CANONICAL CONNECTIONS ON PARA-KENMOTSU MANIFOLDS¹

Adara M. Blaga²

Abstract. In the context of para-Kenmotsu geometry, properties of the φ -conjugate connections of some canonical linear connections (Levi-Civita, Schouten-van Kampen, Golab and Zamkovoy canonical paracontact connections) are established, underlining the relations between them and between their structure and virtual tensors. The case of projectively and dual-projectively equivalent connections is also treated. In particular, it is proved that the structure tensor is invariant under dual-projective transformations.

AMS Mathematics Subject Classification (2010): 53C21, 53C25, 53C44 Key words and phrases: linear connections; para-Kenmotsu structure

1. Introduction

The present paper is dedicated to a brief study of some canonical connections defined on a para-Kenmotsu manifold: Levi-Civita, Schouten-van Kampen, Golab and Zamkovoy canonical paracontact connections with a special view towards φ -conjugation. The structure and the virtual tensors attached to these connections are considered and in the last section, the invariance of the structure tensor under dual-projective transformations is proved. Note that the para-Kenmotsu structure was introduced by J. Wełyczko in [13] for 3-dimensional normal almost paracontact metric structures. A similar notion called P-Kenmotsu structure appears in the paper of B. B. Sinha and K. L. Sai Prasad [12].

Let M be a (2n+1)-dimensional smooth manifold, φ a tensor field of (1,1)-type, ξ a vector field, η a 1-form and g a pseudo-Riemannian metric on M of signature (n+1,n).

Definition 1.1. [14] We say that (φ, ξ, η, g) defines an almost paracontact metric structure on M if

$$\varphi \xi = 0, \quad \eta \circ \varphi = 0, \quad \eta(\xi) = 1, \quad \varphi^2 = I_{\mathfrak{X}(M)} - \eta \otimes \xi, \quad g(\varphi, \varphi) = -g + \eta \otimes \eta$$

and φ induces on the 2n-dimensional distribution $\mathcal{D} := \ker \eta$ an almost paracomplex structure P; i.e. $P^2 = I_{\mathfrak{X}(M)}$ and the eigensubbundles \mathcal{D}^+ , \mathcal{D}^- , corresponding to the eigenvalues 1, -1 of P, respectively, have equal dimension n; hence $\mathcal{D} = \mathcal{D}^+ \oplus \mathcal{D}^-$.

 $^{^{1}\}mathrm{The}$ author acknowledges the support by the research grant PN-II-ID-PCE-2011-3-0921.

 $^{^2\}mathrm{Department}$ of Mathematics, West University of Timişoara, e-mail: adarablaga@yahoo.com

In this case, $(M, \varphi, \xi, \eta, g)$ is called an almost paracontact metric manifold, φ the structure endomorphism, ξ the characteristic vector field, η the paracontact form and g compatible metric.

Examples of almost paracontact metric structures can be found in [8] and [6]. From the definition it follows that η is the g-dual of the unitary vector field ξ :

(1.1)
$$\eta(X) = g(X, \xi)$$

and φ is a q-skew-symmetric operator,

(1.2)
$$g(\varphi X, Y) = -g(X, \varphi Y).$$

Note that the canonical distribution \mathcal{D} is φ -invariant since $\mathcal{D} = Im\varphi$. Moreover, ξ is orthogonal to \mathcal{D} and therefore the tangent bundle splits orthogonally:

$$(1.3) TM = \mathcal{D} \oplus \langle \xi \rangle.$$

An analogue of the Kenmotsu manifold [9] in paracontact geometry will be further considered.

Definition 1.2. [11] We say that the almost paracontact metric structure (φ, ξ, η, g) is para-Kenmotsu if the Levi-Civita connection ∇ of g satisfies $(\nabla_X \varphi)Y = g(\varphi X, Y)\xi - \eta(Y)\varphi X$, for any $X, Y \in \mathfrak{X}(M)$.

Example 1.3. Let $M=\{(x,y,z)\in\mathbb{R}^3:z\neq 0\}$ where (x,y,z) are the standard coordinates in \mathbb{R}^3 . Set

$$\varphi := \frac{\partial}{\partial y} \otimes dx + \frac{\partial}{\partial x} \otimes dy, \quad \xi := -\frac{\partial}{\partial z}, \quad \eta := -dz,$$
$$q := dx \otimes dx - dy \otimes dy + dz \otimes dz.$$

Then (φ, ξ, η, g) defines a para-Kenmotsu structure on \mathbb{R}^3 .

Properties of this structure will be given in the next Proposition.

Proposition 1.4. [1] On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the following relations hold:

(1.4)
$$\nabla \xi = I_{\mathfrak{X}(M)} - \eta \otimes \xi$$

(1.5)
$$\eta(\nabla_X \xi) = 0,$$

$$(1.6) R_{\nabla}(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

(1.7)
$$\eta(R_{\nabla}(X,Y)W) = -\eta(X)g(Y,W) + \eta(Y)g(X,W),$$

$$(1.8) \nabla \eta = g - \eta \otimes \eta,$$

(1.9)
$$L_{\xi}\varphi = 0, \quad L_{\xi}\eta = 0, \quad L_{\xi}g = 2(g - \eta \otimes \eta),$$

where R_{∇} is the Riemann curvature tensor field of the Levi-Civita connection ∇ associated to g. Moreover, η is closed, the distribution \mathcal{D} is involutive and the Nijenhuis tensor field of φ vanishes identically.

2. Canonical connections on $(M, \varphi, \xi, \eta, g)$

Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold. From [1], [11], [7], [14] we get the expressions and the relations with the para-Kenmotsu structure of the canonical connections on M we are interested in.

1. Levi-Civita connection ∇ satisfies [1]:

(2.1)
$$\nabla \varphi = g(\varphi, \cdot) \otimes \xi - \varphi \otimes \eta$$
, $\nabla \xi = I_{\mathfrak{X}(M)} - \eta \otimes \xi$, $\nabla \eta = g - \eta \otimes \eta$, $\nabla g = 0$,

its torsion and curvature being given by

$$(2.2) T_{\nabla} = 0$$

(2.3)
$$\eta(R_{\nabla}(X,Y)W) = -\eta(X)g(Y,W) + \eta(Y)g(X,W).$$

2. Schouten-van Kampen connection $\tilde{\nabla}$ equals to [11]:

(2.4)
$$\tilde{\nabla} := \nabla - I_{\mathfrak{X}(M)} \otimes \eta + g \otimes \xi$$

and satisfies [11]:

(2.5)
$$\tilde{\nabla}\varphi = 0, \quad \tilde{\nabla}\xi = 0, \quad \tilde{\nabla}\eta = 0, \quad \tilde{\nabla}g = 0,$$

its torsion and curvature being given by

$$(2.6) T_{\tilde{\nabla}} = \eta \otimes I_{\mathfrak{X}(M)} - I_{\mathfrak{X}(M)} \otimes \eta$$

(2.7)
$$R_{\tilde{\nabla}}(X,Y)W = R_{\nabla}(X,Y)W - g(W,X)Y + g(Y,W)X - \eta(W)g(X,Y)\xi.$$

3. Golab connection ∇^G equals to [7]:

$$(2.8) \nabla^G := \nabla - \eta \otimes \varphi$$

and satisfies [2]:

(2.9)
$$\nabla^G \varphi = \nabla \varphi, \quad \nabla^G \xi = \nabla \xi, \quad \nabla^G \eta = \nabla \eta, \quad \nabla^G g = \nabla g = 0,$$

its torsion and curvature being given by

$$(2.10) T_{\nabla^G} = \varphi \otimes \eta - \eta \otimes \varphi$$

(2.11) $R_{\nabla^G}(X,Y)W = R_{\nabla}(X,Y)W + g(T,W)\xi - g(\xi,W)T$, where $T := -T_{\nabla^G}(X,Y)$.

4. Zamkovoy canonical paracontact connection ∇^Z equals to [14]:

(2.12)
$$\nabla_X^Z Y := \nabla_X Y + \eta(X)\varphi Y - \eta(Y)\nabla_X \xi + (\nabla_X \eta)Y \cdot \xi$$

equivalent to

(2.13)
$$\nabla^Z = \nabla - I_{\mathfrak{X}(M)} \otimes \eta + g \otimes \xi + \eta \otimes \varphi$$

and satisfies [14]:

(2.14)
$$\nabla^Z \varphi = 0, \ \nabla^Z \xi = 0, \ \nabla^Z \eta = 0, \ \nabla^Z g = 0,$$

its torsion and curvature being given by

$$(2.15) T_{\nabla^Z} = \eta \otimes (\varphi + I_{\mathfrak{X}(M)}) - (\varphi + I_{\mathfrak{X}(M)}) \otimes \eta (= -T_{(\nabla^G)^*})$$

(2.16)
$$R_{\nabla^{Z}}(X,Y)W = R_{\nabla}(X,Y)W + g(Y,W)X - g(X,W)Y.$$

3. φ -conjugate connections

In this section we shall consider the φ -conjugate connections of the four canonical connections presented above on a para-Kenmotsu manifold.

Recall that for an arbitrary linear connection $\bar{\nabla}$, the φ -conjugate connection of $\bar{\nabla}$ is defined by

$$(3.1) \bar{\nabla}^{(\varphi)} := \bar{\nabla} + \varphi \circ \bar{\nabla} \varphi,$$

that is, $\bar{\nabla}_X^{(\varphi)}Y = \varphi(\bar{\nabla}_X\varphi Y) + \eta(\bar{\nabla}_XY)\xi$, for any $X, Y \in \mathfrak{X}(M)$. Applying the φ -conjugation by n times, $n \in \mathbb{N}$, we can prove, by mathematical induction, that

(3.2)
$$\bar{\nabla}_X^{n(\varphi)} Y = \varphi^n(\bar{\nabla}_X \varphi^n Y) + \eta(\bar{\nabla}_X Y) \xi.$$

Therefore,

(3.3)
$$\bar{\nabla}_X^{n(\varphi)} Y - \bar{\nabla}_X^{(\varphi)} Y = \varphi^n(\bar{\nabla}_X \varphi^n Y) - \varphi(\bar{\nabla}_X \varphi Y),$$

for any $n \in \mathbb{N}$ and any $X, Y \in \mathfrak{X}(M)$.

Appearing in the theory of Courant algebroids, the φ -torsion of a linear connection can be expressed in terms of torsion of the φ -conjugate connection, namely:

Proposition 3.1. Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold, $\bar{\nabla}$ a linear connection on M and $\bar{\nabla}^{(\varphi)}$ its φ -conjugate connection. Then:

$$T_{(\bar{\nabla},\varphi)}(X,Y) = -T_{\bar{\nabla}(\varphi)}(X,Y) + T_{\bar{\nabla}}(X,Y) + \varphi(T_{\bar{\nabla}}(\varphi X,Y)) + \varphi(T_{\bar{\nabla}}(X,\varphi Y)) - \varphi(T_{\bar{\nabla}}(X,\varphi Y)) + \varphi(T_{\bar{\nabla}}(X,\varphi$$

$$(3.4) -\varphi^2(T_{\bar{\nabla}}(X,Y)),$$

for any $X, Y \in \mathfrak{X}(M)$.

Proof. For any $X, Y \in \mathfrak{X}(M)$, the φ -torsion of $\overline{\nabla}$ is defined by:

$$T_{(\bar{\nabla},\varphi)}(X,Y) := \varphi(\bar{\nabla}_{\varphi X}Y - \bar{\nabla}_{\varphi Y}X) - [\varphi X, \varphi Y].$$

Observe that

$$\begin{split} T_{\bar{\nabla}}(X,Y) - T_{\bar{\nabla}(\varphi)}(X,Y) &= \bar{\nabla}_Y^{(\varphi)} X - \bar{\nabla}_Y X - \bar{\nabla}_X^{(\varphi)} Y + \bar{\nabla}_X Y = \\ &= (\varphi \circ \bar{\nabla} \varphi)(Y,X) - (\varphi \circ \bar{\nabla} \varphi)(X,Y) = \\ &= \varphi(\bar{\nabla}_Y \varphi X - \bar{\nabla}_X \varphi Y) - \varphi^2(\bar{\nabla}_Y X - \bar{\nabla}_X Y) = \\ &= \varphi(T_{\bar{\nabla}}(Y,\varphi X) + \bar{\nabla}_{\varphi X} Y + [Y,\varphi X] - T_{\bar{\nabla}}(X,\varphi Y) - \bar{\nabla}_{\varphi Y} X - [X,\varphi Y]) + \\ &+ \varphi^2(T_{\bar{\nabla}}(X,Y) + [X,Y]) = \\ &= \varphi(\bar{\nabla}_{\varphi X} Y - \bar{\nabla}_{\varphi Y} X) - \varphi[\varphi X,Y] - \varphi[X,\varphi Y] + \varphi^2[X,Y] + \\ &+ \varphi(T_{\bar{\nabla}}(Y,\varphi X) - T_{\bar{\nabla}}(X,\varphi Y)) + \varphi^2(T_{\bar{\nabla}}(X,Y)) := \\ &:= T_{(\bar{\nabla},\varphi)}(X,Y) + N_{\varphi}(X,Y) + \varphi(T_{\bar{\nabla}}(Y,\varphi X)) - \varphi(T_{\bar{\nabla}}(X,\varphi Y)) + \varphi^2(T_{\bar{\nabla}}(X,Y)). \end{split}$$

Consider now the φ -conjugate connection of the Levi-Civita connection ∇

(3.5)
$$\nabla^{(\varphi)} := \nabla + \varphi \circ \nabla \varphi$$

which equals to

(3.6)
$$\nabla_X^{(\varphi)} Y = \nabla_X Y - \eta(Y) X + \eta(X) \eta(Y) \xi.$$

Note that
$$\nabla_X^{2(\varphi)}Y = \varphi(\nabla_X \varphi Y) + \eta(\nabla_X Y)\xi = \nabla_X^{(\varphi)}Y$$
, for any $X, Y \in \mathfrak{X}(M)$.

Proposition 3.2. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the φ -conjugate connection of the Levi-Civita connection ∇ satisfies:

1.
$$\nabla^{(\varphi)}\varphi = q(\varphi,\cdot) \otimes \xi$$
;

2.
$$\nabla^{(\varphi)}\xi = 0;$$

3.
$$\nabla^{(\varphi)}\eta = \nabla \eta$$
;

4.
$$\nabla^{(\varphi)}g = g(\cdot, \eta \otimes I_{\mathfrak{X}(M)} + I_{\mathfrak{X}(M)} \otimes \eta - \eta \otimes \eta \otimes \xi);$$

5.
$$T_{\nabla^{(\varphi)}} = \eta \otimes I_{\mathfrak{X}(M)} - I_{\mathfrak{X}(M)} \otimes \eta \text{ and } T_{(\nabla,\varphi)} = -T_{\nabla^{(\varphi)}};$$

6.
$$R_{\nabla^{(\varphi)}}(X,Y)W = R_{\nabla}(X,Y)W + \eta(W)R_{\nabla}(X,Y)\xi - g(X,W)(Y - \eta(Y)\xi) + g(Y,W)(X - \eta(X)\xi), \text{ for any } X, Y, W \in \mathfrak{X}(M); \text{ in particular, } R_{\nabla^{(\varphi)}}(X,Y)\xi = R_{\nabla}(X,Y)\xi.$$

Proof. 1.

3.

136

$$\begin{split} (\nabla_X^{(\varphi)}\varphi)Y := \nabla_X^{(\varphi)}\varphi Y - \varphi(\nabla_X^{(\varphi)}Y) &= \nabla_X\varphi Y - \varphi(\nabla_XY) + \eta(Y)\varphi X := \\ := (\nabla_X\varphi)Y + \eta(Y)\varphi X &= g(\varphi X,Y)\xi; \end{split}$$

2. $\nabla_{\mathbf{Y}}^{(\varphi)} \xi = \nabla_{\mathbf{X}} \xi - X + \eta(X) \xi;$

 $(\nabla_X^{(\varphi)}\eta)Y := X(\eta(Y)) - \eta(\nabla_X^{(\varphi)}Y) = X(\eta(Y)) - \eta(\nabla_XY) := (\nabla_X\eta)Y;$

4.
$$(\nabla_X^{(\varphi)}g)(Y,W) := X(g(Y,W)) - g(\nabla_X^{(\varphi)}Y,W) - g(Y,\nabla_X^{(\varphi)}W) =$$
$$= \eta(Y)g(X,W) + \eta(W)g(X,Y) - 2\eta(X)\eta(Y)\eta(W);$$

5.
$$T_{\nabla^{(\varphi)}}(X,Y) := \nabla_X^{(\varphi)} Y - \nabla_Y^{(\varphi)} X - [X,Y] = \eta(X)Y - \eta(Y)X;$$

6.
$$R_{\nabla^{(\varphi)}}(X,Y)W:=\nabla_X^{(\varphi)}\nabla_Y^{(\varphi)}W-\nabla_Y^{(\varphi)}\nabla_X^{(\varphi)}W-\nabla_{[X,Y]}^{(\varphi)}W.$$

We obtain

$$\begin{split} \nabla_X^{(\varphi)} \nabla_Y^{(\varphi)} W &= \nabla_X^{(\varphi)} (\nabla_Y W) - \eta(W) \nabla_X^{(\varphi)} Y - X(\eta(W)) Y + \eta(Y) \eta(W) \nabla_X^{(\varphi)} \xi + \\ &\quad + X(\eta(Y)) \eta(W) \xi + X(\eta(W)) \eta(Y) \xi = \\ &= \nabla_X \nabla_Y W - \eta(\nabla_Y W) X + \eta(X) \eta(\nabla_Y W) \xi - \eta(W) \nabla_X Y - \eta(Y) \eta(W) X - \\ &\quad - \eta(X) \eta(Y) \eta(W) \xi - X(\eta(W)) Y + X(\eta(Y)) \eta(W) \xi + X(\eta(W)) \eta(Y) \xi. \end{split}$$
 Similarly,

$$\nabla_Y^{(\varphi)} \nabla_X^{(\varphi)} W = \nabla_Y \nabla_X W - \eta(\nabla_X W) Y + \eta(Y) \eta(\nabla_X W) \xi - \eta(W) \nabla_Y X - \eta(X) \eta(W) Y - \eta(X) \eta(Y) \eta(W) \xi - Y(\eta(W)) X + Y(\eta(X)) \eta(W) \xi + Y(\eta(W)) \eta(X) \xi.$$

Also,

$$\nabla_{[X,Y]}^{(\varphi)} W = \nabla_{[X,Y]} W - \eta(W)[X,Y] + \eta([X,Y])\eta(W)\xi.$$

It follows that

$$\begin{split} R_{\nabla^{(\varphi)}}(X,Y)W &= R_{\nabla}(X,Y)W + (d\eta)(X,Y)\eta(W)\xi + g(W,\nabla_X\xi)\eta(Y)\xi - \\ -g(W,\nabla_Y\xi)\eta(X)\xi - \eta(\nabla_YW)X + \eta(\nabla_XW)Y + Y(\eta(W))X - X(\eta(W))Y - \\ -\eta(Y)\eta(W)X + \eta(X)\eta(W)Y &= \end{split}$$

$$\begin{split} = R_{\nabla}(X,Y)W + g(W,X)\eta(Y)\xi - g(W,Y)\eta(X)\xi - g(W,X)Y + g(W,Y)X + \\ + \eta(X)\eta(W)Y - \eta(Y)\eta(W)X = \\ = R_{\nabla}(X,Y)W - g(X,W)(Y - \eta(Y)\xi) + g(Y,W)(X - \eta(X)\xi) + \\ + \eta(W)[\eta(X)Y - \eta(Y)X]. \end{split}$$

Concerning the Schouten-van Kampen, the Golab and the Zamkovoy canonical paracontact connections, we can state:

Proposition 3.3. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the φ -conjugate connections of $\tilde{\nabla}$, ∇^G and ∇^Z respectively, are given by:

(3.7)
$$\tilde{\nabla}^{(\varphi)} = \tilde{\nabla}, \quad (\nabla^G)^{(\varphi)} = \nabla^{(\varphi)} - \eta \otimes \varphi, \quad (\nabla^Z)^{(\varphi)} = \nabla^Z.$$

Proof. They follow from relations (2.4), (2.8), (2.12) and (3.1).

Remark 3.4. For $n \in \mathbb{N}$, applying the φ -conjugation n times, we obtain

$$\nabla^{n(\varphi)} = \nabla^{(\varphi)}, \quad \tilde{\nabla}^{n(\varphi)} = \tilde{\nabla}, \quad (\nabla^G)^{n(\varphi)} = (\nabla^G)^{(\varphi)}, \quad (\nabla^Z)^{n(\varphi)} = \nabla^Z.$$

Indeed, for ∇ , $\tilde{\nabla}$ and ∇^Z follows immediately from the previous Proposition. For the Golab connection, notice that $\varphi^{2n+1} = \varphi$, so

$$(\nabla^G)_X^{n(\varphi)}Y = \varphi^n(\nabla_X^G \varphi^n Y) + \eta(\nabla_X^G Y)\xi =$$

$$= \varphi^n(\nabla_X \varphi^n Y) + \eta(\nabla_X Y)\xi - \eta(X)\varphi^{2n+1}Y =$$

$$= \nabla_Y^{n(\varphi)}Y - \eta(X)\varphi Y = (\nabla^{(\varphi)} - \eta \otimes \varphi)(X, Y) = (\nabla^G)^{(\varphi)}.$$

4. Relating ∇ , $\tilde{\nabla}$, ∇^G and ∇^Z . A view towards the structure and the virtual tensors

Remark that the Golab connection ∇^G is obtained by perturbing the Levi-Civita connection ∇ with $\eta \otimes \varphi$, so the two connections coincide on \mathcal{D} . The same thing happens for the Schouten-van Kampen connection $\tilde{\nabla}$ and the Zamkovoy canonical paracontact connection ∇^Z

(4.1)
$$\nabla^G = \nabla - \eta \otimes \varphi, \quad \tilde{\nabla} = \nabla^Z - \eta \otimes \varphi.$$

Therefore,

$$(4.2) \nabla + \tilde{\nabla} = \nabla^G + \nabla^Z.$$

Also, from relations (2.4), (2.8) and (2.12) follow that (∇, ∇^G) and $(\tilde{\nabla}, \nabla^Z)$ behave similarly with respect to (φ, ξ, η, g) :

(4.3)
$$\nabla \varphi = \nabla^G \varphi, \quad \nabla \xi = \nabla^G \xi, \quad \nabla \eta = \nabla^G \eta, \quad \nabla g = \nabla^G g = 0;$$

$$(4.4) \quad \tilde{\nabla}\varphi = \nabla^Z\varphi = 0, \quad \tilde{\nabla}\xi = \nabla^Z\xi = 0, \quad \tilde{\nabla}\eta = \nabla^Z\eta = 0, \quad \tilde{\nabla}g = \nabla^Zg = 0.$$

Other geometrical structures associated to a pair of a tensor field φ and a linear connection $\bar{\nabla}$ are the *structure* and the *virtual tensors*, respectively defined as follows:

(4.5)
$$C^{\varphi}_{\bar{\nabla}}(X,Y) := \frac{1}{2} [(\bar{\nabla}_{\varphi X} \varphi) Y + (\bar{\nabla}_{X} \varphi) \varphi Y]$$

and

$$(4.6) B_{\overline{\nabla}}^{\varphi}(X,Y) := \frac{1}{2} [(\overline{\nabla}_{\varphi X} \varphi) Y - (\overline{\nabla}_{X} \varphi) \varphi Y].$$

These tensors have been introduced in [10] for almost complex structures. They also appear in [3] and, in [4], for almost product structures.

In our context, we have:

Proposition 4.1. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the structure and the virtual tensors associated with ∇ , $\tilde{\nabla}$, ∇^G and ∇^Z satisfy:

(4.7)
$$C^{\varphi}_{\nabla}(X,Y) = C^{\varphi}_{\nabla^G}(X,Y) = -\frac{1}{2}\eta(Y)\varphi^2X,$$

(4.8)
$$B^{\varphi}_{\nabla}(X,Y) = B^{\varphi}_{\nabla^G}(X,Y) = -\frac{1}{2}\eta(Y)[X + \eta(X)\xi] + g(X,Y)\xi,$$

(4.9)
$$C^{\varphi}_{\tilde{\nabla}} = C^{\varphi}_{\nabla^{Z}} = B^{\varphi}_{\tilde{\nabla}} = B^{\varphi}_{\nabla^{Z}} = 0.$$

Proof. These relations follow if we replace the expressions $(\nabla_X \varphi)Y = (\nabla_X^G \varphi)Y = g(\varphi X, Y)\xi - \eta(Y)\varphi X$ and $\tilde{\nabla}\varphi = \nabla^Z \varphi = 0$ in (4.5) and (4.6).

As a consequence:

Corollary 4.2. Under the hypotheses above, we have

$$(4.10) C_{\nabla}^{\varphi} - B_{\nabla}^{\varphi} = C_{\nabla^{G}}^{\varphi} - B_{\nabla^{G}}^{\varphi} = -\frac{1}{2}L_{\xi}g \otimes \xi.$$

Concerning their φ -conjugate connections, we can state:

Proposition 4.3. On a para-Kenmotsu manifold $(M, \varphi, \xi, \eta, g)$, the structure tensors of all φ -conjugate connections of ∇ , $\tilde{\nabla}$, ∇^G and ∇^Z vanish identically and the virtual tensors satisfy

$$(4.11) B_{\nabla^{(\varphi)}}^{\varphi} = B_{(\nabla^G)^{(\varphi)}}^{\varphi} = -g(\varphi \cdot, \varphi \cdot) \otimes \xi, \quad B_{\tilde{\nabla}^{(\varphi)}}^{\varphi} = B_{(\nabla^Z)^{(\varphi)}}^{\varphi} = 0.$$

Proof. Note first that:

$$\nabla^{(\varphi)}\varphi = \nabla\varphi + \varphi \otimes \eta, \quad (\nabla^G)^{(\varphi)}\varphi = \nabla^G\varphi + \varphi \otimes \eta,$$

$$\tilde{\nabla}^{(\varphi)}\varphi = \tilde{\nabla}\varphi, \ \ (\nabla^Z)^{(\varphi)}\varphi = \nabla^Z\varphi$$

and use the fact that $\nabla \varphi = \nabla^G \varphi = g(\varphi \cdot, \cdot) \otimes \xi - \varphi \otimes \eta$ and $\tilde{\nabla} \varphi = \nabla^Z \varphi = 0$. Then,

$$\begin{split} C^{\varphi}_{\nabla^{(\varphi)}}(X,Y) &= C^{\varphi}_{\nabla}(X,Y) + \frac{1}{2}\eta(Y)\varphi^2X = 0, \\ C^{\varphi}_{(\nabla^G)^{(\varphi)}}(X,Y) &= C^{\varphi}_{\nabla^G}(X,Y) + \frac{1}{2}\eta(Y)\varphi^2X = 0 \end{split}$$

and

$$C^{\varphi}_{\tilde{\nabla}^{(\varphi)}} = C^{\varphi}_{\tilde{\nabla}} = C^{\varphi}_{\nabla^Z} = C^{\varphi}_{(\nabla^Z)^{(\varphi)}}.$$

Also,

$$B^{\varphi}_{\nabla^{(\varphi)}}(X,Y) = B^{\varphi}_{\nabla}(X,Y) + \frac{1}{2}\eta(Y)\varphi^{2}X = -g(\varphi X, \varphi Y)\xi,$$

$$B^{\varphi}_{(\nabla^{G})^{(\varphi)}}(X,Y) = B^{\varphi}_{\nabla^{G}}(X,Y) + \frac{1}{2}\eta(Y)\varphi^{2}X = -g(\varphi X, \varphi Y)\xi$$
 and
$$B^{\varphi}_{\nabla^{(\varphi)}} = B^{\varphi}_{\nabla} = B^{\varphi}_{\nabla^{Z}} = B^{\varphi}_{(\nabla^{Z})^{(\varphi)}}.$$

Remark 4.4. In the general case, for ∇ arbitrary linear connection, we have:

$$(\bar{\nabla}_X^{(\varphi)}\varphi)Y := \bar{\nabla}_X^{(\varphi)}\varphi Y - \varphi(\bar{\nabla}_X^{(\varphi)}Y) = (\bar{\nabla}_X\varphi)Y + \varphi((\bar{\nabla}_X\varphi)\varphi Y) - \varphi^2((\bar{\nabla}_X\varphi)Y),$$
 therefore

$$\begin{split} C^{\varphi}_{\bar{\nabla}^{(\varphi)}}(X,Y) &:= \frac{1}{2} [(\bar{\nabla}^{(\varphi)}_{\varphi X}\varphi)Y + (\bar{\nabla}^{(\varphi)}_{X}\varphi)\varphi Y] = \frac{1}{2} [(\bar{\nabla}_{\varphi X}\varphi)Y + (\bar{\nabla}_{X}\varphi)\varphi Y] + \\ &+ \frac{1}{2}\varphi [(\bar{\nabla}_{\varphi X}\varphi)\varphi Y + (\bar{\nabla}_{X}\varphi)\varphi^{2}Y] - \frac{1}{2}\varphi^{2} [(\bar{\nabla}_{\varphi X}\varphi)Y + (\bar{\nabla}_{X}\varphi)\varphi Y] := \\ &:= C^{\varphi}_{\bar{\nabla}}(X,Y) + \varphi(C^{\varphi}_{\bar{\nabla}}(X,\varphi Y)) - \varphi^{2}(C^{\varphi}_{\bar{\nabla}}(X,Y)). \end{split}$$

Similarly,

$$B^{\varphi}_{\bar{\nabla}^{(\varphi)}}(X,Y) = B^{\varphi}_{\bar{\nabla}}(X,Y) + \varphi(B^{\varphi}_{\bar{\nabla}}(X,\varphi Y)) - \varphi^2(B^{\varphi}_{\bar{\nabla}}(X,Y)).$$

5. Projectively and dual-projectively equivalent connections

In the last section we shall treat the case of projectively and dual-projectively equivalent connections studying their invariance under such transformations. Recall that two linear connections $\bar{\nabla}$ and $\bar{\nabla}'$ are called [5]:

i) projectively equivalent if there exists a 1-form η such that:

(5.1)
$$\bar{\nabla}' = \bar{\nabla} + \eta \otimes I_{\mathfrak{X}(M)} + I_{\mathfrak{X}(M)} \otimes \eta;$$

ii) dual-projectively equivalent if there exists a 1-form η such that:

(5.2)
$$\bar{\nabla}' = \bar{\nabla} - g \otimes \xi,$$

where ξ is the g-dual vector field of η and g a pseudo-Riemannian metric.

Consider $\bar{\nabla}$ and $\bar{\nabla}'$, two linear projectively equivalent connections satisfying

(5.3)
$$\bar{\nabla}' = \bar{\nabla} + \eta \otimes I_{\mathfrak{X}(M)} + I_{\mathfrak{X}(M)} \otimes \eta,$$

for η the paracontact form, and their φ -conjugate connections, $\bar{\nabla}^{(\varphi)}$ and $(\bar{\nabla}')^{(\varphi)}$

$$(\bar{\nabla}')_X^{(\varphi)}Y := \bar{\nabla}'_X Y + \varphi((\bar{\nabla}'_X \varphi)Y) =$$
$$= \bar{\nabla}_X Y + \varphi((\bar{\nabla}_X \varphi)Y) + \eta(X)Y + \eta(Y)X - \eta(Y)\varphi^2 X :=$$

$$(5.4) \qquad := \bar{\nabla}_X^{(\varphi)} Y + \eta(X) Y + \eta(X) \eta(Y) \xi.$$

From a direct computation follows:

Lemma 5.1. If $(M, \varphi, \xi, \eta, g)$ is a para-Kenmotsu manifold, then

1.
$$\bar{\nabla}'\varphi = \bar{\nabla}\varphi - \varphi \otimes \eta;$$

2.
$$(\bar{\nabla}')^{(\varphi)}\varphi = \bar{\nabla}^{(\varphi)}\varphi$$
.

Proposition 5.2. Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold and $\bar{\nabla}, \bar{\nabla}'$ two linear projectively equivalent connections satisfying (5.3). Then the structure and the virtual tensors of them and their φ -conjugate connections satisfy:

$$(5.5) C_{\nabla'}^{\varphi} = C_{\nabla}^{\varphi} - \frac{1}{2}\varphi^2 \otimes \eta, \quad C_{(\nabla')^{(\varphi)}}^{\varphi} = C_{\nabla^{(\varphi)}}^{\varphi},$$

$$(5.6) B_{\overline{\nabla}'}^{\varphi} = B_{\overline{\nabla}}^{\varphi} - \frac{1}{2} \varphi^{2} \otimes \eta, \quad B_{(\overline{\nabla}')^{(\varphi)}}^{\varphi} = B_{\overline{\nabla}^{(\varphi)}}^{\varphi}.$$

Proof. Use the relations from Lemma 5.1 in the expressions of C^{φ} and B^{φ} . \square

As a consequence:

Corollary 5.3. Under the hypotheses above, we have

(5.7)
$$C^{\varphi}_{\bar{\nabla}'} - C^{\varphi}_{\bar{\nabla}} = B^{\varphi}_{\bar{\nabla}'} - B^{\varphi}_{\bar{\nabla}} = C^{\varphi}_{\nabla}.$$

Take now $\bar{\nabla}$ and $\bar{\nabla}',$ two linear dual-projectively equivalent connections satisfying

(5.8)
$$\bar{\nabla}' = \bar{\nabla} - g \otimes \xi,$$

for ξ the characteristic vector field, and their φ -conjugate connections, $\bar{\nabla}^{(\varphi)}$ and $(\bar{\nabla}')^{(\varphi)}$:

$$(\bar{\nabla}')_X^{(\varphi)}Y := \bar{\nabla}'_X Y + \varphi((\bar{\nabla}'_X \varphi)Y) = \bar{\nabla}_X Y + \varphi((\bar{\nabla}_X \varphi)Y) - g(X, Y)\xi :=$$

(5.9)
$$:= \bar{\nabla}_X^{(\varphi)} Y - g(X, Y) \xi = (\bar{\nabla}^{(\varphi)})_X' Y.$$

From a direct computation follows:

Lemma 5.4. If $(M, \varphi, \xi, \eta, g)$ is a para-Kenmotsu manifold, then

1.
$$\nabla' \varphi = \nabla \varphi + g(\varphi, \cdot) \otimes \xi;$$

2.
$$(\bar{\nabla}')^{(\varphi)}\varphi = \bar{\nabla}^{(\varphi)}\varphi + g(\varphi,\cdot) \otimes \xi$$
.

Proposition 5.5. Let $(M, \varphi, \xi, \eta, g)$ be a para-Kenmotsu manifold and $\overline{\nabla}, \overline{\nabla}'$ two linear dual-projectively equivalent connections satisfying (5.8). Then the structure and the virtual tensors of them and their φ -conjugate connections satisfy:

(5.10)
$$C^{\varphi}_{\bar{\nabla}'} = C^{\varphi}_{\bar{\nabla}}, \quad C^{\varphi}_{(\bar{\nabla}')^{(\varphi)}} = C^{\varphi}_{\bar{\nabla}^{(\varphi)}},$$

$$(5.11) B_{\nabla'}^{\varphi} = B_{\nabla}^{\varphi} - 2g(\varphi \cdot, \varphi \cdot) \otimes \xi, B_{(\nabla')^{(\varphi)}}^{\varphi} = B_{\nabla^{(\varphi)}}^{\varphi} - 2g(\varphi \cdot, \varphi \cdot) \otimes \xi.$$

Proof. Use the relations from Lemma 5.4 in the expressions of C^{φ} and B^{φ} . \square

We can conclude:

Theorem 5.6. On a para-Kenmotsu manifold, the structure tensor is invariant under dual-projective transformations.

References

- [1] Blaga, A.M., η -Ricci solitons on para-Kenmotsu manifolds. Balkan Journal of Geometry and Its Applications 20(1) (2015), 1-13.
- [2] Blaga, A.M., Crasmareanu, M., Special connections in almost paracontact metric geometry. Bull. Iranian Math. Soc. 41(6) (2015), in press.
- [3] Blaga, A.M., Crasmareanu, M., The geometry of complex conjugate connections. Hacettepe J. Math. and Statistics 41(1) (2012), 119-126.
- [4] Blaga, A.M., Crasmareanu, M., The geometry of product conjugate connections. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Math. 59(1) (2013), 73-84.
- [5] Călin, O., Matsuzoe, H., Zhang, J., Generalizations of conjugate connections. Available at: http://www.lsa.umich.edu/psych/junz/Publication/2009.
- [6] Dacko, P., Olszak, Z., On weakly para-cosymplectic manifolds of dimension 3.J. Geom. Phys. 57 (2007), 561-570.
- [7] Golab, S., On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.) 29 (1975), 293-301.
- [8] Ivanov, S., Vassilev, D., Zamkovoy, S., Conformal paracontact curvature and the local flatness theorem. Geom. Dedicata 144 (2010), 79-100.
- [9] Kenmotsu, K., A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93-103.
- [10] Kirichenko, V.F., Method of generalized Hermitian geometry in the theory of almost contact manifold. Itogi Nauki i Tekhniki, Problems of geometry 18 (1986), 25–71; transl. in J. Soviet. Math. 42(5) (1988), 1885–1919.

142 Adara M. Blaga

[11] Olszak, Z., The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure. Publ. Inst. Math. nouv. sér. 94 (108) (2013), 31-42.

- [12] Sinha, B.B., Sai Prasad, K.L., A class of almost para contact metric manifolds. Bull. Cal. Math. Soc. 87 (1995), 307-312.
- [13] Wełyczko, J., Slant curves in 3-dimensional normal almost paracontact metric manifolds. Mediterr. J. Math., DOI 10.1007/s00009-013-0361-2, 2013.
- [14] Zamkovoy, S., Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 36(1) (2008), 37-60.

Received by the editors October 6, 2014