ON EINSTEIN WARPED PRODUCTS WITH A SEMI-SYMMETRIC CONNECTION

Dan Dumitru ${ }^{\text {(I }}$

Abstract

The aim of this paper is to compute the warping functions for a Ricci flat Einstein multiply warped product M having a semi-symmetric connection in the following cases: 1). $\operatorname{dim} M=2,2$). $\operatorname{dim} M=3,3) . \operatorname{dim} M \geq 4$ and all the fibres are Ricci flat.

AMS Mathematics Subject Classification (2010): 53C25, 53C50.
Key words and phrases: Einstein space; multiply warped product; warping function; semi-symmetric connection

1. Introduction

Warped products were first introduced in [8$]$ and then Einstein warped products were studied in [I]. Examples of warping functions that make an warped product become an Einstein space were calculated in [3, 4,5$]$. Also, in [6] warped products with an affine connection were introduced.

According to [6] we have the following two definitions:
Definition 1.1. A multiply warped product (M, g) is a product manifold of the form $M=I \times_{f_{1}} F_{1} \times f_{2} F_{2} \times \ldots \times_{f_{m}} F_{m}$ with the metric $g=-d t^{2} \oplus$ $f_{1}^{2} g_{F_{1}} \oplus \ldots \oplus f_{m}^{2} g_{F_{m}}$, where $I \subset \mathbb{R}$ is an open interval and $f_{i} \in \mathcal{C}^{\infty}(I)$ for every $i \in\{1, \ldots, m\}$.

Definition 1.2. A linear connection $\bar{\nabla}$ on M is called a semi-symmetric connection if the torsion $T(X, Y)=\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X-[X, Y]$ satisfies $T(X, Y)=$ $\pi(Y) X-\pi(X) Y$, where π is a 1-form associated to a vector field $P \in \Gamma(T M)$ and satisfies $\pi(X)=g(X, P)$. Moreover $\bar{\nabla}$ is called a semi-symmetric metric connection if $\bar{\nabla} g=0$ and $\bar{\nabla}$ is called a semi-symmetric non-metric connection if it satisfies $\bar{\nabla} g \neq 0$. Also, if ∇ is the Levi-Civita connection on M, the semi-symmetric non-metric connection $\bar{\nabla}$ is given by $\bar{\nabla}_{X} Y=\nabla_{X} Y+\pi(Y) X$.

Regarding the Einstein conditions we have the following result:
Theorem 1.3. ([G]) Let $M=I \times_{f_{1}} F_{1} \times f_{2} F_{2} \times \ldots \times{ }_{f_{m}} F_{m}$ be a multiply warped product, $m \geq 1, k_{i}=\operatorname{dim} F_{i} \geq 1$ for every $i \in\{1, \ldots, m\}$ and $P=\frac{\partial}{\partial t}$. Then $(M, \bar{\nabla})$ is Einstein of Einstein constant λ if and only if the following conditions

[^0]are satisfied:
\[

\left\{$$
\begin{array}{l}
\left(F_{i}, g_{F_{i}}\right) \text { is Einstein of constant } \lambda_{i} \text { for every } i \in\{1, \ldots, m\} \tag{1}\\
\sum_{i=1}^{m} k_{i}\left(1-\frac{f_{i}^{\prime \prime}}{f_{i}}\right)=\lambda \\
\lambda_{i}-f_{i} f_{i}^{\prime \prime}-\left(k_{i}-1\right)\left(f_{i}^{\prime}\right)^{2}-f_{i} f_{i}^{\prime} \sum_{j \neq i, j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}+f_{i}^{2} \sum_{j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}=\lambda f_{i}^{2} \\
\text { for every } i \in\{1, \ldots, m\}
\end{array}
$$\right.
\]

2. Main results

The aim this paper is to characterize the warping functions from (1) in the following case: 1). $\operatorname{dim} M=2$ and M is Ricci flat, 2). $\operatorname{dim} M=3$ and M is Ricci flat, 3). $\operatorname{dim} M \geq 4, M=I \times_{f_{1}} F_{1} \times \ldots \times_{f_{m}} F_{m}, M$ is Ricci flat and all the fibres F_{i} are also Ricci flat for every $i \in\{1, \ldots, m\}$.

We first consider the cases when $\operatorname{dim} M \in\{2,3\}$. Hence:
1). M is Ricci flat and $\operatorname{dim} M=2 \Longrightarrow M=I \times_{f_{1}} F_{1}, k_{1}=\operatorname{dim} F_{1}=1$, $\lambda_{1}=0$.

$$
\left\{\begin{array}{l}
1-\frac{f_{1}^{\prime \prime}}{f_{1}}=0 \\
-f_{1} f_{1}^{\prime \prime}+f_{1} f_{1}^{\prime}=0
\end{array}\right.
$$

Hence $f_{1}^{\prime \prime}=f_{1}^{\prime}=f_{1}$ which implies $f_{1}(x)=C e^{x}, C \in \mathbb{R}$.
2). M is Ricci flat and $\operatorname{dim} M=3$.
i). $M=I \times_{f_{1}} F_{1}, k_{1}=\operatorname{dim} F_{1}=2$.

$$
\left\{\begin{array}{l}
2\left(1-\frac{f_{1}^{\prime \prime}}{f_{1}}\right)=0 \\
\lambda_{1}-f_{1} f_{1}^{\prime \prime}-\left(f_{1}^{\prime}\right)^{2}+2 f_{1} f_{1}^{\prime}=0
\end{array}\right.
$$

Hence $\lambda_{1}=f_{1}^{2}+\left(f_{1}^{\prime}\right)^{2}-2 f_{1} f_{1}^{\prime}=\left(f_{1}-f_{1}^{\prime}\right)^{2}$
a) If $\lambda_{1}<0$, then we have no solution.
b) If $\lambda_{1} \geq 0$, then $f_{1}^{\prime}=f_{1}+\sqrt{\lambda_{1}}$ or $f_{1}^{\prime}=f_{1}-\sqrt{\lambda_{1}}$. In both cases $f_{1}^{\prime \prime}=$ $f_{1}^{\prime}=f_{1}$ and $\lambda_{1}=0$. Thus we obtain $f_{1}(x)=C e^{x}, C \in \mathbb{R}$.
ii). $M=I \times_{f_{1}} F_{1} \times_{f_{2}} F_{2}, k_{i}=\operatorname{dim} F_{i}=1, \lambda_{i}=0$ for every $i \in\{1,2\}$.

$$
\left\{\begin{array}{l}
2=\frac{f_{1}^{\prime \prime}}{f_{1}}+\frac{f_{2}^{\prime \prime}}{f_{2}} \\
-\frac{f_{1}^{\prime \prime}}{f_{1}}-\frac{f_{1}^{\prime}}{f_{1}^{\prime}} \cdot \frac{f_{2}^{\prime}}{f_{2}}+\frac{f_{1}^{\prime}}{f_{1}}+\frac{f_{2}^{\prime}}{f_{2}}=0 \\
-\frac{f_{2}^{\prime \prime}}{f_{2}}-\frac{f_{1}^{\prime}}{f_{1}} \cdot \frac{f_{2}^{\prime}}{f_{2}}+\frac{f_{1}^{\prime}}{f_{1}}+\frac{f_{2}^{\prime}}{f_{2}}=0
\end{array}\right.
$$

Hence $\frac{f_{1}^{\prime \prime}}{f_{1}}=\frac{f_{2}^{\prime \prime}}{f_{2}}=1$ and $-\frac{f_{1}^{\prime}}{f_{1}} \cdot \frac{f_{2}^{\prime}}{f_{2}}+\frac{f_{1}^{\prime}}{f_{1}}+\frac{f_{2}^{\prime}}{f_{2}}=1 \Longrightarrow\left(1-\frac{f_{1}^{\prime}}{f_{1}}\right)\left(1-\frac{f_{2}^{\prime}}{f_{2}}\right)=0$.
a). $f_{1}^{\prime}=f_{1} \Longrightarrow f_{1}(x)=C e^{x}$ and $\frac{f_{2}^{\prime \prime}}{f_{2}}=1 \Longrightarrow f_{2}(x)=C_{1} e^{x}+C_{2} e^{-x}$, $C, C_{1}, C_{2} \in \mathbb{R}$.
b). $f_{2}^{\prime}=f_{2} \Longrightarrow f_{2}(x)=C e^{x}$ and $\frac{f_{1}^{\prime \prime}}{f_{1}}=1 \Longrightarrow f_{1}(x)=C_{1} e^{x}+C_{2} e^{-x}$, $C, C_{1}, C_{2} \in \mathbb{R}$.
3). Consider now $M=I \times_{f_{1}} F_{1} \times \ldots \times_{f_{m}} F_{m}, M$ and F_{i} Ricci flat, $k_{i}=$ $\operatorname{dim} F_{i} \geq 1$ for every $i \in\{1, \ldots, m\}$ and $\operatorname{dim} M=1+\sum_{i=1}^{m} k_{i} \geq 4$. The main theorem of this paragraph is the following:

Theorem 2.1. Let $M=I \times_{f_{1}} F_{1} \times_{f_{2}} F_{2} \times \ldots \times_{f_{m}} F_{m}$ be a multiply warped product, $m \geq 1, k_{i}=\operatorname{dim} F_{i} \geq 1$ for every $i \in\{1, \ldots, m\}, \operatorname{dim} M \geq 4$ and $P=\frac{\partial}{\partial t}$. Then, $(M, \bar{\nabla})$ and all the fibres $\left(F_{i}, g_{F_{i}}\right)$ are Ricci flat for every $i \in\{1, \ldots, m\}$ if and only if the warping functions satisfy $f_{i}(x)=\eta_{i} e^{x}, \eta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$.

Proof.
$" \Longrightarrow "$ In the above hypothesis the system (1) becomes:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{m} k_{i}\left(1-\frac{f_{i}^{\prime \prime}}{f_{i}}\right)=0 \tag{2}\\
-f_{i} f_{i}^{\prime \prime}-\left(k_{i}-1\right)\left(f_{i}^{\prime}\right)^{2}-f_{i} f_{i}^{\prime} \sum_{j \neq i, j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}+f_{i}^{2} \sum_{j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}=0 \\
\text { for every } i \in\{1, \ldots, m\} .
\end{array}\right.
$$

Dividing by f_{i}^{2} the second equation of (2), one obtains the equivalent form:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{m} k_{i}\left(1-\frac{f_{i}^{\prime \prime}}{f_{i}}\right)=0 \tag{3}\\
-\frac{f_{i}^{\prime \prime}}{f_{i}}-\left(k_{i}-1\right)\left(\frac{f_{i}^{\prime}}{f_{i}}\right)^{2}-\frac{f_{i}^{\prime}}{f_{i}} \sum_{j \neq i, j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}+\sum_{j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}=0 \\
\text { for every } i \in\{1, \ldots, m\} .
\end{array}\right.
$$

We make now the following notations: $h_{i}=\frac{f_{i}^{\prime}}{f_{i}}$ for every $i \in\{1, \ldots, m\}$ and

$$
H=\sum_{i=1}^{m} k_{i} \frac{f_{i}^{\prime}}{f_{i}}=\sum_{i=1}^{m} k_{i} h_{i} .
$$

We remark that $\frac{f_{i}^{\prime \prime}}{f_{i}}=h_{i}^{\prime}+h_{i}^{2}$ for every $i \in\{1, \ldots, m\}$ and $H^{\prime}=\sum_{i=1}^{m} k_{i} h_{i}^{\prime}$.

Thus the system (3) becomes:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{m} k_{i}\left(1-h_{i}^{\prime}-h_{i}^{2}\right)=0 \tag{4}\\
-h_{i}^{\prime}-h_{i}^{2}-\left(k_{i}-1\right) h_{i}^{2}-h_{i}\left(H-k_{i} h_{i}\right)+H=0 \\
\text { for every } i \in\{1, \ldots, m\}
\end{array}\right.
$$

The second equation is equivalent to:

$$
\begin{align*}
& -h_{i}^{\prime}-h_{i}^{2}-\left(k_{i}-1\right) h_{i}^{2}-h_{i}\left(H-k_{i} h_{i}\right)+H=0 \Longleftrightarrow \\
& -h_{i}^{\prime}-h_{i}^{2}-k_{i} h_{i}^{2}+h_{i}^{2}-h_{i} H+k_{i} h_{i}^{2}+H=0 \Longleftrightarrow \\
& -h_{i}^{\prime}-h_{i} H+H=0 \Longleftrightarrow-k_{i} h_{i}^{\prime}-k_{i} h_{i} H+k_{i} H=0,
\end{align*}
$$

for every $i \in\{1, \ldots, m\}$.
Summing over i the above m equations of (4^{\prime}) we obtain:

$$
\begin{align*}
& -\sum_{i=1}^{m} k_{i} h_{i}^{\prime}-H \sum_{i=1}^{m} k_{i} h_{i}+H \sum_{i=1}^{m} k_{i}=0 \Longleftrightarrow \tag{5}\\
& -H^{\prime}-H^{2}+A H=0 \Longleftrightarrow H^{\prime}=-H^{2}+A H
\end{align*}
$$

where $A=\sum_{i=1}^{m} k_{i} \geq 3>0$.
The reduced equation of (5), $\bar{H}^{\prime}=-\bar{H}^{2}$, has the solution $\bar{H}(x)=\frac{1}{x+C}$, $C \in \mathbb{R}$. We search now solutions of the form $H(x)=\frac{1}{x+C(x)}$. Putting this in (5) we obtain:

$$
\begin{equation*}
C^{\prime}(x)+A C(x)+A x=0 \tag{6}
\end{equation*}
$$

The reduced equation of $(6), \bar{C}^{\prime}(x)=-A \bar{C}(x)$, has the solution $\bar{C}(x)=$ $D e^{-A x}, D \in \mathbb{R}$. We search now solutions of the form $C(x)=D(x) e^{-A x}$. Thus equation (6) implies:

$$
D^{\prime}(x)=-A x e^{A x} \Longrightarrow D(x)=-x e^{A x}+\frac{e^{A x}}{A}-E, E \in \mathbb{R}
$$

Thus, $C(x)=-x+A-E e^{-A x}$ and hence

$$
H(x)=\frac{1}{x-x+\frac{1}{A}-E e^{-A x}}=\frac{A e^{A x}}{e^{A x}+\beta}, \beta \in \mathbb{R}
$$

1). The case when $\beta \neq 0$:

Returning to relation (4^{\prime}) we have:

$$
\begin{equation*}
-h_{i}^{\prime}-H h_{i}+H=0 \Longrightarrow h_{i}^{\prime}=-H h_{i}+H \tag{7}
\end{equation*}
$$

for every $i \in\{1, \ldots, m\}$.

The reduced equation of $(7),{\overline{h_{i}}}^{\prime}=-H \overline{h_{i}}$, has the solution $\overline{h_{i}}(x)=\frac{E_{i}}{e^{A x}+\beta}$, $E_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$. We search for solutions of the form $h_{i}(x)=$ $\frac{E_{i}(x)}{e^{A x}+\beta}$. Putting this in (7) we obtain $E_{i}^{\prime}(x)=A e^{A x} \Longrightarrow E_{i}(x)=e^{A x}+\delta_{i}$ where $\delta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$. Thus $h_{i}(x)=\frac{e^{A x}+\delta_{i}}{e^{A x}+\beta}, \beta, \delta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$.

We remark that since $H=\sum_{i=1}^{m} k_{i} h_{i}$ we obtain $\sum_{i=1}^{m} k_{i} \delta_{i}=0$.
Hence, $h_{i}=\frac{f_{i}^{\prime}}{f_{i}}=\frac{e^{A x}+\delta_{i}}{e^{A x}+\beta} \Longrightarrow f_{i}(x)=\sigma_{i} e^{\int \frac{e^{A x}+\delta_{i}}{e^{A x}+\beta} d x}, \sigma_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$. But, if $\beta \neq 0$, then $\int \frac{e^{A x}+\delta_{i}}{e^{A x}+\beta} d x=\frac{\delta_{i}}{\beta} x-\frac{\delta_{i}-\beta}{A \beta} \ln \left(e^{A x}+\beta\right)+D_{i}$ and thus $f_{i}(x)=\theta_{i} \frac{e^{\frac{\delta_{i}}{\beta} x}}{\left(e^{A x}+\beta\right)^{\frac{\delta_{i}-\beta}{A \beta}}}, \theta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$.

We remark that since $\sum_{i=1}^{m} k_{i}\left(1-h_{i}^{\prime}-h_{i}^{2}\right)=0$ we have equivalently

$$
\sum_{i=1}^{m} k_{i}\left(\beta^{2}-\delta_{i}^{2}\right)=(A-2) \sum_{i=1}^{m} k_{i}\left(\beta-\delta_{i}\right)=0
$$

which implies

$$
\sum_{i=1}^{m} k_{i}\left(\beta^{2}-\delta_{i}^{2}\right)=\sum_{i=1}^{m} k_{i}\left(\beta-\delta_{i}\right)=0
$$

since $A \geq 3$. Hence $\sum_{i=1}^{m} k_{i} \beta=\sum_{i=1}^{m} k_{i} \delta_{i}=0$ and thus $\beta=0$ which is a contradiction.
2). The case when $\beta=0$:

In this case $H(x)=A$ and $h_{i}(x)=\frac{e^{A x}+\delta_{i}}{e^{A x}}$ in a similar way as case 1), where $\delta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$. Hence, since

$$
\int \frac{e^{A x}+\delta_{i}}{e^{A x}} d x=x-\frac{\delta_{i}}{A e^{A x}}+D_{i}
$$

we obtain $f_{i}(x)=\eta_{i} e^{x-\frac{\delta_{i}}{A e^{A x}}}, \eta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$.
But, verifying the relation

$$
\sum_{i=1}^{m} k_{i}\left(1-h_{i}^{\prime}-h_{i}^{2}\right)=0
$$

one can obtain

$$
\sum_{i=1}^{m} k_{i} \delta_{i}^{2}=\sum_{i=1}^{m} k_{i} \delta_{i}=0
$$

which implies $\delta_{i}=0$ for every $i \in\{1, \ldots, m\}$. Thus, in this way we have obtained $h_{i}(x)=1$ and $f_{i}(x)=\eta_{i} e^{x}, \eta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$.

So, the warping functions are only of the form $f_{i}(x)=\eta_{i} e^{x}, \eta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$.
$" \Longleftarrow "$ This implication follows by straightforward computation. Suppose the warping functions are $f_{i}(x)=\eta_{i} e^{x}, \eta_{i} \in \mathbb{R}$ for every $i \in\{1, \ldots, m\}$ and satisfy the system (1). Then $f_{i}^{\prime \prime}=f_{i}^{\prime}=f_{i}$ for every $i \in\{1, \ldots, m\}$.

Thus $\sum_{i=1}^{m} k_{i}\left(1-\frac{f_{i}^{\prime \prime}}{f_{i}}\right)=0=\lambda$ and so M is Ricci flat.
Also:

$$
\begin{gathered}
\lambda_{i}-f_{i} f_{i}^{\prime \prime}-\left(k_{i}-1\right)\left(f_{i}^{\prime}\right)^{2}-f_{i} f_{i}^{\prime} \sum_{j \neq i, j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}+f_{i}^{2} \sum_{j=1}^{m} k_{j} \frac{f_{j}^{\prime}}{f_{j}}=\lambda f_{i}^{2} \Longleftrightarrow \\
\lambda_{i}-f_{i}^{2}-\left(k_{i}-1\right) f_{i}^{2}-f_{i}^{2} \sum_{\substack{j=1, j \neq i}}^{m} k_{j}+f_{i}^{2} \sum_{j=1}^{m} k_{j}=0 \Longleftrightarrow \\
\lambda_{i}-f_{i}^{2}-\left(k_{i}-1\right) f_{i}^{2}+k_{i} f_{i}^{2}=0 \Longleftrightarrow \lambda_{i}=0
\end{gathered}
$$

for every $i \in\{1, \ldots, m\}$. Hence F_{i} is Ricci flat for every $i \in\{1, \ldots, m\}$.

References

[1] Besse, A.L., Einstein manifolds. Springer-Verlag, Reprint of 1987 Edition, pages 274.
[2] Bishop, R.L., O'Neill, B., Manifolds of negative curvature. Trans. Amer. Math. Soc. 145 (1969), 1-49.
[3] Dobarro, F., Unal, B., Curvature of multiply warped products. Journal of Geometry and Physics 55(1) (2005), 75-106.
[4] Dumitru, D., On multiple generalized Robertson-Walker space-time. Analele Univ. Oradea, Fasc. Matematică, Tom XVIII(2011), 159-166.
[5] Dumitru, D., On multiply Einstein warped products. Analele Şt. Univ. Al. I. Cuza, Iaşi, (S.N.), Seria Matematică (to appear)
[6] Wang, Y., Curvature of multiply warped products with an affine connection. Bull. Korean Math. Soc. 50(5) (2013), 1567-1586.

Received by the editors September 20, 2014

[^0]: ${ }^{1}$ Spiru Haret University of Bucharest, Faculty of Mathematics and Computer Science, 13 Ghica str, Bucharest, Romania, e-mail: dandumitru1984@yahoo.com

