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D-HOMOTHETIC DEFORMATION OF LP-SASAKIAN
MANIFOLDS

Krishnendu De"

Abstract. The object of the present paper is to study a transforma-
tion called D-homothetic deformation of L P-Sasakian manifolds. Among
others it is shown that in an L P-Sasakian manifold, the Ricci operator @
commutes with the structure tensor ¢. We also discuss about the invari-
ance of n-Einstein manifolds, ¢-sectional curvature, the locally ¢-Ricci
symmetry and n-parallelity of the Ricci tensor under the D-homothetic
deformation. Finally, we give an example of such a manifold .
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1. Introduction

The notion of Lorentzian para-Sasakian manifold was introduced by Mat-
sumoto [6] in 1989. Then Mihai and Rosca [[d] defined the same notion in-
dependently and they obtained several results on this manifold. LP-Sasakian
manifolds have also been studied by Matsumoto and Mihai [6], De and Shaikh
[8], Ozgur [8] and others.

An LP-Sasakian manifold is said to be n-Einstein if its Ricci tensor S is of
the form

(1.1) S=Xg+un®n

where A and p are smooth functions on the manifold.

The notion of local ¢-symmetry was first introduced by Takahashi [I0] on
a Sasakian manifold. Again in a recent paper [?] De and Sarkar introduced the
notion of locally ¢-Ricci symmetric Sasakian manifolds. Also ¢-Ricci symmetric
Kenmotsu manifolds have been studied by Shukla and Shukla [4].

An L P-Sasakian manifold is said to be locally ¢-Ricci symmetric if

(1.2) ¢*(VxQ)(Y) =0,

where @ is the Ricci operator defined by ¢g(QX,Y) = S(X,Y) and X,Y are
orthogonal to £.

The Ricci tensor S of an L P-Sasakian manifold is said to be n-parallel if it
satisfies

(1.3) (VxS)(¢Y,0Z) =0,
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for all vector fields X,Y and Z. The notion of 7- parallelity in a Sasakian
manifold was introduced by Kon [4].

Let M (¢,&,1,9) be an almost contact metric manifold with dim M =m =
2n 4+ 1. The equation 1 = 0 defines an (m — 1)-dimensional distribution D on
M [i1]. By an (m — 1)-homothetic deformation or D-homothetic deformation
[(2] we mean a change of structure tensors of the form

_ -1 _
n = an, £=5§7 p=¢, g=ag+tala—1)nemn,

where a is a positive constant. If M(¢,£,n,g) is an almost contact metric
structure with contact form 7, then M ((;_5, f_,ﬁ,g) is also an almost contact
metric structure [T2]. Denoting by W]?k the difference fé P I’;'-k of Christoffel
symbols we have in an almost contact metric manifold [I7]

WX, Y) = (1-a)nY)eX +n(X)oY]

(14) F5 = DIVxn)(¥) + (Tyn)(X)le

for all X,Y € x(M). If R and R denote respectively the curvature tensor of
the manifold M(¢,&,n,g) and M(¢,&,7,g), then we have [12]

R(X,Y)Z = R(X,Y)Z+ (VxW)ZY) - (VyW)(Z,X)
(1.5) TW(W(Z,Y),X) - WW(Z, X),Y)

for all X,Y,Z € x(M).

A plane section in the tangent space T,(M) is called a ¢-section if there
exists a unit vector X in T,(M) orthogonal to £ such that {X,$X} is an
orthonormal basis of the plane section. Then the sectional curvature

K(X,9X) = g(R(X,¢X) X, $X)

is called a ¢-sectional curvature. A para contact metric manifold M (¢, &, n, g) is
said to be of constant ¢-sectional curvature if at any point p € M, the sectional
curvature K (X, ¢X) is independent of the choice of non-zero X € D, where
D denotes the contact distribution of the para contact metric manifold defined
by n = 0.

The present paper is organized as follows:

After preliminaries in section 2, we prove some important lemmas. Sec-
tion 4 deals with the study of (2n + 1)-dimensional n—Einstein LP-Sasakian
manifolds and prove that these manifolds are invariant under a D-homothetic
deformation. Also we study ¢-sectional curvature, locally ¢-Ricci symmetry
and n-parallelity of the Ricci tensor in a (2n + 1)-dimensional LP-Sasakian
manifold under a D-homothetic deformation. Finally in section 5, we cited an
example of L P-Sasakian manifold which validates a theorem of section 4.
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2. Preliminaries

Let M?"*! be an 2n + 1-dimensional differentiable manifold endowed with
a (1,1) tensor field ¢, a contravariant vector field £, a covariant vector field 7
and a Lorentzian metric g of type (0,2) such that for each point p € M, the
tensor gp: Tp,M x T,M — R is a non-degenerate inner product of signature
(—,+,+,.....,+), where T, M denotes the tangent space of M at p and R is the
real number space which satisfies

(2.1) ¢*(X) = X +n(X)€,n(€) = ~1,

(2.2) 9(X,8) = n(X),9(¢X,9Y) = g(X,Y) +n(X)n(Y)

for all vector fields X,Y. Then such a structure (¢,£,7,9) is termed as
Lorentzian almost paracontact structure and the manifold M2+ with the
structure (¢,&,n,g) is called Lorentzian almost paracontact manifold [5]. In
the Lorentzian almost paracontact manifold M?"*! the following relations
hold [6] :

(2.3) ¢¢ = 0,n(¢X) =0,

(2.4) QX,Y) = Q(Y, X),

where Q(X,Y) = g(X, ¢Y).
Let {e;} be an orthonormal basis such that e; = £. Then the Ricci tensor
S and the scalar curvature r are defined by

S(X,Y) = eig(R(ei, X)Y, e;)

I

i=1

and

3

r=>Y eS(ee),

1=

=

where we put €; = g(e;, €;), that is, e = -1, e =+ =¢, = 1.
A Lorentzian almost paracontact manifold M™ equipped with the structure
(6,€,1,9) is called Lorentzian paracontact manifold if

X, ¥) = L{(Vxm)Y + (Vyn)X).

A Lorentzian almost paracontact manifold M™ equipped with the structure
(¢,€,m, g) is called an LP-Sasakian manifold [5] if

(Vx@)Y = g(¢X, Y )¢ +n(Y)p?X.
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In an LP-Sasakian manifold the 1-form 7 is closed. Also in [4], it is proved
that if an n- dimensional Lorentzian manifold (M™, g) admits a timelike unit
vector field £ such that the 1-form 7 associated to ¢ is closed and satisfies

(VxVyn)Z = g(X,Y)n(Z) + g(X, 2)n(Y) + 2n(X)n(Y)n(Z),

then M™ admits an LP-Sasakian structure.
Further, on such an LP-Sasakian manifold M™ (¢,&,7,9), the following
relations hold [5]:

(2.5) n(R(X,Y)Z) = [g(Y, Z)n(X) — g(X, Z)n(Y)],
(2.6) S(X,€) = 2nn(X),

(2.7) R(X,Y)§ = [n(Y)X —n(X)Y],

(2.8) R(& X)Y = g(X,Y)E = n(Y)X,

(2.9) (Vxo)(Y) = [9(X, Y)§ + 2n(X)n(Y)E + n(Y)X],

for all vector fields X,Y, Z, where R, S denote respectively the curvature
tensor and the Ricci tensor of the manifold. Also since the vector field 7 is
closed in an LP-Sasakian manifold, we have ([6],[5])

(2.10) (Vxn)Y =Q(X,Y),
(2.11) Q(X,€) =0,
(2.12) Vx§ = ¢X,

for any vector field X and Y.

3. Some Lemmas

In this section we shall state and prove some Lemmas which will be needed
to prove the main results.

Lemma 3.1. [1/ In an LP-Sasakian manifold, the following relation holds
9(R(6X,9Y)9Z,oW) = g(R(X,Y)Z W)+ g(X,W)n(Y)n(Z)
)

(
(3.1) —g9(Y, W)n(X
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Lemma 3.2. Let (M?"*! g) be an LP-Sasakian manifold. Then the Ricci
operator @ commutes with ¢.

Proof. From (B), it follows that

PR(¢X,9Y)0Z = R(X,Y)Z—[n(2)Y —g(Y, Z)¢In(X)
(3.2) +[Xn(2) = 9(X, Z)¢n(Y).

Let {e;, pe;, &}, i = 1,2, .....,n be an orthonormal frame at any point of the
manifold. Then putting Y = Z = ¢; in (B2) and taking summation over ¢ and
using n(e;) =0, we get

n n

(3.3) D €idR(6X, pei)de; = Y e R(X, e;)e; — np(X)E,

i=1 i=1

where ¢; = g(e;, €;).
Again setting Y = Z = ¢e; in (B2), taking summation over ¢ and using
n.¢ =0, we get

n n

(3.4) D EpR(6X, ei)e; = Y e R(X, dei)de; — n(X)E.

i=1 i=1

Adding (B3) and (B3) and using the definition of the Ricci tensor, we obtain

QX — R(9X, §)§) = QX — R(X, §)§ — 2nn(X)¢.

Using (E24) and ¢¢ = 0 in the above relation, we have

P(QPX) = QX — 2nn(X)E.

Operating both sides by ¢ and using (E), symmetry of @ and ¢& = 0, we
get ¢QQ = Q¢. This proves the lemma.
O

Proposition 3.1. In an 2n+1-dimensional n-Einstein LP-Sasakian manifold,
the Ricci tensor S is expressed as

S(LY) =[5 - Uglx.y)

n

(3.5) —[% = 2n — 1n(X)n(Y).
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4. Main results

In this section we study n-Einstein LP-Sasakian manifolds, ¢-sectional cur-
vature, locally ¢-Ricci symmetry and n-parallelity of the Ricci tensor of an odd
dimensional LP-Sasakian manifold under a D-homothetic deformation.

In virtue of (21M), the relation (I4) reduces to

(1) WELY) = (1 - ali(Y)eX +n(X)e¥]+ (1 2)g(oX, V)E

In view of (£79), (E10) and (E7T2), the relation (E) yields

(VW) (X,Y) = (1-a){9(¢Z,Y)pX
+9(X, Z)n(Y)E + 2n(X)n(Y) Z + 4n(X)n(Y)n(Z2)E
+9(6Z, X)oY +n(X)g(Y, Z)¢]

(4.2) +GT_19(¢X, Y)oZ.

Using (E0) and (E2) into (ICH), we obtain by virtue of (E24) and (M) that

R(X,Y)Z = R(X,Y)Z+(1-a)g(X,Z)n(Y)¢
—g(Y, Z)n(X)§ + 2n(Y)n(2)X
=2n(X)n(2)Y

+9(6X, 2)6Y — g(oY, Z)8X]

+ 2= 1962, Y)8X — g(62, X)pY]

+(1 = a)’[n(X)n(2)Y —n(Y)n(Z)X]

Q=9 (67, X)6Y — 9(62,¥)6X]
Putting ¥ = Z = ¢ in (23) and using (EI) we obtain

(44)  R(X,© = ROX, & +2(1 — o)X +n(X)¢] - (1 - a)62X.

(4.3) -

Let {e;, pe;, &}, i = 1,2, .....,n be an orthonormal frame at any point of the
manifold. Then putting Y = Z = ¢; in (E23) and taking summation over ¢ and
using n(e;) = 0, we get

n

(4.5) Y eR(X,e)ei = Y eR(X, ei)e; — (1— a)nn(X)E,
i=1

i=1
where €; = g(e;, €;).
Again setting Y = Z = ¢e; in (B3) and taking summation over ¢ and using
n.¢ = 0, we get

n n

(4.6) D eR(X,gei)dei =Y eR(X, dei)pe; — (1 — a)nn(X)E.

=1 i=1
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Adding (223) and (£8) and using the definition of Ricci operator we have
(4.7) QX — R(X,8)¢ = QX — R(X,£)¢ —2(1 — a)nn(X)E.
In view of (E2) we get from (E7)
S(X,Y) = S(X,Y)—[2(1—a)+(1—a)?g(X,Y)
(4.8) —[2(1 = a)(n = 1) + (1 = a)*In(X)n(Y),
which implies that

QX = QX -[201—a)+(1—-a)?X
(4.9) —20 —a)(n— 1)+ (1 — a)*In(X)E.

Operating ¢ = ¢ on both sides of (E9) from the left we have
(4.10) PQX = dQX — [2(1 —a) + (1 — a)?]|pX.

Again, putting ¢X = ¢X in (E9) from the right we have

(4.11) 03X = QoX — 21— ) + (1 — a)pX.
Subtracting (A1) and (ET0) we get
(4.12) (0Q — Q)X = (6Q — Q9) X.

Therefore using Lemma 3.2 we can state the following:

Theorem 4.1. Under a D-homothetic deformation, the expression Qo = ¢pQ
holds in an (2n 4 1)-dimensional LP-Sasakian manifold.

4.1. n-Einstein L P-Sasakian manifolds

Let M(¢,&,m, g) be a (2n+1)-dimensional n-Einstein L P-Sasakian manifold
which reduces to M (¢, &, 7, g) under a D-homothetic deformation. Then from
(ER) it follows by virtue of (83)that

(4.13) S(X,Y) = Ag(X,Y) + pn(X)n(Y),

where A, i are smooth functions given by

(4.14) A= % —(a—2)%
and
(4.15) fi = [— — 4n + 2an — a?].

2n
In view of the relation (BI3) we state the following;:

Theorem 4.2. Under a D-homothetic deformation, a (2n + 1)-dimensional
n-Einstein LP-Sasakian manifold is invariant.
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4.2. ¢-sectional curvature of L P-Sasakian manifolds

In this section we consider the ¢-sectional curvature on a (2n + 1)-dimen-
sional LP-Sasakian manifold.
From (E33) it can be easily seen that

(4.16) K(X,¢0X) - K(X,9X) = —2(a—1)
and hence we state the following theorem.

Theorem 4.3. The ¢-sectional curvature of (2n+1)-dimensional LP-Sasakian
manifolds is not an invariant property under D-homothetic deformations.

If a (2n + 1)-dimensional LP-Sasakian manifold M (,&,7,g) satisfies
R(X,Y)¢ = 0 for all X,Y, then it can be easily seen that K(X,¢X) = 0
and hence from (B18) it follows that

K(X,$X)=—2(a—1) #0,

where X is a unit vector field orthogonal to § and K (X, X ) is the ¢-sectional
curvature. This implies that the ¢-sectional curvature K (X, ¢X) is non-vani-
shing. Therefore we state the following:

Theorem 4.4. There exists (2n + 1)-dimensional LP-Sasakian manifold with
non-zero ¢-sectional curvature.

4.3. Locally ¢-Ricci symmetric LP-Sasakian manifolds

In this section we study locally ¢-Ricci symmetry on an L P-Sasakian man-
ifold.
Differentiating (E79) covariantly with respect to W we obtain

(VwQ)(X) = (VwQ)(X)
(n=1)+ (1 = a)’)(Vwn)(X)E

(4.17) —2(1 —a)(n—1) + (1 — a)*)In(X)Vwé.

Operating ¢? on both sides of (EI7) and taking X as an orthonormal vector
to & we obtain

(4.18) ¢*(VwQ)(X) = ¢*(VwQ)(X).
In view of the relation (E-IR) we state the following:

Theorem 4.5. The local ¢-Ricci symmetry on LP-Sasakian manifolds is an
invariant property under D-homothetic deformations.
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4.4. n— parallel Ricci tensor of an LP-Sasakian manifolds

Let us consider the n-parallelity of the Ricci tensor on an L P-Sasakian
manifold.

Differentiating (B=8) covariantly with respect to W and using (ZI0) we
obtain

(VwS)(X,Y) = (VwS)(X,Y)
—[2(1 —a)(n = 1) + (1 - a)?
(4.19) [g(eW, X)n(Y) + g(eW. Y )n(X)].
In (B719) replacing X by ¢X,Y by ¢ Y and using (E33) we get
(4.20) (VwS)(9X,9Y) = (Vi S)(6X, 6Y).

Hence we can state the following:

Theorem 4.6. The n-parallelity of the Ricci tensor on LP-Sasakian manifolds
18 an tnvariant property under D-homothetic deformations.

5. Example

We consider the 3-dimensional manifold M = {(z,y,2) € R3}, where
(2,9, 2) are standard coordinates of R3.
The vector fields

L TN}
oy’ 2 " \ox "oy T oz

are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

gler,e3) = g(er,e2) = g(ez,e3) =0,

g(elael) = 9(62’62) =1,
g(es,e3) = —1.

Let 1 be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M).
Let ¢ be the (1, 1) tensor field defined by

pe1) = —e1, ¢(e2) = —ea, (e3) = 0.

Then using the linearity of ¢ and g, we have

n(es) = —1,
0’7 = Z+1(Z)es,
9(eZ, W) = g(Z, W) +n(Z)n(W),
for any Z, W € x(M).
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Then for e3 = £ , the structure (¢, &, 7, g) defines a Lorentzian paracontact
structure on M.

Let V be the Levi-Civita connection with respect to the Lorentzian metric
g and let R be the curvature tensor of g. Then we have

le1,e2] =0, er,es] = —e1 and [eg,e3] = —ea.

Taking ez = £ and using Koszul’s formula for the Lorentzian metric g, we
can easily calculate

Ve ez = —e1, Ve ep =0, Ve = —es,
Ve,e3 = —€2, Ve,ea = —e3, Ve,e1 =0,
(51) Ve3€3 = O, vegeQ = O7 v6361 =0.

From the above it can be easily seen that M3(¢, &, 7, g) is an LP-Sasakian
manifold. With the help of the above results it can be easily verified that

R(ey,ez)es =0, R(ez,e3)es = —e2, R(ep,e3)es = —ey,
R(e1,ea)es = e1, R(ea,e3)ea = —e3, R(ei,e3z)ea =0,
R(el7 62)61 = —€g, R(627 63)61 = O7 R(@l7 63)61 = —es3.

From the above expressions of the curvature tensor we obtain

S(er,e1) = g(R(e1,e2)es, e1) — g(R(e1,e3)es; er)
= 2.
Similarly we have
5(62, 62) =2
and
5(63,63) = 2.
Therefore,

r=.5(e1,e1) + S(ea,ea) — S(es, e3) = 6.

From [B] we know that in a 3- dimensional LP-Sasakian manifold

REXY)Z = (Sl 2)X —o(X, 2v] + (5 Olo(v 2m(X)e

(5.2) —9(X, Z)n(Y)§ +n(Y)n(2)X —n(X)n(Z)Y].

Now using (B2) we get

JRXY)ZW) = (=

No(Y, Z)g(X, W) — g(X, Z)g(Y, W)]

(S0 gY, X)) — g(X, Zyn(¥ (W)
(5.3) +n(Y)n(2)g(X, W) = n(X)n(Z)g(Y, W)].
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From (B33), it follows that the ¢- sectional curvature of the manifold is given
by
r—4

2

K(X,9X) =

for any vector field X orthogonal to &.
In view of the above relation we get

r—4

K<el7¢el) = K(€27¢62) = 2

Again it can be easily shown from (£33) that

K(ey,pe1) — K(e1,pe1) = —2(a—1)

and

K(eq, pea) — K(eg, pea) = —2(a — 1)

Therefore Theorem 4.3 is verified.
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