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D-HOMOTHETIC DEFORMATION OF LP -SASAKIAN
MANIFOLDS

Krishnendu De1

Abstract. The object of the present paper is to study a transforma-
tion called D-homothetic deformation of LP -Sasakian manifolds. Among
others it is shown that in an LP -Sasakian manifold, the Ricci operator Q
commutes with the structure tensor ϕ. We also discuss about the invari-
ance of η-Einstein manifolds, ϕ-sectional curvature, the locally ϕ-Ricci
symmetry and η-parallelity of the Ricci tensor under the D-homothetic
deformation. Finally, we give an example of such a manifold .
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1. Introduction

The notion of Lorentzian para-Sasakian manifold was introduced by Mat-
sumoto [5] in 1989. Then Mihai and Rosca [7] defined the same notion in-
dependently and they obtained several results on this manifold. LP -Sasakian
manifolds have also been studied by Matsumoto and Mihai [6], De and Shaikh
[3], Ozgur [8] and others.

An LP -Sasakian manifold is said to be η-Einstein if its Ricci tensor S is of
the form

(1.1) S = λg + µη ⊗ η

where λ and µ are smooth functions on the manifold.
The notion of local ϕ-symmetry was first introduced by Takahashi [10] on

a Sasakian manifold. Again in a recent paper [2] De and Sarkar introduced the
notion of locally ϕ-Ricci symmetric Sasakian manifolds. Also ϕ-Ricci symmetric
Kenmotsu manifolds have been studied by Shukla and Shukla [9].

An LP -Sasakian manifold is said to be locally ϕ-Ricci symmetric if

(1.2) ϕ2(∇XQ)(Y ) = 0,

where Q is the Ricci operator defined by g(QX,Y ) = S(X,Y ) and X,Y are
orthogonal to ξ.

The Ricci tensor S of an LP -Sasakian manifold is said to be η-parallel if it
satisfies

(1.3) (∇XS)(ϕY, ϕZ) = 0,
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for all vector fields X,Y and Z. The notion of η- parallelity in a Sasakian
manifold was introduced by Kon [4].

Let M (ϕ, ξ, η, g) be an almost contact metric manifold with dim M = m =
2n+ 1. The equation η = 0 defines an (m− 1)-dimensional distribution D on
M [11]. By an (m− 1)-homothetic deformation or D-homothetic deformation
[12] we mean a change of structure tensors of the form

η̄ = aη, ξ̄ =
1

a
ξ, ϕ̄ = ϕ, ḡ = ag + a(a− 1)η ⊗ η,

where a is a positive constant. If M(ϕ, ξ, η, g) is an almost contact metric
structure with contact form η, then M(ϕ̄, ξ̄, η̄, ḡ) is also an almost contact
metric structure [12]. Denoting by W i

jk the difference Γ̄i
jk − Γi

jk of Christoffel
symbols we have in an almost contact metric manifold [12]

W (X,Y ) = (1− a)[η(Y )ϕX + η(X)ϕY ]

+
1

2
(1− 1

a
)[(∇Xη)(Y ) + (∇Y η)(X)]ξ(1.4)

for all X,Y ∈ χ(M). If R and R̄ denote respectively the curvature tensor of
the manifold M(ϕ, ξ, η, g) and M(ϕ̄, ξ̄, η̄, ḡ), then we have [12]

R̄(X,Y )Z = R(X,Y )Z + (∇XW )(Z, Y )− (∇Y W )(Z,X)

+W (W (Z, Y ), X)−W (W (Z,X), Y )(1.5)

for all X,Y, Z ∈ χ(M).

A plane section in the tangent space Tp(M) is called a ϕ-section if there
exists a unit vector X in Tp(M) orthogonal to ξ such that {X,ϕX} is an
orthonormal basis of the plane section. Then the sectional curvature

K(X,ϕX) = g(R(X,ϕX)X,ϕX)

is called a ϕ-sectional curvature. A para contact metric manifoldM(ϕ, ξ, η, g) is
said to be of constant ϕ-sectional curvature if at any point p ∈ M , the sectional
curvature K(X,ϕX) is independent of the choice of non-zero X ∈ Dp, where
D denotes the contact distribution of the para contact metric manifold defined
by η = 0.

The present paper is organized as follows:

After preliminaries in section 2, we prove some important lemmas. Sec-
tion 4 deals with the study of (2n + 1)-dimensional η−Einstein LP -Sasakian
manifolds and prove that these manifolds are invariant under a D-homothetic
deformation. Also we study ϕ-sectional curvature, locally ϕ-Ricci symmetry
and η-parallelity of the Ricci tensor in a (2n + 1)-dimensional LP -Sasakian
manifold under a D-homothetic deformation. Finally in section 5, we cited an
example of LP -Sasakian manifold which validates a theorem of section 4.



D-Homothetic deformation of LP -Sasakian manifolds 115

2. Preliminaries

Let M2n+1 be an 2n+ 1-dimensional differentiable manifold endowed with
a (1, 1) tensor field ϕ, a contravariant vector field ξ, a covariant vector field η
and a Lorentzian metric g of type (0, 2) such that for each point p ∈ M , the
tensor gp: TpM × TpM → R is a non-degenerate inner product of signature
(−,+,+, .....,+), where TpM denotes the tangent space of M at p and R is the
real number space which satisfies

(2.1) ϕ2(X) = X + η(X)ξ, η(ξ) = −1,

(2.2) g(X, ξ) = η(X), g(ϕX, ϕY ) = g(X,Y ) + η(X)η(Y )

for all vector fields X,Y . Then such a structure (ϕ, ξ, η, g) is termed as
Lorentzian almost paracontact structure and the manifold M2n+1 with the
structure (ϕ, ξ, η, g) is called Lorentzian almost paracontact manifold [5]. In
the Lorentzian almost paracontact manifold M2n+1, the following relations
hold [5] :

(2.3) ϕξ = 0, η(ϕX) = 0,

(2.4) Ω(X,Y ) = Ω(Y,X),

where Ω(X,Y ) = g(X,ϕY ).
Let {ei} be an orthonormal basis such that e1 = ξ. Then the Ricci tensor

S and the scalar curvature r are defined by

S(X,Y ) =
n∑

i=1

ϵig(R(ei, X)Y, ei)

and

r =

n∑
i=1

ϵiS(ei, ei),

where we put ϵi = g(ei, ei), that is, ϵ1 = −1, ϵ2 = · · · = ϵn = 1.
A Lorentzian almost paracontact manifold Mn equipped with the structure

(ϕ, ξ, η, g) is called Lorentzian paracontact manifold if

Ω(X,Y ) =
1

2
{(∇Xη)Y + (∇Y η)X}.

A Lorentzian almost paracontact manifold Mn equipped with the structure
(ϕ, ξ, η, g) is called an LP -Sasakian manifold [5] if

(∇Xϕ)Y = g(ϕX, ϕY )ξ + η(Y )ϕ2X.
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In an LP -Sasakian manifold the 1-form η is closed. Also in [5], it is proved
that if an n- dimensional Lorentzian manifold (Mn, g) admits a timelike unit
vector field ξ such that the 1-form η associated to ξ is closed and satisfies

(∇X∇Y η)Z = g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z),

then Mn admits an LP -Sasakian structure.
Further, on such an LP -Sasakian manifold Mn (ϕ, ξ, η, g), the following

relations hold [5]:

(2.5) η(R(X,Y )Z) = [g(Y, Z)η(X)− g(X,Z)η(Y )],

(2.6) S(X, ξ) = 2nη(X),

(2.7) R(X,Y )ξ = [η(Y )X − η(X)Y ],

(2.8) R(ξ,X)Y = g(X,Y )ξ − η(Y )X,

(2.9) (∇Xϕ)(Y ) = [g(X,Y )ξ + 2η(X)η(Y )ξ + η(Y )X],

for all vector fields X,Y, Z, where R,S denote respectively the curvature
tensor and the Ricci tensor of the manifold. Also since the vector field η is
closed in an LP -Sasakian manifold, we have ([6],[5])

(2.10) (∇Xη)Y = Ω(X,Y ),

(2.11) Ω(X, ξ) = 0,

(2.12) ∇Xξ = ϕX,

for any vector field X and Y.

3. Some Lemmas

In this section we shall state and prove some Lemmas which will be needed
to prove the main results.

Lemma 3.1. [1] In an LP -Sasakian manifold, the following relation holds

g(R(ϕX, ϕY )ϕZ, ϕW ) = g(R(X,Y )Z,W ) + g(X,W )η(Y )η(Z)

−g(X,Z)η(W )η(Y ) + g(Y, Z)η(X)η(W )

−g(Y,W )η(X)η(Z).(3.1)
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Lemma 3.2. Let (M2n+1, g) be an LP -Sasakian manifold. Then the Ricci
operator Q commutes with ϕ.

Proof. From (3.1), it follows that

ϕR(ϕX, ϕY )ϕZ = R(X,Y )Z − [η(Z)Y − g(Y,Z)ξ]η(X)

+[Xη(Z)− g(X,Z)ξ]η(Y ).(3.2)

Let {ei, ϕei, ξ}, i = 1, 2, ....., n be an orthonormal frame at any point of the
manifold. Then putting Y = Z = ei in (3.2) and taking summation over i and
using η(ei) = 0 , we get

(3.3)
n∑

i=1

ϵiϕR(ϕX, ϕei)ϕei =
n∑

i=1

ϵiR(X, ei)ei − nη(X)ξ,

where ϵi = g(ei, ei).

Again setting Y = Z = ϕei in (3.2), taking summation over i and using
η.ϕ = 0, we get

(3.4)

n∑
i=1

ϵiϕR(ϕX, ei)ei =

n∑
i=1

ϵiR(X,ϕei)ϕei − nη(X)ξ.

Adding (3.3) and (3.4) and using the definition of the Ricci tensor, we obtain

ϕ(QϕX −R(ϕX, ξ)ξ) = QX −R(X, ξ)ξ − 2nη(X)ξ.

Using (2.7) and ϕξ = 0 in the above relation, we have

ϕ(QϕX) = QX − 2nη(X)ξ.

Operating both sides by ϕ and using (2.1), symmetry of Q and ϕξ = 0, we
get ϕQ = Qϕ. This proves the lemma.

Proposition 3.1. In an 2n+1-dimensional η-Einstein LP -Sasakian manifold,
the Ricci tensor S is expressed as

S(X,Y ) = [
r

2n
− 1]g(X,Y )

−[
r

2n
− 2n− 1]η(X)η(Y ).(3.5)
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4. Main results

In this section we study η-Einstein LP -Sasakian manifolds, ϕ-sectional cur-
vature, locally ϕ-Ricci symmetry and η-parallelity of the Ricci tensor of an odd
dimensional LP -Sasakian manifold under a D-homothetic deformation.

In virtue of (2.10), the relation (1.4) reduces to

(4.1) W (X,Y ) = (1− a)[η(Y )ϕX + η(X)ϕY ] + (1− 1

a
)g(ϕX, Y )ξ.

In view of (2.9), (2.10) and (2.12), the relation (4.1) yields

(∇ZW )(X,Y ) = (1− a)[{g(ϕZ, Y )ϕX

+g(X,Z)η(Y )ξ + 2η(X)η(Y )Z + 4η(X)η(Y )η(Z)ξ

+g(ϕZ,X)ϕY + η(X)g(Y, Z)ξ]

+
a− 1

a
g(ϕX, Y )ϕZ.(4.2)

Using (4.1) and (4.2) into (1.5), we obtain by virtue of (2.7) and (2.10) that

R̄(X,Y )Z = R(X,Y )Z + (1− a)[g(X,Z)η(Y )ξ

−g(Y, Z)η(X)ξ + 2η(Y )η(Z)X

−2η(X)η(Z)Y

+g(ϕX,Z)ϕY − g(ϕY,Z)ϕX]

+
a− 1

a
[g(ϕZ, Y )ϕX − g(ϕZ,X)ϕY ]

+(1− a)2[η(X)η(Z)Y − η(Y )η(Z)X]

− (1− a)2

a
[g(ϕZ,X)ϕY − g(ϕZ, Y )ϕX](4.3)

Putting Y = Z = ξ in (4.3) and using (2.1) we obtain

(4.4) R̄(X, ξ)ξ = R(X, ξ)ξ + 2(1− a)[−X + η(X)ξ]− (1− a)2ϕ2X.

Let {ei, ϕei, ξ}, i = 1, 2, ....., n be an orthonormal frame at any point of the
manifold. Then putting Y = Z = ei in (4.3) and taking summation over i and
using η(ei) = 0, we get

(4.5)
n∑

i=1

ϵiR̄(X, ei)ei =
n∑

i=1

ϵiR(X, ei)ei − (1− a)nη(X)ξ,

where ϵi = g(ei, ei).
Again setting Y = Z = ϕei in (4.3) and taking summation over i and using

η.ϕ = 0, we get

(4.6)
n∑

i=1

ϵiR̄(X,ϕei)ϕei =
n∑

i=1

ϵiR(X,ϕei)ϕei − (1− a)nη(X)ξ.
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Adding (4.5) and (4.6) and using the definition of Ricci operator we have

(4.7) Q̄X − R̄(X, ξ)ξ = QX −R(X, ξ)ξ − 2(1− a)nη(X)ξ.

In view of (4.4) we get from (4.7)

S̄(X,Y ) = S(X,Y )− [2(1− a) + (1− a)2]g(X,Y )

−[2(1− a)(n− 1) + (1− a)2]η(X)η(Y ),(4.8)

which implies that

Q̄X = QX − [2(1− a) + (1− a)2]X

−[2(1− a)(n− 1) + (1− a)2]η(X)ξ.(4.9)

Operating ϕ̄ = ϕ on both sides of (4.9) from the left we have

(4.10) ϕ̄Q̄X = ϕQX − [2(1− a) + (1− a)2]ϕX.

Again, putting ϕ̄X = ϕX in (4.9) from the right we have

(4.11) Q̄ϕ̄X = QϕX − [2(1− a) + (1− a)2]ϕX.

Subtracting (4.10) and (4.11) we get

(4.12) (ϕ̄Q̄− Q̄ϕ̄)X = (ϕQ−Qϕ)X.

Therefore using Lemma 3.2 we can state the following:

Theorem 4.1. Under a D-homothetic deformation, the expression Q̄ϕ̄ = ϕ̄Q̄
holds in an (2n+ 1)-dimensional LP -Sasakian manifold.

4.1. η-Einstein LP -Sasakian manifolds

LetM(ϕ, ξ, η, g) be a (2n+1)-dimensional η-Einstein LP -Sasakian manifold
which reduces to M(ϕ̄, ξ̄, η̄, ḡ) under a D-homothetic deformation. Then from
(4.8) it follows by virtue of (3.5)that

(4.13) S̄(X,Y ) = λ̄ḡ(X,Y ) + µ̄η̄(X)η̄(Y ),

where λ̄, µ̄ are smooth functions given by

(4.14) λ̄ = [
r

2n
− (a− 2)2]

and

(4.15) µ̄ = [
r

2n
− 4n+ 2an− a2].

In view of the relation (4.13) we state the following:

Theorem 4.2. Under a D-homothetic deformation, a (2n + 1)-dimensional
η-Einstein LP -Sasakian manifold is invariant.
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4.2. ϕ-sectional curvature of LP -Sasakian manifolds

In this section we consider the ϕ-sectional curvature on a (2n + 1)-dimen-
sional LP -Sasakian manifold.

From (4.3) it can be easily seen that

(4.16) K̄(X,ϕX)−K(X,ϕX) = −2(a− 1)

and hence we state the following theorem.

Theorem 4.3. The ϕ-sectional curvature of (2n+1)-dimensional LP-Sasakian
manifolds is not an invariant property under D-homothetic deformations.

If a (2n + 1)-dimensional LP -Sasakian manifold M(ϕ̄, ξ̄, η̄, ḡ) satisfies
R(X,Y )ξ = 0 for all X,Y , then it can be easily seen that K(X,ϕX) = 0
and hence from (4.16) it follows that

K̄(X,ϕX) = −2(a− 1) ̸= 0,

where X is a unit vector field orthogonal to ξ and K(X,ϕX) is the ϕ-sectional
curvature. This implies that the ϕ-sectional curvature K̄(X,ϕX) is non-vani-
shing. Therefore we state the following:

Theorem 4.4. There exists (2n+ 1)-dimensional LP -Sasakian manifold with
non-zero ϕ-sectional curvature.

4.3. Locally ϕ-Ricci symmetric LP -Sasakian manifolds

In this section we study locally ϕ-Ricci symmetry on an LP -Sasakian man-
ifold.

Differentiating (4.9) covariantly with respect to W we obtain

(∇W Q̄)(X) = (∇WQ)(X)

−[2(1− a)(n− 1) + (1− a)2](∇W η)(X)ξ

−[2(1− a)(n− 1) + (1− a)2]η(X)∇W ξ.(4.17)

Operating ϕ2 on both sides of (4.17) and taking X as an orthonormal vector
to ξ we obtain

(4.18) ϕ̄2(∇W Q̄)(X) = ϕ2(∇WQ)(X).

In view of the relation (4.18) we state the following:

Theorem 4.5. The local ϕ-Ricci symmetry on LP-Sasakian manifolds is an
invariant property under D-homothetic deformations.



D-Homothetic deformation of LP -Sasakian manifolds 121

4.4. η− parallel Ricci tensor of an LP -Sasakian manifolds

Let us consider the η-parallelity of the Ricci tensor on an LP -Sasakian
manifold.

Differentiating (4.8) covariantly with respect to W and using (2.10) we
obtain

(∇W S̄)(X,Y ) = (∇WS)(X,Y )

−[2(1− a)(n− 1) + (1− a)2]

[g(ϕW,X)η(Y ) + g(ϕW, Y )η(X)].(4.19)

In (4.19) replacing X by ϕX, Y by ϕ Y and using (2.3) we get

(4.20) (∇W S̄)(ϕX, ϕY ) = (∇WS)(ϕX, ϕY ).

Hence we can state the following:

Theorem 4.6. The η-parallelity of the Ricci tensor on LP-Sasakian manifolds
is an invariant property under D-homothetic deformations.

5. Example

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R3}, where
(x, y, z) are standard coordinates of R3.

The vector fields

e1 = ez
∂

∂y
, e2 = ez(

∂

∂x
+

∂

∂y
), e3 =

∂

∂z

are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = 1,

g(e3, e3) = −1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M).
Let ϕ be the (1, 1) tensor field defined by

ϕ(e1) = −e1, ϕ(e2) = −e2, ϕ(e3) = 0.

Then using the linearity of ϕ and g, we have

η(e3) = −1,

ϕ2Z = Z + η(Z)e3,

g(ϕZ, ϕW ) = g(Z,W ) + η(Z)η(W ),

for any Z,W ∈ χ(M).
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Then for e3 = ξ , the structure (ϕ, ξ, η, g) defines a Lorentzian paracontact
structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric
g and let R be the curvature tensor of g. Then we have

[e1, e2] = 0, [e1, e3] = −e1 and [e2, e3] = −e2.

Taking e3 = ξ and using Koszul’s formula for the Lorentzian metric g, we
can easily calculate

∇e1e3 = −e1, ∇e1e2 = 0, ∇e1e1 = −e3,

∇e2e3 = −e2, ∇e2e2 = −e3, ∇e2e1 = 0,

(5.1) ∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above it can be easily seen that M3(ϕ, ξ, η, g) is an LP -Sasakian
manifold. With the help of the above results it can be easily verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = −e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = −e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1)− g(R(e1, e3)e3, e1)

= 2.

Similarly we have
S(e2, e2) = 2

and
S(e3, e3) = −2.

Therefore,
r = S(e1, e1) + S(e2, e2)− S(e3, e3) = 6.

From [3] we know that in a 3- dimensional LP -Sasakian manifold

R(X,Y )Z = (
r − 4

2
)[g(Y, Z)X − g(X,Z)Y ] + (

r − 6

2
)[g(Y, Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].(5.2)

Now using (5.2) we get

g(R(X,Y )Z,W ) = (
r − 4

2
)[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

+(
r − 6

2
)[g(Y, Z)η(X)η(W )− g(X,Z)η(Y )η(W )

+η(Y )η(Z)g(X,W )− η(X)η(Z)g(Y,W )].(5.3)
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From (5.3), it follows that the ϕ- sectional curvature of the manifold is given
by

K(X,ϕX) =
r − 4

2
for any vector field X orthogonal to ξ.
In view of the above relation we get

K(e1, ϕe1) = K(e2, ϕe2) =
r − 4

2

Again it can be easily shown from (4.3) that

K̄(e1, ϕe1)−K(e1, ϕe1) = −2(a− 1)

and
K̄(e2, ϕe2)−K(e2, ϕe2) = −2(a− 1)

Therefore Theorem 4.3 is verified.
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