, \nabla^{G}$ and ∇^{Z} satisfy:

$$
\begin{equation*}
C_{\nabla}^{\varphi}(X, Y)=C_{\nabla_{G}}^{\varphi}(X, Y)=-\frac{1}{2} \eta(Y) \varphi^{2} X \tag{4.7}
\end{equation*}
$$

$$
\begin{gather*}
B_{\nabla}^{\varphi}(X, Y)=B_{\nabla_{G}}^{\varphi}(X, Y)=-\frac{1}{2} \eta(Y)[X+\eta(X) \xi]+g(X, Y) \xi \tag{4.8}\\
C_{\tilde{\nabla}}^{\varphi}=C_{\nabla_{Z}}^{\varphi}=B_{\tilde{\nabla}}^{\varphi}=B_{\nabla^{Z}}^{\varphi}=0 \tag{4.9}
\end{gather*}
$$

Proof. These relations follow if we replace the expressions $\left(\nabla_{X} \varphi\right) Y=\left(\nabla_{X}^{G} \varphi\right) Y=$ $g(\varphi X, Y) \xi-\eta(Y) \varphi X$ and $\tilde{\nabla} \varphi=\nabla^{Z} \varphi=0$ in (4.5) and (4.6).

As a consequence:
Corollary 4.2. Under the hypotheses above, we have

$$
\begin{equation*}
C_{\nabla}^{\varphi}-B_{\nabla}^{\varphi}=C_{\nabla^{G}}^{\varphi}-B_{\nabla^{G}}^{\varphi}=-\frac{1}{2} L_{\xi} g \otimes \xi \tag{4.10}
\end{equation*}
$$

Concerning their φ-conjugate connections, we can state:
Proposition 4.3. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the structure tensors of all φ-conjugate connections of $\nabla, \tilde{\nabla}, \nabla^{G}$ and ∇^{Z} vanish identically and the virtual tensors satisfy

$$
\begin{equation*}
B_{\nabla(\varphi)}^{\varphi}=B_{\left(\nabla^{G}\right)^{(\varphi)}}^{\varphi}=-g(\varphi \cdot, \varphi \cdot) \otimes \xi, \quad B_{\nabla_{\nabla}(\varphi)}^{\varphi}=B_{\left(\nabla^{Z}\right)^{(\varphi)}}^{\varphi}=0 \tag{4.11}
\end{equation*}
$$

Proof. Note first that:

$$
\nabla^{(\varphi)} \varphi=\nabla \varphi+\varphi \otimes \eta, \quad\left(\nabla^{G}\right)^{(\varphi)} \varphi=\nabla^{G} \varphi+\varphi \otimes \eta
$$

$$
\tilde{\nabla}^{(\varphi)} \varphi=\tilde{\nabla} \varphi, \quad\left(\nabla^{Z}\right)^{(\varphi)} \varphi=\nabla^{Z} \varphi
$$

and use the fact that $\nabla \varphi=\nabla^{G} \varphi=g(\varphi \cdot, \cdot) \otimes \xi-\varphi \otimes \eta$ and $\tilde{\nabla} \varphi=\nabla^{Z} \varphi=0$. Then,

$$
\begin{aligned}
C_{\nabla^{(\varphi)}}^{\varphi}(X, Y) & =C_{\nabla}^{\varphi}(X, Y)+\frac{1}{2} \eta(Y) \varphi^{2} X=0 \\
C_{\left(\nabla^{G}\right)^{(\varphi)}}^{\varphi}(X, Y) & =C_{\nabla^{G}}^{\varphi}(X, Y)+\frac{1}{2} \eta(Y) \varphi^{2} X=0
\end{aligned}
$$

and

$$
C_{\tilde{\nabla}^{(\varphi)}}^{\varphi}=C_{\tilde{\nabla}}^{\varphi}=C_{\nabla^{2}}^{\varphi}=C_{\left(\nabla^{Z}\right)^{(\varphi)}}^{\varphi} .
$$

Also,

$$
\begin{gathered}
B_{\nabla^{(\varphi)}}^{\varphi}(X, Y)=B_{\nabla}^{\varphi}(X, Y)+\frac{1}{2} \eta(Y) \varphi^{2} X=-g(\varphi X, \varphi Y) \xi \\
B_{\left(\nabla^{G}\right)^{(\varphi)}}^{\varphi}(X, Y)=B_{\nabla^{G}}^{\varphi}(X, Y)+\frac{1}{2} \eta(Y) \varphi^{2} X=-g(\varphi X, \varphi Y) \xi
\end{gathered}
$$

and $B_{\tilde{\nabla}(\varphi)}^{\varphi}=B_{\tilde{\nabla}}^{\varphi}=B_{\nabla^{Z}}^{\varphi}=B_{\left(\nabla^{Z}\right)(\varphi)}^{\varphi}$.
Remark 4.4. In the general case, for $\bar{\nabla}$ arbitrary linear connection, we have: $\left(\bar{\nabla}_{X}^{(\varphi)} \varphi\right) Y:=\bar{\nabla}_{X}^{(\varphi)} \varphi Y-\varphi\left(\bar{\nabla}_{X}^{(\varphi)} Y\right)=\left(\bar{\nabla}_{X} \varphi\right) Y+\varphi\left(\left(\bar{\nabla}_{X} \varphi\right) \varphi Y\right)-\varphi^{2}\left(\left(\bar{\nabla}_{X} \varphi\right) Y\right)$, therefore

$$
\begin{gathered}
C_{\bar{\nabla}(\varphi)}^{\varphi}(X, Y):=\frac{1}{2}\left[\left(\bar{\nabla}_{\varphi X}^{(\varphi)} \varphi\right) Y+\left(\bar{\nabla}_{X}^{(\varphi)} \varphi\right) \varphi Y\right]=\frac{1}{2}\left[\left(\bar{\nabla}_{\varphi X} \varphi\right) Y+\left(\bar{\nabla}_{X} \varphi\right) \varphi Y\right]+ \\
+\frac{1}{2} \varphi\left[\left(\bar{\nabla}_{\varphi X} \varphi\right) \varphi Y+\left(\bar{\nabla}_{X} \varphi\right) \varphi^{2} Y\right]-\frac{1}{2} \varphi^{2}\left[\left(\bar{\nabla}_{\varphi X} \varphi\right) Y+\left(\bar{\nabla}_{X} \varphi\right) \varphi Y\right]:= \\
:=C_{\bar{\nabla}}^{\varphi}(X, Y)+\varphi\left(C_{\bar{\nabla}}^{\varphi}(X, \varphi Y)\right)-\varphi^{2}\left(C_{\bar{\nabla}}^{\varphi}(X, Y)\right)
\end{gathered}
$$

Similarly,

$$
B_{\bar{\nabla}^{(\varphi)}}^{\varphi}(X, Y)=B_{\bar{\nabla}}^{\varphi}(X, Y)+\varphi\left(B_{\bar{\nabla}}^{\varphi}(X, \varphi Y)\right)-\varphi^{2}\left(B_{\bar{\nabla}}^{\varphi}(X, Y)\right) .
$$

5. Projectively and dual-projectively equivalent connections

In the last section we shall treat the case of projectively and dual-projectively equivalent connections studying their invariance under such transformations. Recall that two linear connections $\bar{\nabla}$ and $\bar{\nabla}^{\prime}$ are called [5]:
i) projectively equivalent if there exists a 1-form η such that:

$$
\begin{equation*}
\bar{\nabla}^{\prime}=\bar{\nabla}+\eta \otimes I_{\mathfrak{X}(M)}+I_{\mathfrak{X}(M)} \otimes \eta ; \tag{5.1}
\end{equation*}
$$

ii) dual-projectively equivalent if there exists a 1-form η such that:

$$
\begin{equation*}
\bar{\nabla}^{\prime}=\bar{\nabla}-g \otimes \xi \tag{5.2}
\end{equation*}
$$

where ξ is the g-dual vector field of η and g a pseudo-Riemannian metric.
Consider $\bar{\nabla}$ and $\bar{\nabla}^{\prime}$, two linear projectively equivalent connections satisfying

$$
\begin{equation*}
\bar{\nabla}^{\prime}=\bar{\nabla}+\eta \otimes I_{\mathfrak{X}(M)}+I_{\mathfrak{X}(M)} \otimes \eta \tag{5.3}
\end{equation*}
$$

for η the paracontact form, and their φ-conjugate connections, $\bar{\nabla}^{(\varphi)}$ and $\left(\bar{\nabla}^{\prime}\right)^{(\varphi)}$

$$
\begin{gather*}
\left(\bar{\nabla}^{\prime}\right)_{X}^{(\varphi)} Y:=\bar{\nabla}_{X}^{\prime} Y+\varphi\left(\left(\bar{\nabla}_{X}^{\prime} \varphi\right) Y\right)= \\
=\bar{\nabla}_{X} Y+\varphi\left(\left(\bar{\nabla}_{X} \varphi\right) Y\right)+\eta(X) Y+\eta(Y) X-\eta(Y) \varphi^{2} X:= \\
:=\bar{\nabla}_{X}^{(\varphi)} Y+\eta(X) Y+\eta(X) \eta(Y) \xi \tag{5.4}
\end{gather*}
$$

From a direct computation follows:
Lemma 5.1. If $(M, \varphi, \xi, \eta, g)$ is a para-Kenmotsu manifold, then

1. $\bar{\nabla}^{\prime} \varphi=\bar{\nabla} \varphi-\varphi \otimes \eta$;
2. $\left(\bar{\nabla}^{\prime}\right)^{(\varphi)} \varphi=\bar{\nabla}^{(\varphi)} \varphi$.

Proposition 5.2. Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold and $\bar{\nabla}, \bar{\nabla}^{\prime}$ two linear projectively equivalent connections satisfying (5..5). Then the structure and the virtual tensors of them and their φ-conjugate connections satisfy:

$$
\begin{align*}
& C_{\bar{\nabla}^{\prime}}^{\varphi}=C_{\bar{\nabla}}^{\varphi}-\frac{1}{2} \varphi^{2} \otimes \eta, \quad C_{\left(\bar{\nabla}^{\prime}\right)^{(\varphi)}}^{\varphi}=C_{\bar{\nabla}^{(\varphi)}}^{\varphi} \tag{5.5}\\
& B_{\bar{\nabla}^{\prime}}^{\varphi}=B_{\bar{\nabla}}^{\varphi}-\frac{1}{2} \varphi^{2} \otimes \eta, \quad B_{\left(\bar{\nabla}^{\prime}\right)(\varphi)}^{\varphi}=B_{\bar{\nabla}^{(\varphi)}}^{\varphi} \tag{5.6}
\end{align*}
$$

Proof. Use the relations from Lemma in the expressions of C^{φ} and B^{φ}.
As a consequence:
Corollary 5.3. Under the hypotheses above, we have

$$
\begin{equation*}
C_{\bar{\nabla}^{\prime}}^{\varphi}-C_{\bar{\nabla}}^{\varphi}=B_{\bar{\nabla}^{\prime}}^{\varphi}-B_{\bar{\nabla}}^{\varphi}=C_{\nabla_{\nabla}}^{\varphi} \tag{5.7}
\end{equation*}
$$

Take now $\bar{\nabla}$ and $\bar{\nabla}^{\prime}$, two linear dual-projectively equivalent connections satisfying

$$
\begin{equation*}
\bar{\nabla}^{\prime}=\bar{\nabla}-g \otimes \xi \tag{5.8}
\end{equation*}
$$

for ξ the characteristic vector field, and their φ-conjugate connections, $\bar{\nabla}^{(\varphi)}$ and $\left(\bar{\nabla}^{\prime}\right)^{(\varphi)}$:

$$
\left(\bar{\nabla}^{\prime}\right)_{X}^{(\varphi)} Y:=\bar{\nabla}_{X}^{\prime} Y+\varphi\left(\left(\bar{\nabla}_{X}^{\prime} \varphi\right) Y\right)=\bar{\nabla}_{X} Y+\varphi\left(\left(\bar{\nabla}_{X} \varphi\right) Y\right)-g(X, Y) \xi:=
$$

$$
\begin{equation*}
:=\bar{\nabla}_{X}^{(\varphi)} Y-g(X, Y) \xi=\left(\bar{\nabla}^{(\varphi)}\right)_{X}^{\prime} Y \tag{5.9}
\end{equation*}
$$

From a direct computation follows:

Lemma 5.4. If $(M, \varphi, \xi, \eta, g)$ is a para-Kenmotsu manifold, then

1. $\bar{\nabla}^{\prime} \varphi=\bar{\nabla} \varphi+g(\varphi \cdot, \cdot) \otimes \xi ;$
2. $\left(\bar{\nabla}^{\prime}\right)^{(\varphi)} \varphi=\bar{\nabla}^{(\varphi)} \varphi+g(\varphi \cdot, \cdot) \otimes \xi$.

Proposition 5.5. Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold and $\bar{\nabla}, \bar{\nabla}^{\prime}$ two linear dual-projectively equivalent connections satisfying (5.8). Then the structure and the virtual tensors of them and their φ-conjugate connections satisfy:

$$
\begin{gather*}
C_{\bar{\nabla}^{\prime}}^{\varphi}=C_{\bar{\nabla}}^{\varphi}, \quad C_{\left(\bar{\nabla}^{\prime}\right)^{(\varphi)}}^{\varphi}=C_{\bar{\nabla}^{(\varphi)}}^{\varphi} \tag{5.10}\\
B_{\bar{\nabla}^{\prime}}^{\varphi}=B_{\bar{\nabla}}^{\varphi}-2 g(\varphi \cdot, \varphi \cdot) \otimes \xi, \quad B_{\left(\bar{\nabla}^{\prime}\right)(\varphi)}^{\varphi}=B_{\bar{\nabla}^{\prime}(\varphi)}^{\varphi}-2 g(\varphi \cdot, \varphi \cdot) \otimes \xi . \tag{5.11}
\end{gather*}
$$

Proof. Use the relations from Lemma 5.4 in the expressions of C^{φ} and B^{φ}.
We can conclude:
Theorem 5.6. On a para-Kenmotsu manifold, the structure tensor is invariant under dual-projective transformations.

References

[1] Blaga, A.M., η-Ricci solitons on para-Kenmotsu manifolds. Balkan Journal of Geometry and Its Applications 20(1) (2015), 1-13.
[2] Blaga, A.M., Crasmareanu, M., Special connections in almost paracontact metric geometry. Bull. Iranian Math. Soc. 41(6) (2015), in press.
[3] Blaga, A.M., Crasmareanu, M., The geometry of complex conjugate connections. Hacettepe J. Math. and Statistics 41(1) (2012), 119-126.
[4] Blaga, A.M., Crasmareanu, M., The geometry of product conjugate connections. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Math. 59(1) (2013), 73-84.
[5] Călin, O., Matsuzoe, H., Zhang, J., Generalizations of conjugate connections. Available at: http://www.lsa.umich.edu/psych/junz/Publication/2009.
[6] Dacko, P., Olszak, Z., On weakly para-cosymplectic manifolds of dimension 3. J. Geom. Phys. 57 (2007), 561-570.
[7] Golab, S., On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.) 29 (1975), 293-301.
[8] Ivanov, S., Vassilev, D., Zamkovoy, S., Conformal paracontact curvature and the local flatness theorem. Geom. Dedicata 144 (2010), 79-100.
[9] Kenmotsu, K., A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93-103.
[10] Kirichenko, V.F., Method of generalized Hermitian geometry in the theory of almost contact manifold. Itogi Nauki i Tekhniki, Problems of geometry 18 (1986), 25-71; transl. in J. Soviet. Math. 42(5) (1988), 1885-1919.
[11] Olszak, Z., The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure. Publ. Inst. Math. nouv. sér. 94 (108) (2013), 31-42.
[12] Sinha, B.B., Sai Prasad, K.L., A class of almost para contact metric manifolds. Bull. Cal. Math. Soc. 87 (1995), 307-312.
[13] Wełyczko, J., Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. Math., DOI 10.1007/s00009-013-0361-2, 2013.
[14] Zamkovoy, S., Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 36(1) (2008), 37-60.

Received by the editors October 6, 2014

[^0]: ${ }^{1}$ The author acknowledges the support by the research grant PN-II-ID-PCE-2011-3-0921.
 ${ }^{2}$ Department of Mathematics, West University of Timişoara, e-mail: adarablaga@yahoo.com

