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A MASSERA TYPE THEOREM IN
HYPERFUNCTIONS IN THE REFLEXIVE LOCALLY

CONVEX VALUED CASE

Yasunori Okada12

Abstract. We continue our study on Massera type theorems in hyper-
functions from [11] and [12]. In the latter, we gave a result in hyperfunc-
tions with values in a reflexive Banach space. In this article, we report
its generalization to the case of hyperfunctions with values in a reflexive
locally convex space.
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1. Introduction

In [9], Massera studied the existence of a periodic solution to a periodic
ordinary differential equation, and gave the result that for a periodic linear or-
dinary differential equation of normal form, the existence of a bounded solution
in the future implies the existence of a periodic solution.

Theorem 1.1 ([9, Theorem 4]). Consider an equation

dx

dt
= A(t)x+ f(t),

where A : R → Rm×m and f : R → Rm are 1-periodic and continuous. Then,
the existence of a bounded solution in the future (i.e., a solution defined and
bounded on a set {t > t0} with some t0) implies the existence of a 1-periodic
solution.

Note that the inverse implication follows from the boundedness of a periodic
C1-function and therefore we have the equivalence between the existence of a
bounded solution in the future and that of a 1-periodic solution.

There appeared many generalizations of Theorem 1.1, and there arose a
question whether such phenomena appear commonly in periodic linear equa-
tions. For example, we refer to Chow-Hale [1] and Hino-Murakami [3] for func-
tional differential equations with finite or infinite delay, to Shin-Naito [16] and
Naito-Nguyen-Miyazaki-Shin [10] for Banach valued cases, and to Zubelevich
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[17] for discrete dynamical systems in reflexive Banach spaces and those in se-
quentially complete locally convex spaces with the sequential Montel property.
See also the references therein.

Being interested in these results, we have studied such phenomena in the
framework of hyperfunctions, and gave a Massera type theorem for hyperfunc-
tions in [11] and its reflexive Banach valued variant in [12]. In this article, we
report a generalization of the latter result to the case of hyperfunctions with
values in a reflexive locally convex space.

The plan of this paper is as follows. In the section 2, we prepare some
notions and related terminologies on bounded hyperfunctions at infinity and
operators of type K introduced in [11, 12], and give our main result Theo-
rem 2.3. In the section 3, we recall and study duality and compactness results
of the spaces of holomorphic functions taking values in a reflexive locally convex
space. In the last section 4, we give the proof of our main result.

2. Main result

In this section, we recall some notions and terminologies briefly and state
our main result, Theorem 2.3. As for the preparation part, we follow [12, §2]
and refer to [11, §2 and §3] for details. See Sato [13, 14], Kawai [5], Sato-
Kawai-Kashiwara [15], and Kaneko [4], for original hyperfunctions, Fourier
hyperfunctions, and related topics.

2.1. Bounded hyperfunctions and classes of operators

Let us first recall the notion of bounded hyperfunctions at infinity.
We take a compactification D1 := R t {±∞} of R, and by considering the

diagram:
C = R + iR ⊂ D1 + iR

∪ ∪
R = ]−∞,+∞[ ⊂ D1 = [−∞,+∞]

we identify C with an open subset of D1 + iR.
Let E be a sequentially complete Hausdorff locally convex space. We denote

by N (E) the family of continuous semi-norms of E, and by EO the sheaf of
E-valued holomorphic functions on C.

Definition 2.1. (1) The sheaf EOL∞ of E-valued bounded holomorphic func-
tions at infinity on D1 + iR is defined by

EOL∞(U) = {f ∈ EO(U ∩ C) | ∀L b U, f is bounded on L ∩ C}

for any open set U ⊂ D1 + iR.

(2) The sheaf BL∞ of E-valued bounded hyperfunctions at infinity on D1 is
defined as the sheaf associated with the presheaf

D1 ⊃ Ω 7→ lim−→
U

EOL∞(U \ Ω)
EOL∞(U)

,
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for any open set Ω ⊂ D1. Here U runs through complex neighborhoods
of Ω, that is, open sets in D1 + iR, including Ω as a closed subset.

The space EOL∞(U) is endowed with a natural locally convex topology by
the family of semi-norms

f 7→ sup
w∈L∩C

p(f(w)),

where L runs through compact subsets in U and p runs through continuous
semi-norms of E. In the scalar case (E = C), we use abbreviations OL∞ and
BL∞ instead of COL∞ and CBL∞ , respectively. We also use the abbreviation
EB of EBL∞ |R.

We list up some properties of bounded hyperfunctions. Refer to [11, §2] for
the precise statements and the proofs.

• BL∞ is an extension of B to D1. That is, BL∞ |R = B.

• BL∞ is flabby. (In general, vector valued variants are not.)

• A section in BL∞(]a,+∞]) admits a boundary value representation.

• There exists a natural embedding L∞(]a,+∞[) ↪→ BL∞(]a,+∞]).

• The space BL∞(D1) of the global sections of our sheaf BL∞ (in scalar
valued case) can be identified with the space BL∞ of bounded hyperfunc-
tions (in 1-dimensional case) due to Chung-Kim-Lee [2].

Let us next recall a class of operators acting on bounded hyperfunctions at
infinity.

Let K = [a, b] be a closed interval in R (including the case K = {a}), and
U an open set in D1 + iR. Consider a family P = {PV }V⊂U for open subsets
V ⊂ U of continuous linear maps

PV : EOL∞(V +K)→ EOL∞(V ).

Note that the vectorial sum V + K := {w + t | w ∈ V, t ∈ K} is well-defined
even in case V 6⊂ C under the convention w + t = w for w = ±∞+ is ∈ V \ C
and t ∈ K.

Definition 2.2 (Operators of type K). P is said to be an operator of type
K for EOL∞ on U , if the diagram below commutes for any pair of open sets
V1 ⊃ V2 in U .

EOL∞(V1 +K) EOL∞(V1)

EOL∞(V2 +K) EOL∞(V2)

PV1

restriction restriction

PV2

An operator P of type K for EOL∞ on U induces a family of linear maps

PΩ : EBL∞(Ω +K)→ EBL∞(Ω), for open sets Ω ⊂ D1 ∩ U,
commuting with restrictions. An operator of type K = {0} corresponds to a
local operator, while an operator of type K = [−r, 0] corresponds to an operator
of finite delay r.
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2.2. Massera type theorem in the reflexive valued case

Let us also recall the terminologies of EOL∞ -solutions and EBL∞ -solutions
to equations, and the notion of ω-periodicity for bounded hyperfunctions and
for operators of type K.

Let P be an operator of type K = [a, b] ⊂ R for EOL∞ on U . For an
open set V ⊂ U and a section f ∈ EOL∞(V ), we say that u is an EOL∞-
solution to the equation Pu = f on V , or an EOL∞(V )-solution to Pu = f ,
if u belongs to EOL∞(V + K) and satisfies PV u = f . Similarly, for an open
set Ω ⊂ D1 ∩ U and f ∈ EBL∞(Ω), an EBL∞ -solution to Pu = f on Ω is a
section u ∈ EBL∞(Ω + K) satisfying PΩu = f . Moreover, when f is a germ
of EBL∞ at +∞ (that is, f ∈ (EBL∞)+∞), it makes sense to consider an
(EBL∞)+∞-solution to the equation Pu = f .

The ω-translation operator Tω : u 7→ u(·+ω) for a positive constant ω, is an
operator of type {ω}, and the ω-difference operator Tω−1 is an operator of type
[0, ω]. A section u ∈ EBL∞(Ω + [0, ω]) is called ω-periodic if it is an EBL∞(Ω)-
solution to the equation (Tω − 1)u = 0, and an operator P of type K is called
ω-periodic if PV ◦Tω = Tω◦PV+ω holds as maps EOL∞(V +K+ω)→ EOL∞(V )
for any V .

Then, we have,

• Every ω-periodic hyperfunction f ∈ EB(R) has the unique ω-periodic

extension f̂ ∈ EBL∞(D1).

• Every ω-periodic bounded hyperfunction f ∈ EBL∞(D1) admits an ω-
periodic boundary value representation.

• An ω-periodic operator of type K preserves the ω-periodicity of its ope-
rands.

Now we can state our main result. Let P be an ω-periodic operator of type
K = [a, b] for EOL∞ on a strip neighborhood D1 + i]−d, d[ of D1 with some
d > 0, and f ∈ EB(R) an ω-periodic E-valued hyperfunction. The unique
ω-periodic extension of f in EBL∞(D1) is denoted also by the same symbol f
by the abuse of the notation.

Theorem 2.3. Assume that E is a reflexive locally convex space. Then,
Pu = f has an ω-periodic EB(R)-solution if and only if it has an (EBL∞)+∞-
solution.

3. Duality and compactness for EO(L)

Throughout this section, E denotes a reflexive locally convex space over C
and E′ denotes its strong dual space. We recall the weak form of Köthe duality
for EO from [12, §3], and study a compactness result of EO.
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3.1. A weak form of the Köthe duality

Consider the space EO(L) := lim−→VcL
EO(V ) endowed with the locally con-

vex inductive limit topology for a compact set L ⊂ C, where V runs through
the open neighborhoods of L in C. We give a weak form of the Köthe duality.

Let us cite two definitions ([12, Definition 3.1 and 3.2]).

Definition 3.1. For open neighborhoods V, W ⊂ C of L, we take a compact
neighborhood M of L in W ∩ V whose boundary γ := ∂M consists of finite
piecewise smooth simple closed curves, and define a bilinear form

〈·, ·〉L : E
′
O(W \ L)× EO(V )→ C

by

(3.1) 〈F, f〉L :=

∫
γ

F (w)(f(w))dw

for F ∈ E′
O(W \ L) and f ∈ EO(V ). Here F (w)(f(w)) is a value of the

continuous linear functional F (w) ∈ E′ evaluated at f(w) ∈ E.

Definition 3.2. Let L be a compact set in C andW an open neighborhood. We
define linear maps α : (EO(L))′ → E′

O(W \L) and β : E
′
O(W \L)→ (EO(L))′

by

(3.2) α(ϕ)(w)(x) := ϕ
( 1

2πi

1

w − ·
x
)
∈ C,

for ϕ ∈ (EO(L))′, x ∈ E and w ∈W \ L, and by

β(F )(f) := 〈F, f〉L,

for F ∈ E′
O(W \L) and f ∈ EO(L). Here we regard 1

2πi
1

w−·x as an element of
EO(L) in the right hand side of (3.2).

Then, we can show the well-definedness of 〈·, ·〉L, α, β, and the continuity of
α and β. Moreover, we can also show that β ◦α = id(EO(L))′ and that the range

of α ◦ β − id(E′O(W\L)) is included in E′
O(W ). These facts give the following

results. (See Theorem 3.10 and Corollary 3.11 of [12].)

Theorem 3.3. Let E be a reflexive locally convex space. The maps α and β
induce the isomorphism between vector spaces

(EO(L))′
∼−→ E′

O(W \ L)/E
′
O(W ).

Corollary 3.4 (Köthe duality). Let E be a reflexive locally convex space. The
maps α and β also induce the isomorphism between vector spaces

(EO(L))′
∼−→ E′

O◦(P1 \ L).

Here E′
O◦(P1 \L) denotes the subspace {F ∈ E′

O(C \L) | lim|w|→∞ F (w) = 0}
of E

′
O(C \ L).

See Köthe [8, §27.3] for the classical Köthe duality.
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3.2. Montel type lemma

Consider a compact set L ⊂ C and an open neighborhood V of L in C. As
before, 〈·, ·〉L : E

′
O◦(P1 \ L) × EO(V ) → C denotes the bilinear form given by

(3.1), used in the Köthe duality.

Lemma 3.5 (Montel type lemma). Let E be a reflexive locally convex space,
and {fn}n∈N a bounded sequence in EO(V ). Then, there exists f ∈ EO(V )
satisfying the following property: For any F ∈ E′

O◦(P1 \ L), we can take a
subsequence {n(k)}k such that

lim
k→∞

〈F, fn(k)〉L = 〈F, f〉L.

This lemma reflects the fact that bounded sets in EO(L) are precompact
with respect to the weak topology.

Note that when E is a reflexive Banach space, the subsequence {n(k)}k can
be taken independently of 〈F, ·〉L. But we can not expect sequential precom-
pactness in the general case. Since we want to use sequential convergence in
the proof of Theorem 2.3, we gave a statement in terms of sequences.

Proof of Lemma 3.5. Note that since E is reflexive, any bounded set in E is
weakly relatively compact. We denote by Ew the space E endowed with the
weak topology. Also note that bounded sets in EO(V ) are equicontinuous as
a family of maps from V to E, which follows from the Cauchy estimate. The
proof consists of three steps (I), (II) and (III).

(I) the choice of f and its holomorphy.
For any l ∈ N and any compact L ⊂ V , the set {fn(w) | n ≥ l, w ∈ L} in

E is bounded, and therefore

(3.3) Al,L := the weak closure of {fn(w) | n ≥ l, w ∈ L}

is weakly compact (i.e., compact in the topology induced from Ew). We con-
sider B :=

∏
w∈V A0,{w} ⊂ (Ew)V endowed with the direct product topology,

that is, the topology of pointwise convergence. Then, B is compact (from
Tychonoff’s theorem). We also consider

(3.4) Bl := the closure of {fn | n ≥ l} in (Ew)V

for l ∈ N. Then they are non-empty compact subsets in B and decreasing in l,
and they share a common element f ∈

⋂
lBl.

Each Bl is equicontinuous as a family of maps from V to Ew, since the
closure of an equicontinuous family with respect to the topology of point-
wise convergence is also equicontinuous. (See, for example, Kelley-Namioka
[7, Chap.2, 8.12].) Moreover, it follows from Kelley [6, Chap.7, Theorem 15]
that the topology of pointwise convergence of the equicontinuous family Bl
coincides with its topology of convergence on compact sets. Therefore, f is a
uniform limit of some subnet of the sequence {fn}n consisting of Ew-valued
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holomorphic functions on V , which implies that f itself is holomorphic as an
Ew-valued map on V . Since the E-valued holomorphy and the Ew-valued holo-
morphy are equivalent for E-valued maps, f is holomorphic as a map V → E,
that is, f ∈ EO(V ).

(II) the choice of {n(k)}k according to L and F .
For given L and F , we take a contour γ and its compact neighborhood

Γ ⊂ V \ L. The set A0,Γ (see (3.3) with L = Γ) is bounded in E as we have
seen in the part (I), and the correspondence

E′ 3 y 7→ q(y) := sup
x∈A0,Γ

|y(x)|

defines a continuous semi-norm q on E′. Since {F (w)}w∈Γ is compact in E′,
we have M := supw∈Γ q(F (w)) < +∞, which in particular implies

(3.5) |F (w)(g(w))| ≤M, for any g ∈ B0 and w ∈ Γ

with B0 defined in (3.4). Moreover, since w 7→ F (w)(g(w)) is holomorphic
as was shown in [12, Lemma 3.2], {w 7→ F (w)(g(w)) | g ∈ B0} becomes an
equicontinuous family of functions on Int Γ.

Take a dense and countable subset C = {w1, w2, . . . } of γ, and define a
neighborhood Wk of the origin in Ew by

Wk := {x ∈ E | sup
1≤j≤k

|F (wj)(x)| < 1/k}

for any k ≥ 1. Recall that f belongs to the closure of {fn}n≥l in (Ew)V with
respect to the topology of pointwise convergence, for any l ∈ N. Using again
the coincidence of the topology of pointwise convergence and the topology of
convergence on compact sets for an equicontinuous family, we can easily see
that the set

{fn}n≥l ∩ {g ∈ (Ew)V | ∀w ∈ γ, g(w)− f(w) ∈Wk}

is non-empty. Therefore we can take n(k) for each k ≥ 1 satisfying n(1) <
n(2) < · · · and

∀w ∈ γ, fn(k)(w)− f(w) ∈Wk.

(III) the convergence of 〈F, fn(k)〉L to 〈F, f〉L as k →∞.
We define C-valued holomorphic functions hk and h on V \ L by

hk(w) := F (w)(fn(k)(w)), h(w) := F (w)(f(w)),

and consider the sequence {hk}k≥1. Since each fn belongs to B, it follows from
(3.5) that

|hk(w)| ≤ |F (w)(fn(k)(w))| ≤M
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for w ∈ Γ and k ≥ 1. Therefore, as we have already seen, {hk}k is an equicon-
tinuous family on holomorphic functions on Int Γ. Moreover, for wj ∈ C, it
follows from fn(k)(wj)− f(wj) ∈Wk for k ≥ j that

|hk(wj)− h(wj)| = |F (wj)(fn(k)(wj)− f(wj))| < 1/k.

This estimate shows that hk(wj) → h(wj) as k → ∞ for each wj ∈ C. In
other words, the sequence {hk}k converges to h with respect to the topology
of convergence on each point in C.

Note that on an equicontinuous family, the topology of convergence on each
point in a given subset coincides with the topology of convergence on each point
in the closure of the subset. (See Kelley-Namioka [7, Chap.2, 8.13].) Since C
is dense in γ, we have that hk(w)→ h(w) as k →∞ on each point in γ.

Now we can use Lebesgue’s bounded convergence theorem to show

lim
k→∞

∫
γ

hk(w)dw =

∫
γ

h(w)dw,

that is,
lim
k→∞

〈F, fn(k)〉L = 〈F, f〉L,

which concludes the proof.

4. Proof of the main theorem

Using the preparation in the section 3, we can prove our main theorem.

Proof of Theorem 2.3. The necessity follows from [12, Corollary 2.6], and we
shall prove the sufficiency.

Assume that Pu = f has an (EBL∞)+∞-solution u. In a parallel manner
as in the proof of Theorem 4.4 of [12], we can take ũ ∈ EOL∞(U̇ + K), f̃ ∈
EOL∞(D1 + iḂd) satisfying (Tω − 1)f̃ = 0 and g ∈ EOL∞(U) for some a ∈ R
and d > 0, such that

[ũ] = u on Ω, [f̃ ] = f on D1, PU̇ ũ− g = f̃ on U̇ ,

under the notations

Ω := ]a,+∞], U := ]a,+∞] + iBd, U̇ := ]a,+∞] + iḂd = U \ D1.

Also in the same way, we define

Skũ :=
1

k

k−1∑
j=0

Tjωũ|U̇+K ∈
EOL∞(U̇ +K), Skg :=

1

k

k−1∑
j=0

Tjωg|U ∈ EOL∞(U),

for k ≥ 1. Then, we have that

(4.1) PU̇Skũ− Skg = f̃ on U̇ for any k ≥ 1,
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and that {Skũ}k∈N ⊂ EOL∞((U̇ +K) ∩ C) and {Skg}k∈N ⊂ EOL∞(U ∩ C) are
bounded.

We consider each pair (Skũ, Skg) as an E-valued holomorphic function on
the disjoint union V := ((U̇ + K) ∩ C) t (U ∩ C). (Although two open sets
(U̇ +K)∩C and U ∩C are not disjoint, we can reduce the problem to the case
of two disjoint open sets by translation.) Applying Lemma 3.5 to the sequence
{(Skũ, Skg)}k∈N, we can get a pair (v, h) ∈ EO((U̇ + K) ∩ C) × EO(U ∩ C)
satisfying the following property:

(C) for any L1 b (U̇ + K) ∩ C, L2 b U ∩ C, F1 ∈ E′
O◦(P1 \ L1), and

F2 ∈ E′
O◦(P1 \ L2), there exists a subsequence {k(l)}l such that

(4.2) lim
l→∞
〈F1, Sk(l)ũ〉L1

= 〈F1, v〉L1
, lim

l→∞
〈F2, Sk(l)g〉L2

= 〈F2, h〉L1
.

A priori v belongs to EO((U̇ +K) ∩C) and h belongs to EO(U ∩C). Now,
we want to show

(1) v ∈ EOL∞(U̇ +K),

(2) h ∈ EOL∞(U),

(3) the equality PU̇v − h = f̃ in EOL∞(U̇), and

(4) the ω-periodicity of v.

For this purpose, it suffices to show (4) and

(5) the equality PU̇∩Cv − h = f̃ in EO(U̇ ∩ C).

In fact, we can easily prove the implications (4)⇒ (1); (1), (5)⇒ (2); and (1),
(2), (5) ⇒ (3).

In order to show (5), we take an arbitrary compact set L b U̇ and an
arbitrary F ∈ E′

O◦(P1 \ L). Then, we have, from (4.1), that

〈F, PU̇Skũ− Skg〉L = 〈F, f̃〉L,

which implies

〈P ∗L(F ), Skũ〉L+K − 〈F, Skg〉L = 〈F, f̃〉L.

Here P ∗L : E
′
O◦(P1 \L)→ E′

O◦(P1 \ (L+K)) is the abstract adjoint operator of
PL whose existence is guaranteed by Corollary 3.4. We can apply the property
(C) to the two terms on the left hand side in the case L1 := L + K, L2 = L,
F1 = P ∗L(F ), F2 = F . Then by taking the limit in (4.2), we have

〈P ∗L(F ), v〉L+K − 〈F, h〉L = 〈F, f̃〉L,

or

(4.3) 〈F, PU̇∩Cv − h〉L = 〈F, f̃〉L.
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Since L and F are arbitrary, the equality (5) follows from (4.3). Here we used
Corollary 3.4 again.

In order to show (4), we also take an arbitrary compact set L b (U̇+K)∩C
and an arbitrary F ∈ E′

O◦(P1 \ L). Using the equality

(Tω − 1)Skũ =
1

k
(Tkω − 1)ũ

and the boundedness of {(Tkω − 1)ũ}k, we have

lim
k→∞

〈F, (Tω − 1)Skũ〉L → 0.

Then, by taking the adjoint, by applying the property (C), and by taking the
adjoint again, we can successively show the following

lim
k→∞

〈(Tω − 1)∗(F ), Skũ〉L+[0,ω] → 0,

〈(Tω − 1)∗(F ), v〉L+[0,ω] = 0,

〈F, (Tω − 1)v〉L = 0.(4.4)

Since L and F are arbitrary, (4.4) implies (4).
By virtue of the ω-periodicity, v has a unique ω-periodic extension in

EOL∞(D1 +iḂd). Moreover, h has a unique ω-periodic extension in EOL∞(D1 +
iBd). In fact, since h = PU̇v − f̃ is ω-periodic on U̇ , it is ω-periodic also in U ,
and can be extended.

Finally note that [v] ∈ EBL∞(D1) gives an ω-periodic solution.
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