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A DEFINABLE CONDENSATION OF LINEAR ORDERINGS

Dejan Ilić1, Predrag Tanović23

Abstract. We introduce an Lω,ω-definable condensation suitable for studying a
class of elementary equivalent linear orderings.
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1. Introduction

The main idea in studying isomorphism types of linear orderings is that of con-
densations; the domain is partitioned in a suitable way into convex pieces, so that the
isomorphism type of the original order is determined (in a very weak sense) by the
isomorphism types of pieces and the order type of pieces (ordered by the inherited
order). If we view a linear ordering as an algebra with a single binary operation min,
then condensations correspond to congruence relations, hence the order is studied by
studying the quotient algebra and the congruence classes. If we are interested in a
class of elementary equivalent linear orderings, for example in the class of all models
of a complete theory of linear orderings, then the congruence should be definable; ex-
cept in Section 2, by definable we mean Lω,ω-definable (unless otherwise stated). The
reason is that elementary equivalent structures have elementary equivalent definable
quotients. The ideal environment for studying a first order structure and its definable
quotients is Shelah’s multi sorted eq-universe where we have all the definable quotients
as separate sorts.

In this article we first clarify and motivate the use of model-theoretic methods in
studying first order properties of linear orderings, especially the elementary equiva-
lence. Then we introduce a definable discrete/dense condensation cδ and, as an appli-
cation, show that any complete theory of linear orderings with countably many unary
predicates added is interpretable in a complete theory of (pure) linear orderings. In the
first section preliminary notions and facts are reviewed. The second section contains
a brief exposition of composition and ordinal iteration of condensations from a model
theorist’s point of view. In the third section we prove the main result.

2. Preliminaries

Let A = (A,<) be a linear ordering. By closed intervals we mean subsets of the
form [a, b] = {x | a 6 x 6 b}, where a, b ∈ A are its endpoints and all other point are
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inner; similarly for open intervals. A subset C ⊂ A is convex if whenever a, b ∈ C
then [a, b] ⊆ C. We say that b ∈ A is an immediate successor of a ∈ A if a < b and
the interval [a, b] has no inner points; similarly immediate predecessor of a is defined,
and they are called neighbours of A. A is dense if it has no endpoints and no pair
of neighbours; this slightly differs from the standard notation, but the motivation is
model-theoretical because the theory of dense orders, as we defined it, is complete. A
is scattered if the ordered rationals cannot be embedded into A. Isomorphism classes
of linear orderings are called order types (or linear order types) and some of them are
denoted by characteristic members. For example:

• α and α∗ are the order types of (α,<) and (α,>) respectively, for any ordinal
α > 0;

• ζ is the order type of (Z, <);

• η is the order type of (Q, <).

Basic operations with linear orders and order types are sums and (lexicographical)
products. Let I = (I,<I) and Ai = (Ai, <i) for i ∈ I be linear orderings. The sum
⊕IAi, is the ordering (A,<) defined as follows:

1. A =
∪

i∈I{i} ×Ai

2. (i, a) < (j, b) if and only if either i < j or i = j and a < b.
In other words, (A,<) is a linear ordering obtained from I by replacing each i ∈ I by
(a copy of) Ai. Sums of linear order types are defined adequately. The lexicographical
product I×A is ⊕IAi where Ai = A for all i.

By a linearly ordered structure we mean a first order structure A = (A,<, . . .)
which is linearly ordered by < and may have additional relations and functions de-
fined. Of particular interest for us are relational linearly ordered structures in which
all the additional relations are unary.

A linear ordering (A,<) is called discrete if every non-minimal element has an
immediate predecessor and every non-maximal element has an immediate successor.
The motivation for using word ‘discrete’ here is that an equivalent definition is that the
order topology is discrete. Examples of discrete order types are ω,ω∗ and ζ, while
ω + 1 is not discrete because the maximum does not have an immediate predecessor;
similarly 1+ω∗ is not discrete. The fact that a linear ordering is discrete is easily ex-
pressible by first order sentences, hence the class of discrete linear orderings is finitely
axiomatizable; we will call that theory dLO. It is not a complete theory but comple-
tions are easy to describe. Since any finite linear ordering is discrete, for each n the
theory of a linear ordering with n elements is a completion. Among infinite discrete
linear orderings there are precisely four classes up to elementary equivalence. The di-
vision line is the existence of endpoints and details can be found in [2]. For example,
the theory Th(ω,<, s, 0) (where s is the successor function) is denoted by dLO+. It
is proved that dLO+ admits elimination of quantifiers; its models are precisely the
unbounded, discrete linear orderings having the minimal element and the successor
function named. In particular, the order type of any model of dLO+ is ω +L× ζ for
a unique order type L (or L = ∅). We have the following classes of order types of
discrete orders:
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(W ) ω + L× ζ

(W ∗) L× ζ + ω∗

(Z) L× ζ

(C∞) ω + L× ζ + ω∗

(Cn) n.

Let dLO(i,j) for i, j ∈ {0, 1} be the theory dLO plus two axioms: one saying that
the minimal element exists iff i = 1, and the other saying that the maximum exists iff
j = 1. In particular, each dLO(i,j) has finite set of axioms.

Remark 1. (1) dLO(1,0) is complete and axiomatizes orders of type (W ).
(2) dLO(0,1) is complete and axiomatizes orders of type (W ∗).
(3) dLO(0,0) is complete and axiomatizes orders of type (Z).
(4) dLO(1,1) is an incomplete theory and axiomatizes linear orderings whose

order type is in some (Cξ) for ξ ∈ N ∪ {∞}.

Let A = (A,<) be a linear ordering. We say that an equivalence relation on A is
convex if its classes are convex subsets of A. For each convex equivalence relation e
on A let e(A) = {[a]e | a ∈ A} be the quotient set where we define: [a]e 6e [b]e if
and only if a′ 6 b′ for some a′ ∈ [a]e i b′ ∈ [b]e. Then e(A) = (e(A), <e) is a linear
ordering called the condensations of A by e. We will also say that e is a condensing
relation onA. The notation e(A) is used intentionally, because we will use e to denote
the canonical mapping A onto e(A). Hence by e we will denote both the equivalence
relation and the mapping; whenever the meaning of e is not clear from the context,
we will explicitly refer to either a relation or a mapping e. The mapping e is an
epimorphism (surjective homomorphism) of linear orderings; recall that f : A −→ B
is a homomorphism from A into a linear ordering B = (B,<′) if a 6 a′ implies
f(a) 6′ f(a′) for all a, a′ ∈ A. On the other hand, any homomorphism g : A −→ B
induces a convex equivalence relation e on A defined by g(x) = g(y).

As we mentioned in the introduction, the ideal environment for any analysis of a
first order structure in which definable homomorphisms are involved is Shelah’s eq-
expansion of the original structure, where we have copies of all homomorphic images.
For any first order L-structure M, Meq is a multi sorted structure expanding M.

The language has sort names SE for every definable equivalence relation E on
some Mn (recall that by definable we mean Lω,ω-definable). In a multi sorted lan-
guage any variable has a sort name specified, as well as any place in a relation or
function symbol; no variable is interpreted outside the sort whose name it carries,
similarly for functions and relations. For each such E there is a function symbol πE
such that the variables x1, . . . , xn in πE(x1, . . . , xn) = Y are of sort S= and Y is of
sort SE . All other language symbols are those interpreted in M and refer only to S=.

Meq is defined as follows. The sort S=(M
eq), called the home sort, is M. The

domain of SE(M) isMn/E and has no language symbols interpreted (however it has
all the structure from M projected). Functions πE are canonical projections from Mn

onto Mn/E. It turns out that any definable set D of the sort SE (D ⊆ (Mn/E)m) is
the πE-projection of a definable ⊆Mm; in particular, there are no new definable sets
in the S=-sort M. In the case when M is an algebra and E is a definable congruence
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on M one of the sorts represents the domain of the quotient algebra; its quotient
structure is definable in the multi-sorted language. Details on Meq the reader can find
in [1] and [3]. We list some basic facts.

Fact 2. (a) Every definable in Meq subset of Mn is definable in M.
(b) Every elementary embedding from M into N extends uniquely to an elemen-

tary embedding of Meq into Neq .
(c) M ≡ N implies Meq ≡ Neq .
(d) Any complete first order theory T has a natural multi sorted extension T eq

such that M |= T if and only if Meq |= T eq .
(e) T eq eliminates imaginaries: if ϵ(xE , yE) defines an equivalence relation on

SE then for some E′ there is an Meq-definable identification of SE′ and SE/ϵ.

Let M = (M, . . .) be an L-structure and M1 = (M1, R, . . . , f . . .) an L1-
structure. We say that M1 is interpretable in M if there is n, a definable equivalence
relation E on M , and a bijection F :Mn/E −→M1 such that: for any basic relation
R ⊆Mm

1 the set F−1(R) ⊂Mm·n is definable in M, and similar condition for basic
functions holds. For example, whenever we name definable subsets of a fixed sort in
Meq , then the obtained structure (whose domain is the sort) is interpretable in M.

3. Compositions and iterations of L∞,∞-definable condensations
Recall that an Lκ,λ-formula is one whose conjunctions are all of size < κ while

quantifications apply only to sequences with < λ variables; L∞,∞ means being Lκ,λ

for some κ, λ. L∞,∞-sentences are preserved under isomorphism.
Usually in linear orderings the interesting convex equivalence relations are de-

fined by an L∞,∞-formula in the language {<} such that the defining formula defines
an equivalence relation with convex classes on any linear ordering. In this case the
isomorphism type of e(A) depends only on the isomorphism type of A, hence such
formulas may be considered as defining condensing relations of linear order types, as
well. We will say that an Lκ,λ-formula in the language {<} is a condensing formula if
it defines a condensing relation on any linear ordering. Condensing relations defined
by them will be called uniformly definable; if the defining formula is Lκ,λ, then we
say that the relation is uniformly Lκ,λ-definable. For ϵ(x, y) a condensing formula by
cϵ we denote the corresponding condensation as a mapping of linear order types; by
cϵ(A) we will denote the condensation of linear ordering A = (A,<) defined by ϵ, by
cϵ(A) its domain, and by cϵ the condensing relation on A (there is no danger of con-
fusion for using simply cϵ instead of cAϵ ). The most common examples of uniformly
definable condensing relations are:

• cF where F (x, y) is ‘[x, y] is finite’ ;

• cW where W (x, y) is ‘[x, y] is well-ordered’;

• cS where S(x, y) is ‘[x, y] is scattered’.

Here W and S are Lω1,ω1 -formulas, while F is an Lω1,ω-formula. For the application
of these condensations in analysing linear orderings the reader should consult Rosen-
stein’s book ([4]). Here we only give an interesting example of iterated condensations.
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Example 3. Consider (ωω, <) and the condensation cF. Each equivalence class con-
tains a single limit ordinal, so cF (ω

ω) may be identified with the set of all limit or-
dinals below ωω . In the second iteration we get limit-limit ordinals ... At level ω we
have a single class:

ωω = cF(ω
ω) = c2F(ω

ω) = . . . and cωF(ω
ω) = 1.

Suppose that c is a uniformly definable condensing relation of order types. As a
mapping it is naturally iterated n times, i.e cn is defined as the adequate composition.
The idea of defining cω is that it should be the inverse limit of the ω-sequence. Instead
of using category theory language, in our setting the adequate definition is in terms
of equivalence relations. For Lω,ω-definable relations, any finite iteration may be
identified with a sort in the eq-universe.

Let ϵ(x, y) be a condensing Lκ,λ-formula and let ϕ be any Lκ,λ-formula (possibly
having many free variables). In Lemma 4 we will prove that ‘ϕ([x]ϵ, [y]ϵ) holds in the
quotient structure’ is expressed by a formula ϕ ◦ ϵ(x, y) defined in the following way:
ϕ ◦ ϵ(x, y) is the formula obtained from ϕ(x, y) by:

- replacing each occurrence of u < v by ∀u′∀v′(ϵ(u, u′) ∧ ϵ(v, v′) ⇒ u′ < v′)
(where u′, v′ do not occur in ϵ, ϕ); in this way we turn x < y into [x]ϵ < [y]ϵ.

- replacing each occurrence of u = v by ϵ(u, v) .
Notice that ϕ ◦ ϵ(x, y) is an Lκ,λ-formula.

Lemma 4. If A = (A,<) is a linear ordering and ϵ(x, y) a condensing L∞,∞-
formula, then for any L∞,∞-formula ϕ(−→x ) and any sequence

−→
b of elements of A we

have:

A |= ϕ ◦ ϵ(
−→
b ) if and only if cϵ(A) |= ϕ(

−→
[b]ϵ) .

Proof. By induction on the ordinal complexity of ϕ. If ϕ is atomic the conclusion
follows from the definition; it is crucial there that cϵ is convex. Induction steps are
straightforward, we prove only the one for existential quantification. Suppose first that
A |= ∃−→y ϕ◦ϵ(−→y ,

−→
b ), and choose −→c inA such that A |= ϕ◦ϵ(−→c ,

−→
b ). The induction

hypothesis implies cϵ(A) |= ϕ(
−→
[c]ϵ,

−→
[b]ϵ) and hence cϵ(A) |= ∃−→x ϕ(−→x ,

−→
[b]ϵ). For the

other direction assume cϵ(A) |= ∃−→x ϕ(−→x ,
−→
[b]ϵ) and choose

−→
c′ such that cϵ(A) |=

ϕ(
−→
[c′]ϵ,

−→
[b]ϵ). The induction hypothesis implies A |= ϕ ◦ ϵ(−→c ′,

−→
b ) and A |= ∃−→x ϕ ◦

ϵ(−→x ,
−→
b ) follows.

Fact 5. If ϵ(x, y) and δ(x, y) are condensing Lκ,λ-formulas, then δ ◦ ϵ(x, y) is a
condensing Lκ,λ-formula, too. Moreover, if L is an order type, then cδ◦ϵ(L) =
cδ(cϵ(L)).

Let ϵ(x, y) be any Lκ,λ-formula. The formula ϵα(x, y) is defined recursively for
any ordinal α in the following way.

(1) ϵ0(x, y) is x = y, ϵ1(x, y) is ϵ(x, y).
(2) ϵβ+1(x, y) = ϵ ◦ ϵβ
(3) For limit α define: ϵα(x, y) =

∨
ξ<α ϵ

ξ(x, y).
Clearly, each ϵα(x, y) is an Lκ+|α|,λ+|α|-formula. The following fact collects basic
facts about iterations of a condensing formula.
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Fact 6. Suppose that ϵ(x, y) is a condensing Lκ,λ-formula and that A = (A,<) is a
linear ordering.

(a) Each cαϵ is a convex equivalence relation on A.

(b) cαϵ ⊆ cα+1
ϵ and cϵ(c

α
ϵ (A)) ∼= cα+1

ϵ (A).

(c) If α is a limit ordinal, then cαϵ =
∪

ξ<α cξϵ .

(d) {cξϵ | ξ} is a continuous sequence of non-decreasing subsets of A2. If cαϵ = cα+1
ϵ

holds for some ordinal α, then cαϵ = cβϵ holds for all β > α.

By part (d) of the previous fact the sequence {cξϵ(A) | 0 6 ξ} (of subsets of A2)
is non-decreasing, hence it is eventually constant. The smallest ordinal α for which
cα+1
ϵ = cαϵ holds is called the cϵ-rank of A. Linear orderings for which cϵ(A) = idA

are called cϵ-inert. The L∞,∞-definability of cξϵ ’s guarantees that the cϵ-rank depends
only on the isomorphism type of a linear ordering, hence we have a well-defined cϵ-
rank of linear order types. The iteration process is used to analyse the structure of A
and is represented by a sequence of condensing relations, which increase until some
point, at which the homomorphic image is cϵ-inert.

Of special interest are uniformly Lω,ω-definable condensations. For a given liner
order A we can consider the adequate part of Aeq , where we have all the definable
homomorphisms named by projection maps. In particular, c(A), c2(A), . . . may be
identified with Aeq-sorts.

Remark 7. The general context in which the previous discussion takes place has uni-
versal algebra flavour. The above construction works for any class of algebras which
is closed under isomorphism and homomorphism, and a family of ‘congruence for-
mulas’ (i.e. uniformly definable congruences on the class). If ϵ(x, y) is a congruence
formula, then we can define ϕϵ by replacing atomic formulas in ϕ adequately, so that
conclusions of Facts 4 and 5 hold for congruences in place of condensations.

4. Discrete/dense condensation cδ

We say that a convex subset of a linear ordering (A,<) is discretely ordered if the
restriction of < makes it into a discrete order; it is densely ordered if it has neither
minimal nor maximal element and the restriction makes it into a dense order.

Definition 8. A closed interval in a linear ordering is of dense type if it is properly
contained in a densely ordered convex subset (recall that a dense order has no end-
points); it is of discrete type if it is not of dense type and is discretely ordered by
<.

Interval [a, a] has a type specified: if it is not of dense type, because [a, a] is
discretely ordered, it is of discrete type. We define a to be of dense (discrete) type if
[a, a] is of dense (discrete) type. Not all intervals are of one of the types. Consider the
unit interval ([0, 1], <) and notice that [0, 1] is neither of dense nor of discrete type.
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Lemma 9. Let (A,<) be a linear ordering.
(a) A closed interval is of dense type if and only if each of its points is of dense

type.
(b) A closed interval of discrete type has all points of discrete type.
(c) If an interval is of dense (discrete) type, then each of its closed subintervals is

of dense (discrete) type.
(d) Intervals of distinct types are disjoint.
(e) If two non-disjoint closed intervals have the same discrete/dense type, then

their union is an interval of that type.

Proof. (a) We prove only non-trivial direction. Assume that every point of [a, b] is of
dense type. For each c ∈ [a, b] pick a densely ordered convex Ic containing c, and
let I be the union of all Ic’s. No element of I is an endpoint, because no Ic has an
endpoint. It is straightforward to verify that I is convex and densely ordered. Since Ia
has points outside [a, b], we conclude that I witnesses that [a, b] is of dense type.

(b) Suppose that [a, b] is of discrete type and c ∈ [a, b]. If a = b then, by definition
of types of points, c is of discrete type. Assume a ̸= b. Then c has an immediate
neighbour, hence it cannot be contained in a densely ordered convex set. Therefore, c
is of discrete type.

(c) Suppose that [c, d] ⊆ [a, b]. In the first case assume that [a, b] is of dense type.
By part (a) its elements are all of dense type, hence all elements of [c, d] are of dense
type, too. By part (a) again, [c, d] is of dense type. In case when [a, b] is of discrete
type it suffices to note that any convex subset of a discrete order is discretely ordered.

(d) Any point of an interval of a dense type is, by part (a), of dense type. By
part (b) that point cannot be contained in an interval of discrete type. The conclusion
follows.

(e) Assume that [a, b] and [c, d] have the same type. If one of them is contained
in the other, the conclusion trivially follows, hence we may assume that it is not the
case. Then, without loss of generality, we may assume that a < c 6 b < d holds.
We will show that [a, d] has the same type as [a, b]. In the first case suppose that each
of [a, b] and [c, d] is of dense type. Then, by part (a), all points of [a, d] are of dense
type. By part (a) again, [a, d] is of dense type. In the second case assume that [a, b]
and [c, d] are of discrete type. Clearly, every inner point c′ of [a, d] has an immediate
predecessor and an immediate successor, and each endpoint of [a, d] has a neighbour.
Hence [a, d] is of discrete type.

The relation ‘[x, y] is of dense type’ is definable: there is a first-order formula
ϕ(x, y) such that in any linear ordering (A,<) |= ϕ(a, b) if and only if [a, b] is of
dense type. Similarly, there is a formula saying that ‘[x, y] is not of dense type’
and ‘[x, y] is discretely ordered’ (recall that the theory of discrete linear orderings
is finitely axiomatizable). Therefore there is a formula δ(x, y) in the language {<}
expressing that:

‘the interval [min(x, y),max(x, y)] is either of discrete or of dense type’.

In particular ‘x is of dense type’ is a definable relation on any linear ordering.
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Proposition 10. δ(x, y) is a condensing formula.

Proof. Let (A,<) be a linear ordering and letE ⊆ A2 be defined by δ(x, y). Reflexiv-
ity and symmetry are immediate. To prove transitivity, assume that (a, b), (b, c) ∈ E,
i.e. that each of intervals [a, b] and [b, c] is of dense or discrete type. They have a
common point so, by Lemma 9, they have the same type and their union is of that
type, too. Since [a, c] is a subinterval of the union, by Lemma 9 again, it has the same
type as [a, b] and [b, c] do. This proves the transitivity, so E is an equivalence relation.
It remains to note that its classes are convex. Indeed, [a]E is the union of all intervals
having a as one endpoint and the other endpoint in [a]E . Since a union of convex pair-
wise intersecting subsets is convex, [a]E is convex. Thus E is a convex equivalence
relation.

Proposition 11. Let A = (A,<) be a linear ordering.
(a) Any pair of non-trivial, closed subintervals of a fixed cδ-class have the same

type.
(b) Each class is either a discrete or dense order.
(c) If a ∈ A is of discrete (dense) type, then [a]cδ

is the maximum under inclusion
in the set of all convex, discretely (densely) ordered subsets of A that contain a.

Proof. (a) Suppose that two non-trivial closed intervals are contained in the same cδ-
class. The convex closure of their union is a closed interval which is contained in
the class; in particular, it is of either dense or discrete type. Since our intervals are
contained in the closure, by Lemma 9, each of them has the same type as the closure.
In particular they have the same type.

(b) Consider the class [a]cδ
. The conclusion is obvious if it has a single element, so

assume that b ∈ [a]cδ
and a < b. We have two cases. In the first case assume that [a, b]

is of discrete type. Suppose that c ∈ [a]cδ
is not maximal in [a]cδ

, and pick d ∈ [a]cδ

such that c < d. Since intervals [a, b] and [c, d] of [a]cδ
, by part (a), they have the

same type so [c, d] is of discrete type. In particular, c has an immediate successor.
Similarly, every non-minimal element of [a]cδ

has an immediate predecessor, so [a]cδ

is discretely ordered by <.
In the second case assume that [a, b] is of dense type. It suffices to show that all

the points of [a]cδ
are of dense type. Indeed, if c ∈ [a]cδ

then c < b or a < c. If c < b
then the interval [c, b] ⊆ [a]cδ

is, by part (a), of dense type because it meets [a, b].
Hence c is of dense type. Similarly for a < c.

(c) It remains to prove that [a]cδ
cannot be a proper subset of a dense (discrete)

order; Otherwise, there would be c /∈ [a]cδ
(say c < a) such that [c, a] is of dense

(discrete) type because it is a convex subset of a dense (discrete) order. Then, by
definition, we would have |= δ(c, a) and hence c ∈ [a]cδ

. A contradiction.

Example 12. (1) The cδ-classes decompose ([0, 1]Q, <) in the form 1+ η + 1.

(2) Consider η × 2. This order type is obtained from a countable dense linear
ordering by replacing each of its elements by a two-element order. There are no points
of dense type, because every point has a neighbour. Every cδ-class consists of two
elements, after factoring we deduce cδ(η × 2) = η.
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Let A = (A,<) be a linear ordering. By Proposition 11, any cδ-equivalence class
is either a dense or a discrete linear ordering. That produces a simpler description of
formula defining types of points:

x is of dense (discrete) type if and only if ‘the cδ-class of x is a dense (discrete)
order’

We may distinguish discretely ordered classes by their complete first-order theories as
Remark 1 suggests. That we do by expanding the language by adding adequate unary
predicates: let L# = {<,W,∗W,Z}∪{Cn |n ∈ N}. We intentionally omit predicate
for C∞-types because, unlike the other ones, in a general linear ordering the classes
of that type are not definable; in other words, the class of linear orderings whose order
type is C∞ is not finitely axiomatizable (easy application of compactness). However,
points of type C∞ are type-definable (by a countable conjunction).

Definition 13. For any linear ordering A = (A,<) the L#-structure c#δ (A) =
(cδ(A), <cδ

, WA,∗WA, CA
n )n∈N where each unary relation XA is defined by: a ∈

XA if and only if the class [a]cδ
is of order type (X) in A.

Proposition 14. The L#-structure c#δ (A) is interpretable in any pure linear ordering
A.

Proof. The interpreting equivalence relation is cδ . The rest follows from the definition
of c#δ (A), having on mind that all unary predicates are definable in the the language
{<}.

Theorem 15. Any linear ordering with countably many unary predicates whose inter-
pretations are pairwise disjoint is interpretable in a pure linear ordering. Moreover,
if the original order is scattered then the pure order may be chosen scattered, too.

Proof. Let L = {<} ∪ {Pn |n ∈ N} where each Pn is unary. Suppose that A =
(A,<, PA

n )n∈N is an L-structure and that PA
n ’s are pairwise disjoint subsets of A. By

adding an additional predicate if necessary, we may assume that the union of all PA
n ’s

is A.
Let L, R and Fn be linear orderings of types ζ,ω∗ and n respectively (for all

n ∈ N). For each a ∈ A let Ba = L+Fna +R where na is uniquely determined by
a ∈ PA

na
. Hence each Ba is of type ζ+na+ω∗. Let B =

∑
a∈A Ba. We will prove

that A is interpretable in B = (B,<′).
First, we show that {a} × L, {a} × Fna and {a} × R are cδ-classes. Consider

{a} × L which is of dense type. By Proposition 11(c), it suffices to prove that it is
not properly contained in a dense, convex subset of B.Let C be a dense convex set
containing it. Then C has no points to the right of {a} × L, because the convexity
implies that some point from {a} × Fna (which is of discrete type) would be in C.
Similarly, C has no points to the left: if a′ < a and (a′, d) ∈ C then, by convexity,
there would be d′ ∈ R such that (a′, d′) ∈ C, which is not possible because (a′, d′)
is of discrete type. Therefore {a} × L is a maximal, convex, dense subset of B; by
Proposition 11 it is a cδ-class. Similar arguments prove that {a} × Fna and {a} ×R
are cδ-classes.

Let ϕ(x) be a formula saying that ‘[x]cδ
has both endpoints’ (i.e. satisfies dLO(1,1));

clearly, ϕ(x) defines
∪

a∈A{a} × Fna in B. Let E(x, y) be a formula saying that:
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the classes [x]cδ
and [y]cδ

have a common neighbour whose elements satisfy ϕ(x).

ThenE is a convex equivalence relation onB whose classes are of the form {a}×Ba.
Consider the function f : B/E −→ A, defined by f({a}×Ba) = a. We show that it
is an interpretation of A in B. For, it suffices to check that < and PA

n ’s are definable.
Clearly, < is definable because E is convex. Let ψn(x) be the formula saying that
’either x or one of its neighbouring E-classes (in B) has exactly n elements’. Then
PA
n is the projection of the set of all solutions of ψn(x) in B. This shows that A is

interpretable in B.
The ‘moreover’ part follows from the definition of B.
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