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Abstract. In this paper we report on recent results and applica-
tions of the so-called SG calculus, focusing, in particular, on its elliptic
elements. The topics we discuss include propagation of singularities of
(global versions of) wave-front sets, global regularity of solutions to linear
and nonlinear partial differential equations on Rd in appropriate function
and distribution spaces, and spectral asymtptotics of elliptic, selfadjoint,
positive operators on Rd.
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1. Introduction

A general calculus and corresponding definition of global ellipticity for
partial differential operators and pseudo-differential operators on noncompact
manifolds represent a relevant issue of the modern Mathematical Analysis. In
the case of the Euclidean space Rd, we may refer to the Weyl-Hörmander cal-
culus cf. [50, Vol. 3]. In this framework, we mention two basic examples. One
is given by the Γ-operators of M.A. Shubin [75], used in semi-classical analysis
(see also D. Robert [70]), and many other contexts. The other is given by the
so-called SG classes, having a related, but somewhat more ductile, structure.
The basic properties of these classes can be found, for example, in the book
[64] by F. Nicola and L. Rodino.

The present paper is a survey on recent results concerning SG classes. In
fact, during the last few years, many new results appeared, concerning, in
particular, global versions of wave-front sets, spectral theory and semilinear
equations in this setting (the latter coming from problems in Mathematical
Physics). Our attention will be mainly focused on SG-elliptic equations, by
limiting to a short information on SG-hyperbolic problems and related Fourier
integral operators. Similarly, extensions to a wide class of non-compact mani-
folds, namely, the so-called manifolds with ends, and other relevant topics will
be omitted here. Nevertheless, we will try to give the flavor of the new ideas
in the field.
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Let us start with a few historical notes and the basic definitions. Originally,
the SG classes have been independently introduced by H.O. Cordes [22] (see

also [23]) and C. Parenti [66]. Explicitly, denoting by f̂ the Fourier transform
of f ∈ S(Rd), defined as

f̂(ξ) =
1

(2π)d/2

∫
e−ix·ξf(x) dx,

SG-pseudodifferential operators A = a(x,D) = Op(a) can be defined via the
usual left-quantization

Au(x) =
1

(2π)d/2

∫
eix·ξa(x, ξ)f̂(ξ)dξ,

starting from symbols a(x, ξ) ∈ C∞(Rd×Rd) with the property that, for arbi-
trary multiindices α, β, there exist constants Cαβ ≥ 0 such that the estimates

(1.1) |Dα
xD

β
ξ a(x, ξ)| ≤ Cαβ⟨x⟩m−|α|⟨ξ⟩µ−|β|

hold for fixed m,µ ∈ R and all x, ξ ∈ Rd. In (1.1) we used the notation
⟨y⟩ =

√
1 + |y|2, y ∈ Rd. Symbols of this type belong to the class denoted by

SGm,µ(Rd), and the corresponding operators constitute the class Lm,µ(Rd) =
Op(SGm,µ(Rd)). In the sequel we will often simply write SGm,µ and Lm,µ,
respectively.

These classes of operators form a graded algebra, i.e., Ls,σ◦Lt,τ ⊆ Ls+t,σ+τ ,
whose residual elements are operators with symbols in

SG−∞,−∞(Rd) =
∩

(m,µ)∈R2

SGm,µ(Rd) = S(R2d),

that is, those having kernel in S(R2d), continuously mapping S′(Rd) to S(Rd).
An operator A = Op(a) ∈ Lm,µ is called SG-elliptic if there exists R ≥ 0 such
that a(x, ξ) is invertible for |x|+ |ξ| ≥ R and

a(x, ξ)−1 = O(⟨x⟩−m⟨ξ⟩−µ), |x|+ |ξ| ≥ R.

Operators in Lm,µ act continuously from S(Rd) to itself, and extend as con-
tinuous operators from S′(Rd) to itself and from Hs,σ(Rd) to Hs−m,σ−µ(Rd),
where Ht,τ (Rd), t, τ ∈ R, denotes the weighted Sobolev space (or Sobolev-Kato
space)

Ht,τ (Rd) = H2
t,τ (Rd) = {u ∈ S′(Rd) : ∥u∥t,τ = ∥Op(ϑt,τ )u∥L2 <∞},

ϑt,τ (x, ξ) = ⟨x⟩t⟨ξ⟩τ .

Incidentally, notice that Hs,σ(Rd) ↪→ Ht,τ (Rd) when s ≥ t and σ ≥ τ , with
compact embedding when both inequalities are strict, and H0,0(Rd) = L2(Rd),
while

S(Rd) =
∩

(t,τ)∈R2

Ht,τ (Rd) and S′(Rd) =
∪

(t,τ)∈R2

Ht,τ (Rd).
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An elliptic SG-operator A ∈ Lm,µ admits a parametrix P ∈ L−m,−µ such that

PA = I +K1, AP = I +K2,

for suitable K1,K2 ∈ L−∞,−∞ = Op(SG−∞,−∞), and it turns out to be a
Fredholm operator. In 1987, E. Schrohe [74] introduced a class of non-compact
manifolds, the so-called SG-manifolds, on which it is possible to transfer from
Rd the whole SG-calculus. In short, these are manifolds which admit a fi-
nite atlas whose changes of coordinates behave like symbols of order (0, 1)
(see [74] for details and additional technical hypotheses). The manifolds with
cylindrical ends are a special case of SG-manifolds, on which also the concept
of SG-classical operator makes sense. Moreover, the principal symbol of a
SG-classical operator A on a manifold with cylindrical ends M , in this case
a triple σ(A) = (σψ(A), σe(A), σψe(A)), has an invariant meaning on M , see,
e.g., Y. Egorov, B.-W. Schulze [38], L. Maniccia, P. Panarese [58], and Section
5 below.

For a more geometric approach, leading to the so-called scattering calculus,
on Rd and on suitable classes of noncompact manifolds (including the manifolds
with ends), see the theory developed by R. Melrose [60] and coauthors.

The paper is organized as follows. In Section 2 we fix the notation and recall
the definition of the generalized SG symbols introduced by S. Coriasco, K.
Johansson, J. Toft in [27]. In Section 3 we describe the regularity of solutions of
SG-elliptic equations in the framework of general, weighted modulation spaces,
in terms of an appropriate notion of (global) wave-front set. In Section 4 we
describe the regularity of solutions of SG-elliptic equations in the framework
of the Gel’fand-Shilov classes. In Section 5 we give the Weyl formula for an
SG-elliptic, selfadjoint, positive operator on Rd. To conclude, in Section 6 we
give a short indication of the existing results on the manifolds with ends and
in the SG-hyperbolic setting.

2. Preliminaries

We begin by fixing the notation and recalling some basic concepts which
will be needed below. In Subsections 2.1-2.3 we summarize part of the contents
of Sections 2 in [27, 28]. Here and in what follows, A ≍ B means that A . B
and B . A, where A . B means that A ≤ c ·B, for a suitable constant c > 0.

2.1. Weight functions

Let ω and v be positive measurable functions on Rd. Then ω is called
v-moderate if

(2.1) ω(x+ y) . ω(x)v(y)

If v in (2.1) can be chosen as a polynomial, then ω is called a function or weight
of polynomial type. We let P(Rd) be the set of all polynomial type functions
on Rd. If ω(x, ξ) ∈ P(R2d) is constant with respect to the x-variable or the ξ-
variable, then we write ω(ξ), respectively ω(x), instead of ω(x, ξ), and consider
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ω as an element in P(R2d) or in P(Rd) depending on the situation. We say that
v is submultiplicative if (2.1) holds for ω = v. For convenience we assume that
all submultiplicative weights are even, and v always stands in the sequel for a
submultiplicative weight, if nothing else is stated.

Without loss of generality we may assume that every ω ∈ P(Rd) is smooth
and satisfies the ellipticity condition ∂αω/ω ∈ L∞. In fact, by Lemma 1.2 in
[76] it follows that for each ω ∈ P(Rd), there is a smooth and elliptic ω0 ∈ P(Rd)
which is equivalent to ω in the sense

(2.2) ω ≍ ω0.

The weights involved in the sequel have to satisfy additional conditions.
More precisely let r, ρ ≥ 0. Then Pr,ρ(R2d) is the set of all ω(x, ξ) in P(R2d)

∩
C∞(R2d) such that

(2.3) ⟨x⟩r|α|⟨ξ⟩ρ|β|
∂αx ∂

β
ξ ω(x, ξ)

ω(x, ξ)
∈ L∞(R2d),

for every multi-indices α and β. Any weight ω ∈ Pr,ρ(R2d) is then called SG-
moderate on R2d, of order r and ρ. Notice that Pr,ρ is different here compared
to [26], P0,0(R2d) = P(R2d), and for r > 0, ρ > 0 there are elements in P(R2d)
which have no equivalent elements in Pr,ρ(R2d). On the other hand, ifm,µ ∈ R
and r, ρ ∈ [0, 1], then Pr,ρ(R2d) contains all weights of the form

(2.4) ϑm,µ(x, ξ) ≡ ⟨x⟩m⟨ξ⟩µ,

which are one of the most common type of weights.

2.2. Modulation spaces

Let ϕ ∈ S(Rd). Then the short-time Fourier transform of f ∈ S(Rd) with
respect to (the window function) ϕ is defined by

(2.5) Vϕf(x, ξ) = (2π)−d/2
∫
Rd

f(y)ϕ(y − x)e−i⟨y,ξ⟩ dy.

More generallly, the short-time Fourier transform of f ∈ S′(Rd) with respect
to ϕ ∈ S′(Rd) is defined by

(2.5)′ (Vϕf) = F2F, where F (x, y) = (f ⊗ ϕ)(y, y − x).

Here F2F is the partial Fourier transform of F (x, y) ∈ S′(R2d) with respect
to the y-variable. We refer to [42, 44] for more facts about the short-time
Fourier transform. To introduce the modulation spaces, we first recall that
a Banach function space B, continuously embedded in L1

loc(Rd), is called a
(translation) invariant BF-space on Rd, with respect to a submultiplicative
weight v ∈ P(Rd), if there is a constant C such that the following conditions
are fulfilled:



Ellipticity in the SG calculus 9

1. S(Rd) ⊆ B ⊆ S′(Rd) (continuous embeddings);

2. if x ∈ Rd and f ∈ B, then f(· − x) ∈ B, and

∥f(· − x)∥B ≤ Cv(x)∥f∥B;

3. if f, g ∈ L1
loc(Rd) satisfy g ∈ B and |f | ≤ |g| almost everywhere, then

f ∈ B and

∥f∥B ≤ C∥g∥B;

4. if f ∈ B and φ ∈ C∞
0 (Rd), then f ∗ φ ∈ B, and

∥f ∗ φ∥B ≤ ∥φ∥L1
(v)

∥f∥B.

The following definition of modulation spaces is due to Feichtinger [41].
Let B be a translation invariant BF-space on R2d with respect to v ∈ P(R2d),
ϕ ∈ S(Rd)\0 and let ω ∈ P(R2d) be such that ω is v-moderate. The modulation
space M(ω,B) consists of all f ∈ S′(Rd) such that Vϕf ·ω ∈ B. We notice that
M(ω,B) is a Banach space with the norm

∥f∥M(ω,B) ≡ ∥Vϕf · ω∥B

(cf. [40]).

Remark 2.1. Assume that p, q ∈ [1,∞], and let Lp,q1 (R2d) and Lp,q2 (R2d) be the
sets of all F ∈ L1

loc(R2d) such that

∥F∥Lp,q
1

≡
(∫ (∫

|F (x, ξ)|p dx
)q/p

dξ
)1/q

<∞

and

∥F∥Lp,q
2

≡
(∫ (∫

|F (x, ξ)|q dξ
)p/q

dx
)1/p

<∞.

ThenM(ω,Lp,q1 (R2d)) is equal to the classical modulation spaceMp,q
(ω)(R

d), and

M(ω,Lp,q2 (R2d)) is equal to the space W p,q
(ω)(R

d), related to Wiener-amalgam

spaces (cf. [39, 40, 41, 44]).

Remark 2.2. Several important spaces agree with certain modulation spaces.
In fact, let s, σ ∈ R. If ω = ϑs,σ (cf. (2.4)), then M2

(ω)(R
d) is equal to

H2
σ,s(Rd) in [30, 60], the set of all f ∈ S′(Rd) such that ⟨x⟩s⟨D⟩σf ∈ L2(Rd).

In particular, if s = 0 (σ = 0), then M2
(ω)(R

d) equals to Hσ(Rd) = H2
σ(Rd)

(L2
s(Rd)). Furthermore, if instead ω(x, ξ) = ⟨x, ξ⟩s, then M2

(ω)(R
d) is equal to

the Sobolev-Shubin space of order s. (cf. e. g. [7, 57]).
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2.3. Pseudo-differential operators and SG symbol classes

Let a ∈ S(R2d), and t ∈ R be fixed. Then the pseudo-differential operator
Opt(a) is the linear and continuous operator on S(Rd) defined by the formula

(Opt(a)f)(x) = (2π)−d
∫∫

ei⟨x−y,ξ⟩a((1− t)x+ ty, ξ)f(y) dydξ

(cf. Chapter XVIII in [50]). For general a ∈ S′(R2d), the pseudo-differential
operator Opt(a) is defined as the continuous operator from S(Rd) to S′(Rd)
with distribution kernel

Kt,a(x, y) = (2π)−d/2(F−1
2 a)((1− t)x+ ty, x− y).

If t = 0, then Opt(a) is the Kohn-Nirenberg representation Op(a) = a(x,D),
and if t = 1/2, then Opt(a) is the Weyl quantization.

In the sequel, a belongs to a generalized SG-symbol class, which we shall
consider now. Let m,µ, r, ρ ∈ R be fixed. Then the SG-class SGm,µ

r,ρ (R2d) is

the set of all a ∈ C∞(R2d) such that

|Dα
xD

β
ξ a(x, ξ)| . ⟨x⟩m−r|α|⟨ξ⟩µ−ρ|β|,

for all multi-indices α and β. Usually we assume that r, ρ ≥ 0 and ρ + r >
0. When r = ρ = 1, we write SGm,µ in place of SGm,µ

1,1 , cf. (1.1) in the
Introduction.

More generally, assume that ω ∈ Pr,ρ(R2d). Then SG(ω)
r,ρ (R2d) consists of

all a ∈ C∞(R2d) such that

|Dα
xD

β
ξ a(x, ξ)| . ω(x, ξ)⟨x⟩−r|α|⟨ξ⟩−ρ|β|, x, ξ ∈ Rd,

for all multi-indices α and β. We notice that SG(ω)
r,ρ = SGm,µ

r,ρ when ω = ϑm,µ
(see (2.4)). For conveniency, we set

SG(ωϑ−∞,0)
ρ (R2d) = SG(ωϑ−∞,0)

r,ρ (R2d) ≡
∩
N≥0

SG(ωϑ−N,0)
r,ρ (R2d),

SG(ωϑ0,−∞)
r (R2d) = SG(ωϑ0,−∞)

r,ρ (R2d) ≡
∩
N≥0

SG(ωϑ0,−N )
r,ρ (R2d),

and

SG(ωϑ−∞,−∞)(R2d) = SG(ωϑ−∞,−∞)
r,ρ (R2d) ≡

∩
N≥0

SG(ωϑ−N,−N )
r,ρ (R2d).

We observe that SG(ωϑ−∞,0)
r,ρ (R2d) is independent of r, SG(ωϑ0,−∞)

r,ρ (R2d) is in-

dependent of ρ, and that SG(ωϑ−∞,−∞)
r,ρ (R2d) is independent of both r and ρ.

Furthermore, for any x0, ξ0 ∈ Rd we have

SG(ωϑ−∞,0)
ρ (R2d) = SG(ω0ϑ−∞,0)

ρ (R2d), when ω0(ξ) = ω(x0, ξ),

SG(ωϑ0,−∞)
r (R2d) = SG(ω0ϑ0,−∞)

r (R2d), when ω0(x) = ω(x, ξ0),
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and

SG(ωϑ−∞,−∞)(R2d) = S(R2d).

The following result shows that the concept of asymptotic expansion extends
to the classes SG(ω)

r,ρ (R2d). We refer to [37, Theorem 8] for the proof.

Proposition 2.3. Let r, ρ ≥ 0 satisfy r + ρ > 0, and let {sj}j≥0 and {σj}j≥0

be sequences of non-positive numbers such that limj→∞ sj = −∞ when r > 0
and sj = 0 otherwise, and limj→∞ σj = −∞ when ρ > 0 and σj = 0 otherwise.

Also let aj ∈ SG(ωj)
r,ρ (R2d), j = 0, 1, . . . , where ωj = ω · ϑsj ,σj . Then there is a

symbol a ∈ SG(ω)
r,ρ (R2d) such that

a−
N∑
j=0

aj ∈ SG(ωN+1)
r,ρ (R2d).

The symbol a is uniquely determined modulo a remainder h, where

h ∈ SGωϑ−∞,0)
ρ (R2d) when r > 0,

h ∈ SG(ωϑ0,−∞)
r (R2d) when ρ > 0,

h ∈ S(R2d) when r > 0, ρ > 0.

Definition 2.4. The notation a ∼
∑
aj is used when a and aj fulfill the

hypothesis in Proposition 2.3. Furthermore, the formal sum∑
j≥0

aj

is called an asymptotic expansion.

It is a well-known fact that SG-operators give rise to linear continuous
mappings from S(Rd) to itself, extendable as linear continuous mappings from
S′(Rd) to itself. They also act continuously between modulation spaces. Indeed,

if a ∈ SG(ω0)
r,ρ (R2d), then Opt(a) is continuous from M(ω,B) to M(ω/ω0,B)

(cf. [27]). Moreover, for every fixed ω0 ∈ Pr,ρ(R2d), r, ρ ≥ 0, there exist a ∈
SG(ω0)

r,ρ (R2d) and b ∈ SG(1/ω0)
r,ρ (R2d) such that, for every choice of ω ∈ P(R2d)

and every translation invariant BF-space B on R2d, the mappings

Opt(a) : S(Rd) → S(Rd), Opt(a) : S′(Rd) → S′(Rd)

and Opt(a) : M(ω,B) →M(ω/ω0,B).

are continuous bijections with inverses Opt(b).
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3. Regularity of solutions in modulation spaces

We express the regularity of solutions to SG-elliptic equations within the
environment of the general, weighted modulation spaces, in terms of appropri-
ate global wave-front sets. We first recall the corresponding definition, given
by S. Coriasco, K. Johansson, J. Toft in [27], which generalizes the analysis
performed in S. Coriasco, K. Johansson, J. Toft [26] and in S. Coriasco, L.
Maniccia [30], see also S. Coriasco, R. Schulz [35]. The contents of Subsections
3.1 and 3.2 again come from [27, 28].

3.1. Global Wave-front Sets

Here we recall the definition given in [27] of global wave-front sets for tem-
perate distributions with respect to Banach or Fréchet spaces and state some
of their properties (see also [28]). First of all, we recall the definitions of the
set of characteristic points which we use in this framework. Remember that if
a ∈ SG(ω0)

r,ρ (R2d), then

|a(x, ξ)| . ω0(x, ξ).

On the other hand, a is invertible, in the sense that 1/a is a symbol in

SG(1/ω0)
r,ρ (R2d), if and only if

(3.1) ω0(x, ξ) . |a(x, ξ)|.

We need to deal with the situations where (3.1) holds only in certain (conic-
shaped) subset of Rd ×Rd. Here we let Ωm, m = 1, 2, 3, be the sets

(3.2)
Ω1 = Rd × (Rd \ 0), Ω2 = (Rd \ 0)×Rd,

Ω3 = (Rd \ 0)× (Rd \ 0),

Definition 3.1. Let r, ρ ≥ 0, ω0 ∈ Pr,ρ(R
2d), Ωm, m = 1, 2, 3 be as in (3.2),

and let a ∈ SG(ω0)
r,ρ (R2d).

1. a is called locally or type-1 invertible with respect to ω0 at the point
(x0, ξ0) ∈ Ω1, if there exist a neighbourhood X of x0, an open conical
neighbourhood Γ of ξ0 and a positive constant R such that (3.1) holds
for x ∈ X, ξ ∈ Γ and |ξ| ≥ R.

2. a is called Fourier-locally or type-2 invertible with respect to ω0 at the
point (x0, ξ0) ∈ Ω2, if there exist an open conical neighbourhood Γ of x0,
a neighbourhood X of ξ0 and a positive constant R such that (3.1) holds
for x ∈ Γ, |x| ≥ R and ξ ∈ X.

3. a is called oscillating or type-3 invertible with respect to ω0 at the point
(x0, ξ0) ∈ Ω3, if there exist open conical neighbourhoods Γ1 of x0 and Γ2

of ξ0, and a positive constant R such that (3.1) holds for x ∈ Γ1, |x| ≥ R,
ξ ∈ Γ2 and |ξ| ≥ R.
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If m ∈ {1, 2, 3} and a is not type-m invertible with respect to ω0 at
(x0, ξ0) ∈ Ωm, then (x0, ξ0) is called type-m characteristic for a with respect to
ω0. The set of type-m characteristic points for a with respect to ω0 is denoted
by Charm(ω0)(a).

The (global) set of characteristic points (the characteristic set), for a symbol

a ∈ SG(ω0)
r,ρ (R2d) with respect to ω0 is defined as

Char(a) = Char(ω0)(a) = Char1(ω0)(a)
∪

Char2(ω0)(a)
∪

Char3(ω0)(a).

Remark 3.2. Let X ⊆ Rd be open and Γ,Γ1,Γ2 ⊆ Rd\0 be open cones. Then
the following is true.

1. if x0 ∈ X, ξ0 ∈ Γ, φ ∈ Cx0(X) and ψ ∈ Cdir
ξ0

(Γ), then c1 = φ⊗ ψ belongs

to SG0,0
1,1(R

2d), and is type-1 invertible at (x0, ξ0);

2. if x0 ∈ Γ, ξ0 ∈ X, ψ ∈ Cdir
x0

(Γ) and φ ∈ Cξ0(X), then c2 = φ⊗ ψ belongs

to SG0,0
1,1(R

2d), and is type-2 invertible at (x0, ξ0);

3. if x0 ∈ Γ1, ξ0 ∈ Γ2, ψ1 ∈ Cdir
x0

(Γ1) and ψ2 ∈ Cdir
ξ0

(Γ2), then c3 = ψ1 ⊗ ψ2

belongs to SG0,0
1,1(R

2d), and is type-3 invertible at (x0, ξ0).

Remark 3.3. In the case ω0 = 1 we exclude the phrase “with respect to ω0” in
Definition 3.1. For example, a ∈ SG0,0

r,ρ(R
2d) is type-1 invertible at (x0, ξ0) ∈

Rd× (Rd\0) if (x0, ξ0) /∈ Char1(ω0)(a) with ω0 = 1. This means that there exist
a neighbourhood X of x0, an open conical neighbourhood Γ of ξ0 and R > 0
such that (3.1) holds for ω0 = 1, x ∈ X and ξ ∈ Γ satisfies |ξ| ≥ R.

In the next definition we introduce different classes of cutoff functions (see
also Definition 1.9 in [26]).

Definition 3.4. Let X ⊆ Rd be open, Γ ⊆ Rd \ 0 be an open cone, x0 ∈ X
and let ξ0 ∈ Γ.

1. A smooth function φ on Rd is called a cutoff (function) with respect to
x0 and X, if 0 ≤ φ ≤ 1, φ ∈ C∞

0 (X) and φ = 1 in an open neighbourhood
of x0. The set of cutoffs with respect to x0 and X is denoted by Cx0(X)
or Cx0 .

2. A smooth function ψ on Rd is called a directional cutoff (function) with
respect to ξ0 and Γ, if there is a constant R > 0 and open conical neigh-
bourhood Γ1 ⊆ Γ of ξ0 such that the following is true:

• 0 ≤ ψ ≤ 1 and suppψ ⊆ Γ;

• ψ(tξ) = ψ(ξ) when t ≥ 1 and |ξ| ≥ R;

• ψ(ξ) = 1 when ξ ∈ Γ1 and |ξ| ≥ R.

The set of directional cutoffs with respect to ξ0 and Γ is denoted by
Cdir
ξ0

(Γ) or Cdir
ξ0

.
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The next proposition shows that Opt(a) for t ∈ R satisfies convenient in-
vertibility properties of the form

(3.3) Opt(a)Opt(b) = Opt(c) + Opt(h),

outside the set of characteristic points for a symbol a. Here Opt(b), Opt(c)
and Opt(h) have the roles of “local inverse”, “local identity” and smoothing
operators respectively. From these statements it also follows that our set of
characteristic points in Definition 3.1 are related to those in [30, 50]. We let
Im, m = 1, 2, 3, be the sets

(3.4) I1 ≡ [0, 1]× (0, 1], I2 ≡ (0, 1]× [0, 1], I3 ≡ (0, 1]× (0, 1] = I1 ∩ I2.

which will be useful in the sequel.

Proposition 3.5. Let m ∈ {1, 2, 3}, (r, ρ) ∈ Im, ω0 ∈ Pr,ρ(R
2d) and let

a ∈ SG(ω0)
r,ρ (R2d). Also let Ωm be as in (3.2), (x0, ξ0) ∈ Ωm, and let (r0, ρ0)

be equal to (r, 0), (0, ρ) and (r, ρ) when m is equal to 1, 2 and 3, respectively.
Then the following conditions are equivalent:

1. (x0, ξ0) /∈ Charm(ω0)(a);

2. there is an element c ∈ SG0,0
r,ρ which is type-m invertible at (x0, ξ0), and

an element b ∈ SG(1/ω0)
r,ρ such that ab = c;

3. (3.3) holds for some c ∈ SG0,0
r,ρ which is type-m invertible at (x0, ξ0), and

some elements h ∈ SG−r0,−ρ0
r,ρ and b ∈ SG(1/ω0)

r,ρ ;

4. (3.3) holds for some cm ∈ SG0,0
r,ρ in Remark 3.2 which is type-m invertible

at (x0, ξ0), and some elements h and b ∈ SG(1/ω0)
r,ρ , where h ∈ S when

m ∈ {1, 3} and h ∈ SG−∞,0 when m = 2.

Furthermore, if t = 0, then the supports of b and h can be chosen to be
contained in X×Rd when m = 1, in Γ×Rd when m = 2, and in Γ1×Rd

when m = 3.

We can now introduce the complements of the wave-front sets. More pre-
cisely, let Ωm, m ∈ {1, 2, 3}, be given by (3.2), B be a Banach or Fréchet
space such that S(Rd) ⊆ B ⊆ S′(Rd), and let f ∈ S′(Rd). Then the point
(x0, ξ0) ∈ Ωm is called type-m regular for f with respect to B, if

(3.5) Op(cm)f ∈ B,

for some cm in Remark 3.2. The set of all type-m regular points for f with
respect to B, is denoted by ΘmB (f).

Definition 3.6. Let m ∈ {1, 2, 3}, Ωm be as in (3.2), and let B be a Banach
or Fréchet space such that S(Rd) ⊆ B ⊂ S′(Rd).
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1. the type-m wave-front set of f ∈ S′(Rd) with respect to B is the comple-
ment of ΘmB (f) in Ωm, and is denoted by WFmB (f);

2. the global wave-front set WFB(f) ⊆ (Rd ×Rd)\0 is the set

WFB(f) ≡ WF1
B(f)

∪
WF2

B(f)
∪

WF3
B(f).

The sets WF1
B(f), WF2

B(f) and WF3
B(f) in Definition 3.6, are also called

the local, Fourier-local and oscillating wave-front set of f with respect to B.
Remark 3.7. Let Ωm, m = 1, 2, 3 be the same as in (3.2).

1. If Ω ⊆ Ω1, and (x0, ξ0) ∈ Ω ⇐⇒ (x0, σξ0) ∈ Ω for σ ≥ 1, then Ω is
called 1-conical ;

2. If Ω ⊆ Ω2, and (x0, ξ0) ∈ Ω ⇐⇒ (sx0, ξ0) ∈ Θ2
B(f) for s ≥ 1, then Ω is

called 2-conical ;

3. If Ω ⊆ Ω3, and (x0, ξ0) ∈ Ω ⇐⇒ (sx0, σξ0) ∈ Ω for s, σ ≥ 1, then Ω is
called 3-conical.

By (3.5) and the paragraph before Definition 3.6, it follows that if m = 1, 2, 3,
then ΘmB (f) is m-conical. The same holds for WFmB (f), m = 1, 2, 3, by Defini-
tion 3.6, noticing that, for any x0 ∈ Rr \ {0}, any open cone Γ ∋ x0, and any
s > 0, Cdir

x0
(Γ) = Cdir

sx0
(Γ). For any R > 0 and m ∈ {1, 2, 3}, we set

Ω1,R ≡ { (x, ξ) ∈ Ω1 ; |ξ| ≥ R }, Ω2,R ≡ { (x, ξ) ∈ Ω2 ; |x| ≥ R },

Ω3,R ≡ { (x, ξ) ∈ Ω3 ; |x|, |ξ| ≥ R }

Evidently, ΩRm is m-conical for every m ∈ {1, 2, 3}.
We now specify the subspaces of S′(Rd) which are “admissible” in the

present context.

Definition 3.8. Let r, ρ ∈ [0, 1], t ∈ R, B be a topological vector space of
distributions on Rd such that

S(Rd) ⊆ B ⊆ S′(Rd)

with continuous embeddings. Then B is called SG-admissible (with respect
to r, ρ and d) when Opt(a) maps B continuously into itself, for every a ∈
SG0,0

r,ρ(R
d). If B and C are SG-admissible with respect to r, ρ and d, and

ω0 ∈ Pr,ρ(R
2d), then the pair (B, C) is called SG-ordered (with respect to ω0),

when the mappings

Opt(a) : B → C and Opt(b) : C → B

are continuous for every a ∈ SG(ω0)
r,ρ (R2d) and b ∈ SG(1/ω0)

r,ρ (R2d).

From now on we assume that B in Definition 3.6 is SG-admissible, and
recall that Sobolev-Kato spaces and, more generally, modulation spaces, and
S(Rd) are SG-admissible, see [27, 28].
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3.2. Global wave-front sets of solutions of SG-elliptic equations

The next result describes the relation between “regularity with respect to
B ” of temperate distributions and global wave-front sets.

Proposition 3.9. Let B be SG-admissible, and let f ∈ S′(Rd). Then

f ∈ B ⇐⇒ WFB(f) = ∅.

The main results in this theory are microlocality and microellipticity for
these global wave-front sets and pseudo-differential operators in Op(SG(ω0)

r,ρ ),
see [27].

Theorem 3.10. Let r, ρ ∈ [0, 1], t ∈ R, ω0 ∈ Pr,ρ(R
2d), a ∈ SG(ω0)

r,ρ (R2d) and

let f ∈ S′(Rd). Moreover, let (B, C) be a SG-ordered pair with respect to ω0.
Then, the following properties hold true.

1. If in addition ρ > 0, then

(3.6) WFψC (Opt(a)f) ⊆ WFψB(f) ⊆ WFψC (Opt(a)f)
∪

Charψ(ω0)
(a).

2. If in addition r > 0, then

(3.7) WFeC(Opt(a)f) ⊆ WFeB(f) ⊆ WFeC(Opt(a)f)
∪

Chare(ω0)(a).

3. If in addition r, ρ > 0, then

(3.8) WFψeC (Opt(a)f) ⊆ WFψeB (f) ⊆ WFψeC (Opt(a)f)
∪

Charψe(ω0)
(a).

The above results imply that operators which are elliptic with respect to
ω0 ∈ Pρ,δ(R

2d) when 0 < r, ρ ≤ 1 preserve the global wave-front set of temper-
ate distributions. The next proposition is an immediate corollary of microlo-
cality and microellipticity for operators in Op(SG(ω0)

r,ρ ):

Proposition 3.11. Let m ∈ {1, 2, 3}, (r, ρ) ∈ Im, t ∈ R, ω0 ∈ Pr,ρ(R
2d), a ∈

SG(ω0)
r,ρ (R2d) be SG-elliptic with respect to ω0 and let f ∈ S′(Rd). Moreover,

let (B, C) be a SG-ordered pair with respect to ω0. Then,

WFmC (Opt(a)f) = WFmB (f).

Finally, the next result expresses SG-elliptic regularity in the general con-
text of SG-admissible spaces. In particular, as already explained above, it
holds for general, weighted modulation spaces (B, C) which are a SG-ordered
pair with respect to ω0.
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Theorem 3.12. Assume that the hypothesis in Theorem 3.11 is fulfilled, let
f ∈ C and let u ∈ S′(Rd) be a solution to the equation

(3.9) Opt(a)u = f.

Then, f ∈ B.

Remark 3.13. In view of Theorems 3.9 and 3.12, and of the theory developed
in [30] and in [27, 28], it follows immediately that the kernel of SG-elliptic
operators consists of smooth functions belonging to S(Rd).
The results above can be applied, in particular, to families of modified heat
operators, which turn out to be elliptic elements in the generalized SG classes,
with a suitable choice of the involved weight, see the examples in [27].

Other types of wave-front sets, capturing different notions of regularity, and
somehow related to the versions of SG-wave-front set described above exist.
To mention a few, we recall the works by M. Borsero and R. Schulz [9], L.
Robbiano and C. Zuily [71], L. Rodino and P. Wahlberg [72].

4. Regularity of solutions in Gel’fand-Shilov classes

In the previous sections, see in particular Remark 3.13, we observed that,
under the assumption of SG-ellipticity, the solutions in S′(Rd) of the homo-
geneous equations belong to S(Rd). In particular, in the self-adjoint case, the
eigenfunctions are in S(Rd). Under additional assumptions of regularity of the
symbol, this information can be strongly improved, namely, there are precise
results of exponential decay and holomorphic extension of the solutions. A
precise language to describe the above mentioned properties is given by the
classes of I.M. Gel’fand and G.E. Shilov [43]. Let us start with the following
definition, which reflects the symmetrical role of the variables x and ξ in the
definition of SG classes.

Definition 4.1. The function f(x) is in Sσs (Rd), σ > 0, s > 0, if f ∈ S(Rd)
and there exists a constant ϵ > 0 such that

(4.1) |f(x)| . e−ϵ|x|
1
s , x ∈ Rd,

(4.2) |f̂(ξ)| . e−ϵ|ξ|
1
σ , ξ ∈ Rd.

Classes Sσs (Rd) and related generalizations were widely studied, and used
in the applications to partial differential equations, see, for example, H.A. Bi-
agioni, T. Gramchev [5], B.S. Mitjagin [61], S. Pilipović, N. Teofanov [67], E.
Cordero, S. Pilipović, L. Rodino, N. Teofanov [20], J. Chung, S.Y. Chung, D.
Kim [19], K. Gröchenig, G. Zimmermann [45]. Concerning the tempered ultra-
distirbutions, dual spaces of the Gel’fand-Shilov functions, see, for example, S.
Pilipović [68].

We recall the following result, giving some equivalent definitions of the class
Sσs (Rd).
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Theorem 4.2. Assume σ > 0, s > 0, σ + s ≥ 1. For f ∈ S(Rd), the following
conditions are equivalent:

1. f ∈ Sσs (Rd);

2. there exists C > 0 such that

|xαf(x)| . C|α|(α!)s, x ∈ Rd, α ∈ Nd,

|ξβ f̂(ξ)| . C |β|(β!)σ, ξ ∈ Rd, β ∈ Nd;

3. there exists C > 0 such that

∥xαf(x)∥L2 . C|α|(α!)s, α ∈ Nd,

∥ξβ f̂(ξ)∥L2 . C |β|(β!)σ, β ∈ Nd;

4. there exists C > 0 such that

∥xαf(x)∥L2 . C |α|(α!)s, α ∈ Nd,

∥∂βf(x)∥L2 . C|β|(β!)σ, β ∈ Nd;

5. there exists C > 0 such that

∥xα∂βf(x)∥L2 . C|α|+|β|(α!)s (β|)σ, α, β ∈ Nd;

6. there exists C > 0 such that

|xα∂βf(x)| . C|α|+|β|(α!)s (β|)σ, x ∈ Rd, α, β ∈ Nd;

The previous Theorem 4.2 does not include the case σ + s < 1. In fact,
in this case the space Sσs (Rd) turns out to be trivial, i.e., the estimates (4.1)
and (4.2) imply f ≡ 0. From condition 6 in Theorem 4.2 we have that σ < 1
implies the possibility of extending f to an entire function, whereas for σ = 1
the extension is limited to a strip in the complex domain. Let us introduce the
subclass ASGm,µ,σ

s (Rd) ⊂ SGm,µ(Rd).

Definition 4.3. For s, σ fixed, s ≥ 1, σ ≥ 1, we define ASGm,µ,σ
s (Rd) as the

set of all functions a(x, ξ) ∈ C∞(R2d) such that, for suitable positive constants
R and C,

|Dα
xD

β
ξ a(x, ξ)| ≤ RC |α|+|β|(α!)s(β!)σ⟨x⟩m−|α|⟨ξ⟩µ−|β|

, x, ξ ∈ Rd.

The corresponding pesudo-differential operators act on the Gel’fand-Shilov
classes, and the solutions of the SG-elliptic equations have Gel’fand-Shilov re-
gularity, as detailed by the following theorems. For the proofs, see M. Cappiello
[10, 11], M. Cappiello, L. Rodino [16], M. Cappiello, T. Gramchev, L. Rodino
[12], M. Cappiello, F. Nicola [15].
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Theorem 4.4. Let a ∈ ASGm,µ,σ
s (Rd) and let θ be a real number such that

θ ≥ max{s, σ}. Then, the operator Op(a) = a(., D) with symbol a is a linear
continuous operator from Sθθ (Rd) to Sθθ (Rd), and, when θ > 1, it extends to a
linear continuous map on the tempered distributions Sθθ

′(Rd)

Theorem 4.5. Let a ∈ ASGm,µ,σ
s (Rd) be SG-elliptic and let f ∈ Sθθ (Rd) for

some θ ≥ s+ σ− 1. If u ∈ S′(Rd), or u ∈ Sθθ
′(Rd) if θ > 1, is a solution of the

equation Op(a)u = f , then u ∈ Sθθ (Rd).

Therefore, when a ∈ ASGm,µ,1
1 (Rd), in particular when Op(a) is a partial

differential operator with polynomial coefficients, we have that all the solutions
u ∈ S′(Rd) of the SG-elliptic equation

Op(a)u = 0

belong to S1
1(Rd). Hence, for some ϵ > 0 we have

|u(x)| . e−ϵ|x|, x ∈ Rd,

and u(x) extends as holomorphic function to a strip-neighborhood of Rd in the
complex domain. This result is optimal in the frame of the classes Sσs (Rd),
σ + s ≥ 1. In fact, consider the SG-elliptic differential operator

Op(a)u(x) = −(1 + x2)u′′(x)− 2xu′(x) + x2u(x), x ∈ R.

The operator Op(a) above is self-adjoint with compact resolvent, see the results
of the next Section 5, and there exists a sequence λj ∈ R, j = 1, 2, . . . , of
eigenvalues with eigenfunctions uj ∈ S(R). From the classical theory of the
asymptotic integration, we have

uj(x) = Cx−1e−|x| +O(x−2e−|x|), |x| → +∞,

and from Fuchs theory we may indeed expect singularities at x1,2 = ±i.
Nevertheless, Theorem 4.5 can be improved in other directions. Let us

mention the following result by M. Cappiello and F. Nicola [15], where ope-
rators with SG-elliptic symbol a ∈ ASGm,µ,1

1 (Rd) are considered. Nonlinear
perturbations F [u] are admitted, which are linear combinations of terms of the
form

xh
L∏
k=1

(∂lkx u)(x), |h| ≤ max{m− 1, 0}, |lk| ≤ max{µ− 1, 0}, L ≥ 2.

Theorem 4.6. Consider the semilinear equation

Op(a)u = F [u],

with a and F as above, and assume that u ∈ Hτ (Rd), τ >
d

2
+ max{|lk|} is a

solution. In the case m = 0 assume further that ⟨x⟩ϵ0u(x) ∈ L2(Rd) for some
ϵ0 > 0. Then, u extends to a holomorphic function in the sector of Cd given by

{z = x+ iy ∈ Cd : |y| ≤ c(1 + |x|)},

for some c > 0, satisfying there the estimate |u(x)| . e−ε|x| for some ϵ > 0.
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The novelty with respect to Theorem 4.5 is represented by the non-linear
term (see also M. Cappiello, T. Gramchev, L. Rodino [13]), and by the extension
of the solutions to a sector of Cd. As an example where solutions are known in
closed form, consider the generalized Korteweg-de Vries equation

vt + vx + vlvx + vxxx = 0,

where l ≥ 1 is a positive integer. The solitary wave solutions have the form
v(t, x) = u(x− V t), where V > 1 and u satisfies the equation

Au =
1

l + 1
vl+1.

Here A is the operator with SG-elliptic symbol

a(x, ξ) = ξ2 + V − 1 ∈ ASG0,2,1
1 (R).

Explicit solutions are given by

u(x) =

√
(l + 1)(l + 2)(V − 1)

2
cosh−1/l

(√
V − 1

2
lx

)
,

which has poles at the points z = i
(2k + 1)π

l
√
V − 1

, k ∈ Z. Also, the exponential

decay in sectors containing the real axes predicted by Theorem 4.6 is confirmed.
To conclude the section, we observe that SG wave-front sets in the frame-

work of Gel’fand-Shilov classes were considered by M. Cappiello and L. Rodino
[16], and SG Fourier integral operators in the same context can be found in
M. Cappiello [11]. Also, we would like to mention other papers concerning
the action on Gel’fand-Shilov classes of different types of pseudo-differential
operators: A. Khrennikov, B, Nilsson, S. Nordebo, J. Toft [54], J. Toft [77, 78],
B. Prangoski [69], M. Cappiello, S. Pilipović, B. Prangoski [14]. See also M.
Cappiello, R. Schulz [17] for a different notion of Gel’fand-Shilov wave-front
set. Finally, we would like also to observe that Gel’fand-Shilov classes have
been recently used in connection with the study of the Boltzmann equation,
see N. Lerner, Y. Morimoto, K. Pravda-Starov, C.-J. Xu [56], Y. Morimoto, K.
Pravda-Starov, C.-J. Xu [63].

5. Spectral asymptotics for SG-elliptic selfadjoint opera-
tors on Rd

In this section we will be concerned with the subclass of SG-operators
given by those elements A ∈ Lm,µ(Rd), m,µ ∈ R, which are SG-classical,
that is, A = Op(a) with a ∈ SGm,µ

cl (Rd) ⊂ SGm,µ(Rd), see below for the
precise definition. In particular, we illustrate the behaviour for λ → +∞
of the counting function NA(λ) of a SG-classical elliptic selfadjoint operator
A ∈ Lm,µcl (Rd) with m,µ > 0.
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5.1. SG-classical operators on Rd

We begin by recalling some basic definitions and results (see, e.g., [38, 59]
for additional details and proofs). In Definitions 5.1 and 5.2 below, a 0-excision
function χ is an element of C∞(Rd) such that χ(t) = 0 when t belongs to a
(fixed) neighborhood of the origin.

Definition 5.1. i) A symbol a(x, ξ) belongs to the class SGm,µ
cl(x)(R

d) if

there exist am−j,·(x, ξ) ∈ C∞((Rd \ {0}) × Rd), j = 0, 1, . . . , positively
homogeneous functions of order m−j with respect to the variable x, such
that, for a 0-excision function χ,

a(x, ξ)−
N−1∑
j=0

χ(x) am−j,·(x, ξ) ∈ SGm−N,µ(Rd), N = 1, 2, . . .

ii) A symbol a(x, ξ) belongs to the class SGm,µ
cl(ξ)(R

d) if there exist a·,µ−k(x, ξ)

∈ C∞(Rd × (Rd \ {0})), k = 0, 1, . . . , positively homogeneous functions
of order µ − k with respect to the variable ξ, such that, for a 0-excision
function χ,

a(x, ξ)−
N−1∑
k=0

χ(ξ) a·,µ−k(x, ξ) ∈ SGm,µ−N (Rd), N = 1, 2, . . .

Definition 5.2. A symbol a ∈ SGm,µ(Rd) is SG-classical, and we write a ∈
SGm,µ

cl(x,ξ)(R
d) = SGm,µ

cl (Rd) = SGm,µ
cl , if

i) there exist am−j,·(x, ξ) ∈ C∞((Rd \ {0}) × Rd), j = 0, 1, . . . , positively
homogeneous functions of order m−j with respect to the variable x, such
that, for a 0-excision function χ, χ(x) am−j,·(x, ξ) ∈ SGm−j,µ

cl(ξ) (Rd) and

a(x, ξ)−
N−1∑
j=0

χ(x) am−j,·(x, ξ) ∈ SGm−N,µ(Rd), N = 1, 2, . . . ;

ii) there exist a·,µ−k(x, ξ) ∈ C∞(Rd × (Rd \ {0})), k = 0, 1, . . . , positively
homogeneous functions of order µ−k with respect to the variable ξ, such
that, for a 0-excision function χ, χ(ξ) a·,µ−k(x, ξ) ∈ SGm,µ−k

cl(x) (Rd) and

a(x, ξ)−
N−1∑
k=0

χ(ξ) a·,µ−k ∈ SGm,µ−N (Rd), N = 1, 2, . . .

We set Lm,µcl(x,ξ)(R
d) = Lm,µcl = Op(SGm,µ

cl ).

Notice that the definition of SG-classical symbol implies a condition of com-
patibility for the terms of the expansions with respect to x and ξ. In fact,
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defining σm−j
e and σµ−ke on SGm,µ

cl(x) and SGm,µ
cl(ξ), respectively, as

σm−j
e (a)(x, ξ) = am−j,·(x, ξ), j = 0, 1, . . . ,

σµ−kψ (a)(x, ξ) = a·,µ−k(x, ξ), k = 0, 1, . . . ,

it is possibile to prove that

am−j,µ−k = σµ−k,m−j
ψe (a) = σm−j

e (σµ−kψ (a)) = σµ−kψ (σm−j
e (a)),

j = 0, 1, . . . , k = 0, 1, . . .

Moreover, the composition of two SG-classical operators is still classical. For
A = Op(a) ∈ Lm,µcl the triple

σ(A) = (σψ(A), σe(A), σψe(A)) = (a·,µ , am,· , am,µ) = (aψ, ae, aψe)

is called the principal symbol of A. The three components are also called the
ψ-, e- and ψe-principal symbol, respectively. This definition keeps the usual
multiplicative behaviour, that is, for any R ∈ Lm,µcl , S ∈ Lt,τcl , m,µ, t, τ ∈ R,
σ(RS) = σ(S)σ(T ), with componentwise product in the right-hand side. We
also set
(5.1)
Symp (A) (x, ξ) = Symp (a) (x, ξ) =

= am,µ(x, ξ) = χ(ξ)aψ(x, ξ) + χ(x)(ae(x, ξ)− χ(ξ)aψe(x, ξ)),

for a fixed 0-excision function χ. Note that, for a ∈ SGm,µ
cl , a = am,µ

mod SGm−1,µ−1
cl . Theorem 5.3 below allows us to express the ellipticity of

SG-classical operators in terms of their principal symbol:

Theorem 5.3. An operator A ∈ Lm,µcl is elliptic if and only if each element of
the triple σ(A) is non-vanishing on its domain of definition.

5.2. Weyl formulae

We first refer to the papers by L. Maniccia, P. Panarese [58] and L. Maniccia,
E. Schrohe, J. Seiler [59], and begin by recalling facts concerning the spectrum
of SG-elliptic operators. For m,µ > 0, an SG-elliptic A ∈ Lm,µ is considered
as an unbounded operator

A : Hm,µ(Rd) ⊂ L2(Rd) → L2(Rd),

which has dense domain and turns out to be closed. By ρ(A) we denote the
set of all λ ∈ C such that λI − A maps the domain Hm,µ(Rd) of A bijectively
onto L2(Rd). The spectrum of A is then given by C \ ρ(A).

Theorem 5.4. Given an SG-elliptic operator A ∈ Lm,µ(Rd) with m,µ > 0,
only one of the following properties holds:

1. the spectrum of A is the whole complex plane C;
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2. the spectrum of A is a countable set, without any limit point.

Theorem 5.5. Let A ∈ Lm,µcl (Rd), m,µ > 0, be SG-elliptic and selfadjoint.
Then, the following properties hold true.

1. (λI−A)−1 is a compact operator on L2(Rd) for every λ ∈ ρ(A). More pre-
cisely, (λI −A)−1 is an extension by continuity from S(Rd), or a restric-
tion from S′(Rd), of an SG-elliptic operator belonging to L−m,−µ(Rd).

2. The spectrum of A consists of a sequence of real isolated eigenvalues
{λj}j∈N with finite multiplicities, clustering at infinity; the orthonormal
system of eigenfunctions {ej}j∈N, is complete in L2(Rd), and ej ∈ S(Rd),
j ∈ N.

3. −A is the infinitesimal generator of an analytic semigroup of bounded
operators on L2(Rd), H(t) = e−tA, t ≥ 0, called the heat semigroup, with
kernel

H(t, x, y) =
∑
j∈N

e−tλjej(x)ej(y).

4. H(t) is trace class when t > 0 and

TraceH(t) =

∫
Rd

H(t, x, x) dx =
∑
j

e−tλj .

As a consequence, denoting by {λj}j∈N the sequence of eigenvalues of an
SG-elliptic, selfadjoint, positive operator A, ordered so that j ≤ k ⇒ λj ≤
λk, with each eigenvalue repeated accordingly to its multiplicity, the counting
function

NA(λ) =
∑
λj≤λ

1

is well-defined, see, e.g., [3, 58, 65]. A first result concerning the asymptotic
behavior of NA(λ) for λ → +∞ was proven by L. Maniccia and P. Panarese
in the aforementioned paper [58], for the subclass ECLm,µ ⊂ Lm,µ, given
by all those A = Op(a) ∈ Lm,µ defined on manifolds with ends such that
a = am,µ mod SGm−1,µ−1, with am,µ given as in (5.1). The result was
obtained by means of the so-called heat kernel method, combined with the
Karamata Tauberian Theorem. The next Theorem 5.6 is the corresponding
formulation for SG-classical operators on Rd.

Theorem 5.6. Let A ∈ Lm,µcl (Rd), m,µ > 0, be SG-elliptic, selfadjoint and
positive. Then, for λ→ +∞,

(5.2) NA(λ) =


C1λ

d
m + o

(
λ

d
m

)
if m < µ,

C2λ
d
µ + o

(
λ

d
µ

)
if m > µ,

C1
0λ

d
m log λ+ o

(
λ

d
m log λ

)
if m = µ.
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It is remarkable that the constants C1, C2, C
1
0 , appearing in (5.2), depend

only on the principal symbol σ(A). This implies that, in the analogous for-
mulae which hold for operators on manifolds with ends, such quantities have a
geometrical (that is, invariant) meaning, see, e.g., [3]. The remainder estimates
in (5.2) were then further improved, as explained in the next two results. We
first recall the definition of Λ-ellipticity in the context of SG-operators.

Definition 5.7. Let Λ be a closed sector of the complex plane with vertex
at the origin. A symbol a(x, ξ) ∈ SGm,µ(Rd) and the corresponding operator
A = Op(a) are called Λ-elliptic if there exist constants C,R > 0 such that

1. a(x, ξ)− λ ̸= 0, for any λ ∈ Λ and (x, ξ) satisfying |x|+ |ξ| ≥ R;

2. |a(x, ξ) − λ|−1 ≤ C⟨x⟩−m⟨ξ⟩−µ for any λ ∈ Λ and (x, ξ) satisfying |x| +
|ξ| ≥ R.

Theorem 5.8. Let A ∈ Lm,µcl (Rd) with m,µ positive integers be SG-elliptic
and selfadjoint. Assume also that

1. A is Λ-elliptic with respect to a closed sector Λ of the complex plane with
vertex at the origin;

2. A is invertible as an operator from L2(Rd) to itself;

3. the spectrum of A does not intersect the real interval (−∞, 0).

Then, for certain δj > 0, j = 0, 1, 2, when λ→ +∞,

(5.3) NA(λ) =


C1λ

d
m +O(λ

d
m−δ1) if m < µ,

C2λ
d
µ +O(λ

d
µ−δ2) if m > µ,

C1
0λ

d
m log λ+ C2

0λ
d
m +O(λ

d
m−δ0) if m = µ.

The cases m ̸= µ in (5.3) were originally obtained on Rd by F. Nicola [65],
see also P. Boggiatto, F. Nicola [8]. In the case m = µ, he also proved that, for
λ→ +∞,

NA(λ) = C1
0λ

d
m log λ+O(λ

d
m ).

Compared to Theorem 5.6, in addition to the better estimate of the remainder
term, the constants C1, C2, C

1
0 were expressed in terms of certain trace opera-

tors, defined on suitable subalgebras of Lm,µcl and applied to A. The explicit
expression of the second term of the Weyl formula (5.3) in the case m = µ was
obtained by U. Battisti and S. Coriasco in [3], together with the value of C2

0 ,
again in terms of suitable trace operators. In [3], the definition of such trace
operators has been extended to the case of operators on manifold with ends,
by an approach which differs from the one adopted in [65]. The ζ-function of
operators in Lm,µcl has also been thoroughly investigated in [3], both on Rd as
well as on manifolds with ends. Incidentally, we also remark that the analysis
performed in [65] and [3] allowed to extend the concept of Wodzicki residue
to the operators belonging to the SG-classes (see also U. Battisti, S. Coriasco
[4]).
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The remainder estimate for the Weyl formula has been further improved
by S. Coriasco and L. Maniccia in [31] in the cases m ̸= µ, as described in the
following Theorem 5.9. The techniques used in its proof involve the theory of
Fourier integral operators in the SG-classes, see Section 6 below.

Theorem 5.9. Let A ∈ Lm,µcl (Rd), m,µ > 0, be SG-elliptic, selfadjoint and
positive. Then, for λ→ +∞,
(5.4)

NA(λ) =

{
C1λ

d
m +O(λ

d
µ ) +O(λ

d
m− 1

µ ) = C1λ
d
m +O(λ

d
m−δ1) if m < µ,

C2λ
d
µ +O(λ

d
m ) +O(λ

d
µ− 1

m ) = C2λ
d
µ +O(λ

d
µ−δ2) if m > µ,

where δ1 = min

{
1

µ
, d

(
1

m
− 1

µ

)}
and δ2 = min

{
1

m
, d

(
1

µ
− 1

m

)}
.

The order of the remainder terms in (5.4) is then determined by the ratio of m
and µ and the dimension d of the base space, since

d

m
− 1

µ
≤ d

µ
for m < µ⇔ 1 <

µ

m
≤ 1 +

1

d
,

d

µ
− 1

m
≤ d

m
for m > µ⇔ 1 <

m

µ
≤ 1 +

1

d
.

In particular, when max{m,µ}
min{m,µ} ≥ 2, the remainder is always O(λ

d
max{m,µ} ). It

is conjectured that the orders of the remainder in Theorem 5.9 are the best
possible ones.

Examples of operators on which the analysis described in this section can
be applied include operators of Schrödinger type on Rd, that is A = −∆g + V ,
∆g the Laplace-Beltrami operator in Rd associated with a suitable metric g, V
a smooth potential that growths as ⟨x⟩µ, with an appropriate µ > 0 related to
g (see, e.g., [29]).

6. Concluding remarks

The literature on the study of the regularity, wave-front set propagation,
and eigenvalue asymptotics of elliptic operators on Rd is vast, and we also refer
the reader to the bibliographies of the quoted papers and books. We conclude
with just a few remarks on some extension of the results above to the manifold
case, as well as to the study of SG-hyperbolic operators.

For what concerns the wave-front sets theory in the environment of general
modulation spaces, it is well-known that such functional spaces cannot be in-
variantly defined in full generality on manifolds. Some examples of modulation
spaces, namely, the Sobolev-Kato spaces Ht,τ , can be invariantly defined, e.g.,
on the manifolds with ends. In such cases, the results described above can be
extended to manifolds, cf. R. Melrose [60] and coauthors.

An interesting open problem is a definition of Gel’fand-Shilov spaces on
manifolds with ends, and a generalization of the results in Section 4 to this
setting.
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For what concerns the spectral asymptotics, well-known results, in the case
of compact manifolds, were proved by L. Hörmander [51] and V. Guillemin
[46], see also the book by H. Kumano-go [55]. On the other hand, for operators
globally defined on Rd, see P. Boggiatto, E. Buzano, L. Rodino [6], B. Helffer
[47], L. Hörmander [52], A. Mohammed [62], M. A. Shubin [75]. Many other
situations have been considered, see the book by V.J. Ivrii [53]. On manifolds
with ends, in addition to the papers cited above, we also mention the paper [18]
by T. Christiansen and M. Zworski, who studied the Laplace-Beltrami operator
associated with a scattering metric (see the corresponding list of references, for
more details on the scattering calculus and its applications to the spectral
theory). In analogy with, e.g., the works by B. Helffer, D. Robert [48, 49], a
main tool in the proof of the illustrated results from [31] has been the theory
of SG Fourier integral operators, initially developed by S. Coriasco in [24], see
also, e.g., M. Cappiello [11], M. Ruzhansky, M. Sugimoto [73], E. Cordero, F.
Nicola, L Rodino [21], and the recent works by S. Coriasco and M. Ruzhansky
[34], S. Coriasco and R. Schulz [35, 36]. Such theory has been applied also
to the study of hyperbolic problems in the SG-environment. Since here we
focus on the elliptic SG-theory, for this subject we just refer the reader to,
e.g., [1, 2, 11, 25, 29, 32, 33].
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[50] Hörmander, L., The analysis of linear partial differential operators, Vol. I–IV.
Springer-Verlag, Berlin Heidelberg NewYork Tokyo, 1983, 1985.
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