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Abstract. In this paper we examine four–element and five–element digraphs for
existence of certain polymorphisms that imply congruence meet–semidistribu-
tivity in a locally finite variety. The results presented here occurred as an integral
part of my research for optimal strong Mal’cev conditions describing the property
mentioned. Most of the programming needed to obtain these results was done in
C programming language, but for some results we also used the model builder
Paradox. The source codes and Paradox inputs will be presented here as well.
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1. Introduction

The various conditions that are equivalent to congruence meet–semidistributivity
in locally finite varieties of algebras have been examined in several papers and books
so far – see [19], [5], [20], [21],[15], [9]. Congruence meet-semidistributive varieties
proved to be a very general yet very well behaved class of varieties. This condition is,
for example, equivalent to congruence neutrality ([20], [21]), or to having no covers
of types 1 or 2 in congruence lattices of finite algebras in the variety (holds for locally
finite varieties, [5]). It also implies the truth of Park’s Conjecture, [12] (as proved
by Ross Willard in [15]), and also Quackenbush’s Conjecture, [13] (which holds triv-
ially in congruence distributive case due to Jónsson’s Lemma, [6], and is proved for
the congruence meet-semidistributive case by Kearnes and Willard in [8]). Recently,
the research in the Constraint Satisfaction Problem has shown that congruence meet-
semidistributivity of the variety generated by the algebra of compatible operations
is equivalent to the condition that the particular algorithm called ’local consistency
checking’ would faithfully solve the Constraint Satisfaction Problem. This property is
called ’bounded width’ and there is a lot of literature on the concept. This result, due
to L. Barto and M. Kozik [2], is certainly among the strongest known partial results
for the Dichotomy Conjecture, and probably the hardest to be proven so far.

Characterization of various semantical properties of all algebras in a variety and/or
their congruence lattices by equivalent syntactical conditions was started by A. I.
Mal’cev in [10]. Because of that, the properties which can be characterized in this way
are called Mal’cev properties, and the corresponding syntactical conditions - Mal’cev
conditions. Particularly, if a property can be described by a fixed number of term
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operations of fixed arities satisfying a fixed number of linear equations (like the orig-
inal Mal’cev condition for congruence permutability), we call it a strong Mal’cev
property. On the other hand, a usual Mal’cev property is equivalent to satisfying
one strong Mal’cev condition (for some n ∈ ω) from a given countable sequence
of strong Mal’cev conditions (for every n ∈ ω) in which each member implies the
next one (meaning that the properties are increasingly more general), like in the case
of Jónsson’s condition for congruence distributivity, [6]. Obviously, strong Mal’cev
conditions are preferable, if available, as then we can use the operations in a com-
puter search, however, there exist properties which are Malcev properties, but are
proved not to be strong Mal’cev properties. The condition most commonly used for
congruence meet-semidistributivity of a variety (not necessarily locally finite), until
recently, was the one proved by Willard, [15], but the research in the Constraint Sat-
isfaction Problem has recently uncovered that the congruence meet-semidistributivity
of a locally finite variety is a strong Mal’cev property. The best, i. e. syntactically
strongest we know of, is due to M.Kozik, A.Krokhin, M.Valeriote and R.Willard [9].
We tried to see if it is also the best possible, see [17], and we identified a single can-
didate system which implies congruence meet-semidistributivity and is syntactically
stronger and with fewer operations and/or of smaller arity than the condition proved
in [9]. We proved that either this system we found is indeed equivalent to congruence
meet-semidistributivity of a locally finite variety, or the condition from [9] is the best
possible (proved in [17]). However, which of these alternatives is true we have not
managed to ascertain yet. In this paper we examine the algebras of polymorphisms
of four–element and five–element digraphs searching for a counterexample for our
system.

2. Background

In this paper an algebra denotes a structure A = (A,FA), where F is a signature,
or language, consisting only of operation symbols of various arities, A is a nonempty
set, and for each symbol f ∈ F of arity k the corresponding element fA ∈ FA is a
mapping fA : Ak → A. The set of term operations of A is the set of all operations
obtained from FA and projection operations via finitely many compositions. All al-
gebras of the same signature which identically satisfy a set of equations are called a
variety. An algebra A is locally finite if for any finite subset X of A, the set of all
results of term operations applied to elements of X (that is, the subalgebra generated
by X) is also finite. A variety is locally finite if every algebra in it is.

There is a natural connection between operations and relations on the same set. It
says that a k-ary relation and an n-ary operation are compatible if for any n vectors
from the relation, the vector obtained by pointwise application of the operation is again
in the relation. The classic results of universal algebra often connect the properties of
the compatible equivalence relations, which form a lattice under inclusion called the
congruence lattice, and other properties of algebras. In the paper [17] we mention the
meet-semidistributivity of the congruence lattices of all algebras in a variety, which is
the lattice implication x∧z = y∧z ⇒ (x∨y)∧z = x∧z. An equivalent condition of
the congruence meet-semidistributivity of a locally finite variety is omitting types of
covers 1 and 2 in the congruence lattices of all finite algebras of the variety, [5]. For



On optimal strong Mal’cev conditions .... 209

any other definitions and basic results which are not found in this introductory part,
the reader is referred to [4] for basic universal algebra and [5] for tame congruence
theory.

Definition 2.1. Let A be a finite algebra and α a minimal congruence of A (i.e.
0A < α and if β is a congruence of A, with 0A < β ≤ α, then β = α.)

• An α–minimal set of A is a subset U of A that satisfies following two condi-
tions:

- U = p(A) for some unary polynomial p(x) of A that is not constant on
at least one α–class

- with respect to containment, U is minimal having this property.

• An α–neighbourhood (or α–trace) of A is a subset N of A such that:

- N = U ∩ (a/α) for some α–minimal set U and α–class a/α
- |N | > 1.

We can easily see that a given α–minimal set U must contain at least one, and
possibly more, α–neighbourhoods.The union of all α–neighbourhoods in U is called
the body of U , and the remaining elements of U form the tail of U . What is important
here is that algebra A induces uniform structures on all its α–neighbourhoods, mean-
ing they (the structures induced) all belong to the same of five possible types. Let us
now define an induced structure.

Definition 2.2. Let A be an algebra and U ⊆ A. The algebra induced by A on U
is the algebra with universe U whose basic operations consist of the restriction to U
of all polynomials of A under which U is closed. We denote this induced algebra by
A|U .

Theorem 2.3. Let A be a finite algebra and α a minimal congruence of A.

• If U and V are α–minimal sets then A|U and A|V are isomorphic and in fact
there is a polynomial p(x) that maps U bijectively onto V .

• If N and M are α–neighbourhoods then A|N and A|M are isomorphic via the
restriction of some polynomial of A.

• If N is α–neighbourhood then A|N is polynomially equivalent to one of:

1. A unary algebra whose basic operations are all permutations (unary type);

2. A one–dimensional vector space over some finite field (affine type);

3. A 2–element boolean algebra (boolean type);

4. A 2–element lattice (lattice type);

5. A 2–element semilattice (semilattice type);

Proof. The theorem in this form is given in [3], and the proof can be found in [5].
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The previous theorem allows us to assign a type to each minimal congruence α of
an algebra according to the behaviour of the α–neighbourhoods (for example, a min-
imal congruence whose α–neighbourhoods are polynomially equivalent to a vector
space is said to have affine type or type 2).

Taking this idea one step further, given a pair of congruences (α, β) of A with β
covering α (i.e. α < β and there are no congruences of A strictly between the two),
one can form the quotient algebra A/α, and then consider the congruence β/α =
{(a/α, b/α) : (a, b) ∈ β}. Since β covers α in the congruence lattice of A, β/α is
a minimal congruence of A/α, so it can be assigned one of the five types. In this
way we can assign to each covering pair of congruences of A a type (unary, affine,
boolean, lattice, semilattice, or 1, 2, 3, 4, 5, respectively). Therefore, going through
all covering pairs of congruences of this algebra we obtain a set of types, so–called
typeset of A, denoted by typ{A}. Also, for K a class of algebras, the typeset of K is
defined to be the union of all the typesets of its finite members, denoted by typ{K}.

A finite algebra or a class of algebras is said to omit a certain type if that type
does not appear in its typeset. For locally finite varieties omitting certain types can be
characterized by Maltsev conditions, i.e. by the existence of certain terms that satisfy
certain linear identities, and there are quite a few results on this so far. We shall present
two of them concerning omitting types 1 and 2.

Definition 2.4. An n–ary term t, for n > 1, is a near–unanimity term for an algebra
A if the identities t(x, x, . . . , x, y) ≈ t(x, x, . . . , y, x) ≈ · · · ≈ t(x, y, . . . , x, x) ≈
t(y, x, . . . , x, x) ≈ x hold in A.

Definition 2.5. An n–ary term t, for n > 1, is a weak near–unanimity term for an
algebra A if it is idempotent and the identities t(x, x, . . . , x, y) ≈ t(x, x, . . . , y, x) ≈
· · · ≈ t(x, y, . . . , x, x) ≈ t(y, x, . . . , x, x) hold in A.

Theorem 2.6. A locally finite variety V omits the unary and affine types (i.e. types
1 and 2) if and only if there is some N > 0 such that for all k > N , V has a weak
near–unanimity term of arity k.

Proof. The proof can be found in [11].

Theorem 2.7. A locally finite variety V omits the unary and affine types if and only if
it has 3–ary and 4–ary weak near–unanimity terms, v and w respectively, that satisfy
the identity v(y, x, x) ≈ w(y, x, x, x).

Proof. The proof can be found in [9].

Therefore, omitting types 1 and 2 for a locally finite variety (or, equivalently, con-
gruence meet-semidistributivity for a locally finite variety) can be described by linear
identities on 3–ary and a 4–ary term, both idempotent. In the paper [17] we examined
whether the same can be done by two at most 3–ary idempotent terms. We came to
this result:
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3. A system possibly describing congruence
meet–semidistributivity, i.e. omitting unary and affine types

Proposition 3.1. If it is possible to describe congruence meet–semidistributivity (i.e.
omitting types 1 and 2) in a locally finite variety by two ternary terms p and q, it can
be done by this system:

(1)
{

p(x, x, y) ≈ p(x, y, y)
p(x, y, x) ≈ q(x, x, y) ≈ q(x, y, x) ≈ q(y, x, x)

It is easy to see that this system implies the property mentioned (the proof can be
found in [17]), but it remained unresolved whether it actually describes the property.
In attempt to find a counterexample , i.e. a finite algebra that generates a variety which
satisfies congruence meet–semidistributivity but not the system above, we endeavor to
examine small digraphs, i.e. corresponding algebras of polymorphisms.

Definition 3.2. A digraph is a pair G = (V,E), where G is a finite set of vertices and
E ⊆ V × V is a set of edges.

Definition 3.3. An n–ary polymorphism of a digraph G = (V,E) is a mapping f :
V n → V which preserves edges, that is for any (a1, b1), (a2, b2), . . . , (an, bn) ∈ E
the pair (f(a1, . . . an), f(b1, . . . bn)) is also in E.

Definition 3.4. An algebra of polymorphisms for a given digraph G = (V,E) is
an algebra with the universe V whose basic operations are polymorphisms of this
digraph.

Further research eplained here leans on results obtained by Libor Barto and David
Stanovsky as presented in [16]. As said before, congruence meet–semidistibutivity of
a locally finite variety is equivalent to omitting covers of types 1 or 2 in the congruence
lattices of finite algebras in the variety (see [5]), and is also referred to as ’bounded
width’ due to the fact that ’local consistency checking’ algorithm can faithfully solve
the Constraint Satisfaction Problem in this case. So we say that a finite algebra is of
’bounded width’ if and only if it generates a congruence meet–semidistributive variety.

4. Two–element and three–element digraphs

There are 10 non–isomorphic digraphs on two vertices and each of them has an
3–ary near–unanimity polymorphism, also called ’nu3’ or a majority polymorphism
([16]). A finite algebra having a majority term–operation generates a congruence
meet–semidistributive variety, but also satisfies the system (1) (this is proved in [17],
Example 2). Therefore, algebras of polymorphisms of two–element digraphs are of
no further interest to us.
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As for three–element digraphs, we need to explain the case a bit more thoroughly,
again referring to results in [16]. We shall first define a two–semilattice operation:

Definition 4.1. A 2–semilattice (2–sml) operation is an idempotent operation satisfy-
ing f(x, y) ≈ f(y, x) and f(f(x, y), x) ≈ f(x, y).

Fact 4.2. A finite algebra having a 2–semilattice term–operation generates a congru-
ence meet–semidistributive variety, but also satisfies system (1).

This is proved in [17], Example 1.

Results given in [16] include figures of posets comparing the strength of polymor-
phisms. We can conclude the following about three–element digraphs, i.e. their alge-
bras of polymorphisms: if they have a bounded width polymorphism, they either have
a nu3 (majority), or a 2semilattice polymorphism (or both). Here ’bounded width
polymorphism’ stands for existence of both a 3–wnu and a 4–wnu polymorphisms
sharing the same binary operation (Definition 2.5 and Theorem 2.7 above). Therefore
for all these algebras of polymorphisms the following holds: if they generate a con-
gruence meet–semidistributive variety (i.e. have a ’bounded width polymorphism’)
they also have either a nu3 or a 2–sml polymorphisms (or both), thereby satisfying
system (1). This means they are of no further interest in our research.

5. Four–element digraphs

If we take a look at the strength of polymorphisms of these digraphs (figure 10
in [16]) we can conclude the following: nu3 and 2–sml polymorphisms both imply
’bounded width’ polymorphism (are stronger). Also, the existence of a 2–sml poly-
morphism is equivalent to the existence of a weak near–unanimity polymorphism of
arity 2, or wnu2 (in the sense that a digraph has the first one if and only if it has the sec-
ond one). From Figure 11 in the same paper it can be seen that there are 29 digraphs
on four vertices for which a ’bounded width’ polymorphism is minimal and there are
no digraphs of this size having wnu3 or wnu4 polymorphism as minimal. Since a
’bounded width polymorphism’ is stronger than these two, we came to the follow-
ing conclusion: if we exclude digraphs having a nu3 (majority) polymorphism and
digraphs having a wnu2 polymorphism, remaining digraphs have a ’bounded width’
polymorphism if and only if they have a wnu3 polymorphism (and there should be
only 29 of them satisfying this condition). We managed to isolate these 29 digraphs
and then tested them for existence of polymorphisms p and q as in the system (1). In
the result we found out they all satisfy this system, so there is no counterexample of
size four.

5.1. The procedure

C–source code examining four–element digraphs does the following (it can be found
in [18]):

1. generates all digraphs of size 4

2. detects non–isomorphic ones
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3. sets the matrix of subalgebras for non–isomorphic digraphs

4. then identifies ones having a nu3 polymorphism (a majority polymorphism) and
excludes them from further examination ( they are of bounded width but satisfy
the system (1), so are of no interest here)

5. among the remaining digraphs it identifies ones having a wnu2–polymorphism
(i.e. a binary idempotent commutative operation) and excludes these too for the
same reason as above

6. the remaining digraphs are then tested on the existence of a wnu3 term, which
gave us 29 digraphs having a ’bounded width’ polymorphism as a minimal one

7. we then test these digraphs for existence of polymorphisms from the system (1)

8. in the final result all of these digraphs satisfy the system mentioned, so we have
no counterexample among four–element digraphs

We shall provide here a bit more information on each item in the previous list (quite
a detailed explanation is given with the source code in [18], as well as a number of
comments within this code).

1. We represented a 4–element digraph by a 16–element array (of character type),
members being ’1’ for an edge and ’0’ for no edge. The presumed order of edges
in this array would be (0,0), (0,1), . . . ,(3,2), (3,3). Generating all digraphs of
size four was done in the following way: we looked at each digraph as it was
a binary number having exactly the same digits, so we could obtain the next
digraph just by adding a binary 1 to the current one. We started, of course, from
the array containing 16 zeroes (that is 16 characters ’0’). This way we generated
all 65536 digraphs with four vertices.

2. When detecting non–isomorphic digraphs we used the following procedure: we
take the first digraph (from the array of all digraphs) having ’0’ on its isomor-
phism flag (not a copy), and then examine for isomorphism all digraphs with
greater indexes and the same number of edges. Each time we find an ismorphic
copy, we set its flag to ’1’ (is a copy). When all the copies are identified we
proceed through the array to the next digraph having ’0’ on this flag and do
the same. The procedure used is basically a ’brute force’ one (improved by the
fact that we only examine digraphs with the same number of edges for isomor-
phism), but it works fast enough since the number of 4–element digraphs is not
too big. This way we detect all 3044 non–isomorphic digraphs.
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3. As we are looking at idempotent polymorphisms only, all one-element subsets
are subuniverses. Therefore, a four element digraph can have at most ten non-
trivial subalgebras, so we formed a ten–column matrix of character type to keep
information on subalgebras for each digraph (the number of rows is actually
65536, which is the number of all 4–element digraphs, but we only set values
in rows corresponding to non–isomorphic digraphs). The presumed order of
subalgebras is {0, 1}, {0, 2}, {0, 3}, {1, 2} . . . ,{1, 2, 3}, and the matrix may
contain only ’0’ for ’not known to be a subalgebra’ and ’1’ for ’is a subalgebra’.
Subalgebras are set by the function doing four checks, which means we did not
check all possible conditions for subalgebras, but this worked just fine. Our
function does the following checks for each one of non–isomorphic digraphs
and for each of the sets above (say, for example, {0, 2}):

• we check whether there is a node in this digraph such that, say, 0 and 2 are
the only nodes with edges leading to this node – if this is a case then {0, 2}
is a subalgebra of the digraph given, so we set the corresponding element
of the matrix to ’1’ and skip the following checks for the same subset;

• if the first check did not give us the subalgebra result we do the next one –
whether there is a node in the digraph having only two edges leading from
it and exactly to 0 and 2 – if so {0, 2} is a subalgebra so ’1’ is being set on
the proper matrix element, and the remaining two checks skipped;

• the third condition – whether 0 and 2 are the only two nodes having paths
of length one leading to them – if so we have a subalgebra, . . . , we skip
the last check;

• the last condition – whether 0 and 2 are the only two nodes having paths
of length one leading from them – if so we have a subalgebra, . . . , if not
we are finished with the set {0, 2} and the corresponding element of the
matrix has not changed (there remains ’0’, not a subalgebra).

4. Examining digraphs for a majority polymorphism was done by a pair of re-
cursive functions doing backtracking on a 24–element array. This array is of
structure type, each of its elements containing a three element string of argu-
ments for a majority polymorphism (the order is ”012”, ”013”, . . . , ”321”) and
a character type variable which should contain a value assigned to the polymor-
phism function in these arguments. Initially all the values are set to ’a’, which
is, of course, not an allowed value for a polymorphism. The functions oper-
ating on this array does the following: the first function, named fm, sets the
first value (that would be ’0’) on the element of the array being set, then calls
the ’check’ function to test whether the value assigned is compatible with the
relation represented by the digraph and also with previously assigned values of
this polymorphism (that is array). If we have compatibility the value is allowed,
so fm function would just move to the next element of the array being set and
call itself again. In the opposite case, that is no–compatibility, fm function at-
tempts to assign the value ’1’ and then calls for a check, if it is allowed it goes
to the next element of the array. . . . If none of the values ’0’, ’1’, ’2’, ’3’ can
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be assigned to the current element of the array fm function calls the other re-
cursive function, named ’backwards’, to reset previously defined elements of
the array (that is all from the beginning to the current one, not including the
current one) if possible. When these values are reset fm will start again on the
current element, beginning with ’0’. If it was impossible to reset the preceding
values this function will finish, leaving ’a’ as a value on the current element of
the array and also on all the following elements , which would subsequently be
detected as ’no majority polymorphism’. So basically there are two recursive
functions – one going forward, if possible, the other going backwards, that is
resetting once set values in the array when detected that we can not move for-
ward any more. When these functions are finished we have one of two possible
outcomes: if all 24 values are set it means we have a mojority polymorphism on
the digraph being examined, and if there is the value ’a’ on the last element of
the array it means there is no majority polymorphism (it is sufficient to test just
the last value in the array once the functions finish). This worked just fine and
fast enough in a sequential mode and we obtained the result – there are 1690
digraphs having this polymorphism.

5. Examining digraphs for a wnu2 polymorphism was done in the following way:
first we create a matrix containing all idempotent commutative binary oper-
ations on four elements. A binary idempotent commutative operation needs
only be defined on six pairs of arguments, i.e. (0, 1), (0, 2), (0, 3), (1, 2), (1, 3),
(2, 3), so each operation was presented by a six–element row of this matrix con-
taining its values in these pairs of arguments. For each digraph we go through
the matrix and check compatibility – this is done by the function fpair. We shall
give a short example of how checking compatibility works: say we are exam-
ining an operation (presented by a row of the matrix mentioned) having 0 as a
value in (1, 2), that is f(1, 2) = 0. For all nodes x and y of this digraph such
that there is an edge from x to 1 and from y to 2 there should be an edge from
f(x, y) to 0. The other way round should also hold, that is for all nodes x and
y such that there is an edge from 1 to x and from 2 to y there should be an edge
from 0 to f(x, y). Once we find a compatible operation we proceed to the next
digraph.

6. The existence of wnu3 polymorphism, however, could not be examined in the
way we did it for a majority polymorphism – namely backtracking explained
above was in this case to be done on a 36–element array because a wnu3 poly-
morphism needs to be defined on the same 24 arguments like a majority poly-
morphism, that is ”012”, ”013”, . . . , ”321”, but also on these: ”001”, ”002”,. . . ,
”330”, ”331”, ”332”. The method used for a majority term did not work fast
enough (sequential mode), because the backtracking array was too long, thereby
generating too many recursive calls of the functions mentioned. We had to
shorten ’the backtracking part’ of this array, that is to assign some values to
some of the arguments for this polymorphism and then attempt backtracking on
the rest. The way we did this was the following:

• we identified 2–element subalgebras of the digraphs (these were the re-
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maining digraphs, that is the ones not having a majority nor a wnu2 poly-
morphism)

• The digraphs can have anywhere in between 0 and 6 two–element subal-
gebras, so we divided them into categories according to this number. We
shall explain the further procedure on two of these categories – for di-
graphs having all six two–element subalgebras, and for those having, say,
five of these.

• For digraphs having six two–element subalgebras we looked at these ar-
guments for a wnu3 polymorphism: ”001”, ”002”, ”003”, ”110”, ’112”,
”113’,. . . ,”330”, ”331”, ”332”. In each of these twelve arguments the
polymorphism can only have one of the two possible values : 0 or 1 in
”001”, 0 or 2 in ”002” etc. We then generated a matrix containing all
possible values for these twelve arguments (12 columns and 212 rows).
These twelve strings of arguments are in the beginning of the backtrack-
ing array, so we assigned row by row of this matrix to be the values of
the wnu3 polymorphism for these specific arguments and attempted back-
tracking from the thirteenth member of the array to the end for each of this
rows. This enhanced the procedure greatly, since the recursive functions
doing backtracking were executed on a 24–member array. These functions
had to be altered a bit in comparison to functions searching for a major-
ity polymorphism – namely they only set the array from some point on,
never changing the beginning of it, but when setting a particular value they
check compatibility with all previous values including the ones from the
matrix.

• In the case of five two–element subalgebras the things get a bit more com-
plicated: there are six possible choices of five subalgebras and for each
of these choices we have to create a new matrix of values and to alter
the beginning of the backtracking array. For example if subalgebras are
{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3} the matrix would have five columns
and 25 rows, having only 0 and 1 in the first column, 0 and 2 in the second
and so on. Moreover we have to put ten corresponding elements, that is
”001”, ”002”, ”003”, ”110”, ”112”, ”113”, ”220”, ”221”, ”330”, ”331”,
in the beginning of the backtracking array ( putting elements ”223” and
”332” on positions eleven and twelve). Then we do the same as in the
previous case, that is we assign a row of the matrix to be the values on first
ten members and attempt backtracking from the eleventh member on. We
have to create a new matrix of values and to permute some elements of the
backtracking array for each choice of five subalgebras, which means this
part of the code needs to be executed within six iterations. In the functions
doing backtracking we only need to change a starting point from the index
13 to the index 11 in the backtracking array. This is explained thoroughly
in [18]. The backtracking part of the array is in this case 26 members long
and it works fast enough.

• In all the remaining cases, that is four, three, two or one two–element
subalgebra we did exactly the same as explained above. In each of these
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cases we had to create a new matrix of possible values for each choice of
subalgebras, and also to alter the beginning of the backtracking array so
that the corresponding elements would come first. The functions searching
for a wnu3 term would also start from different positions in this array. This
means we had to iterate this part of the code quite a number of times to
obtain the final results.

• The procedure described worked very well– luckily enough all the di-
graphs having a wnu3 polymorphism were among ones actually having
two–element subalgebras, so we managed to find all 29 of them. What
strikes us as interesting is that assigning values to just two elements of the
36–element array and doing backtracking on the rest of it, on the length 34
that is, was fast enough (this is the case with a single 2–element subalge-
bra). As mentioned before, backtracking on the length 36 was impossible
(that is did not finish even after several hours for particular digraphs).

• This way we isolated 29 digraphs not having a majority nor a wnu2 poly-
morphism, but having a wnu3 polymorphism. As already said these are the
ones having a ’bounded width’ polymorphism as a minimal one, therefore
were candidates for a counterexample.

7. In this step we tested these digraphs for existence of polymorphisms p and q
from system 1. It was done in the following way:

• first we find a wnu3 term for the digraph being examined; this is to be the
q term from the system 1.

• then we assign 12 values of this term to the elements at the beginning of the
backtracking array for the p term (these would be the values of the wnu3
term for the following arguments: ”010”, ”020”, ”030”, ”101”, ”121”,
”131”, ”202”, ”212”, ”232”, ”303”, ”313” and ”323”. In these arguments
p and q have the same values according to the system 1).

• next we do backtracking on the remaining of the array (that is we try to
assign remaining 36 values for p). The functions doing backtracking and
all the checks needed are exactly the same as described before (in the
cases of majority term and wnu3 term), so we shall not comment them
again. They can be found within the source code in [18].

• in the result all 29 digraphs were found to satisfy the system 1, that is to
have terms p and q.

Interestingly enough, this backtracking on 36 elements when searching for the
term p worked just fine, as opposed to the attempt on the same length when
examining digraphs for a wnu3 polymorphism. Also, for each of these 29 di-
graphs the term p was found for the very first wnu3 term being examined (when
we take the least wnu3 as the term q for a particular digraph, the least by its
values that is, we can find the term p paired with this one so as to satisfy the
system 1).

8. as already said we established there was no counterexample among 4–element
digraphs.
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5.2. Complexity

Now we shall estimate time complexity for each of the steps (i.e sections of code)
mentioned above.

1. The time needed for generating all digraphs of size four (or of any given size)
is a linear function of the number of digraphs of given size. If we denote a
number of digraphs with N generating would take C ∗ N time units, C being
some constant value. However, the number of digraphs is actually N = 22

n

, n
being a number of vertices, so this step takes C ∗ 22n time units.

2. When searching for non–isomorphic digraphs we used a method close to the
’brute force’ one as already said, and by ’brute force’ we mean comparing a
digraph for an isomorphism with all digraphs that follow this one in the array
containing all digraphs. We improved this a bit by comparing only digraphs
having the same number of edges, but basically the complexity of this method
remained the same – if N is a number of all digraphs of given size this step
takes C ∗N2 time units, C being some constant value. We can also express this
as a function of number of vertices, so it would be C ∗ (22

n

)2 . This worked
fine for 4–element digraphs, but for 5–element ones we used a better (and more
clever) method as explained in the section 6.

3. The function checking subalgebras takes constant amount of time for each di-
graph, which gives us C ∗N time units, where C is some constant value and N
is the number of non–isomorphic digraphs.

4. Searching for a majority polymorphism was done by a pair of recursive func-
tions, as already explained above. The first one, called fm in the original code
in [18], sets the value of the current element of the backtracking array (that is a
value for this polymorphism on a given 3−tuple of arguments), if possible, and
then moves forward in this array. The second one, called ’backwards’, resets all
previously set values in this array to new ones when setting the current value is
not possible. Let us look at the time complexity here, analyzing only the worst
possible case of course: say we are setting a value in the element of the array
having index i. If it is impossible to set it considering previously set values
the function ’backwards’ can be called by the function fm as many as 4i times
before fm proceeds further (because this is the number of ways to set values on
the preceding i members of this array). Each call of the function ’backwards’
can generate 4i−1 new calls of this function, and each of these calls can give
us 4i−2 new calls... So, basically, when setting the element of the array with
the index i there can occur as many as 4i ∗ 4i−1 ∗ 4i−2 ∗ · · · ∗ 4 = 4i∗(i+1)/2

calls of the function ’backwards’. So, if we suppose this is what happens when
setting a value on each element of the array, we have Σi=M

i=1 4i∗(i+1)/2 calls of
this function, M being the length of the backtracking array, that is the num-
ber of values to be set for a certain polymorphism. We can approximate the
previous sum, from above, to C ∗ 4M∗(M+1)/2, C being some constant value
(since Σi=∞

i=0 4i = 4/3). So the time complexity of this procedure would be
C ∗ 4M∗(M+1)/2 time units (C a constant value, M the number of values to be
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set for a certain polymorphism) , which is extremely high. There are a number
of checks and loops accompanying these recursive calls, but they do not con-
tribute significantly to the complexity obtained so we did not mention them for
the sake of simplicity. The backtracking described worked for M = 24, a ma-
jority polymorphism needs 24 values defined, but could not work for M = 36
when searching for a wnu3 polymorphism. The breaking point was the length
35, or maybe even 36 since it worked on the length 34, as we have mentioned
above.

At this point we could alter this complexity expression given above as to make it
a function of the number of vertices – if a digraph had n vertices we would have
to define n ∗ (n− 1) ∗ (n− 2) values for a majority polymorphism, so the back-
tracking array would be that long, and this gives us the following complexity:
C ∗ nn∗(n−1)∗(n−2)∗(n∗(n−1)∗(n−2)+1)/2.

5. When examining digraphs for a wnu2 polymorphism first we created a matrix of
all idempotent commutative binary operations. Its dimensions are nn∗(n−1)/2×
n ∗ (n − 1)/2, where n is the number of vertices (in this case 4). For each
digraph we went through this matrix checking compatibility, the check requiring
a constant amount of time. Therefore time complexity of this section of code
would be C ∗nn∗(n−1)/2 ∗N , where C is some constant value, n is the number
of vertices and N is the number of digraphs being examined (non–isomorphic
digraphs not having a majority polymorphism).

6. The time complexity of the section of the code searching for a wnu3 polymor-
phism is the same as when searching for a majority polymorphism for we used
the same functions to do the backtracking needed, C ∗ 4M∗(M+1)/2, where C
is some constant value and M is the number of values to be set for a certain
polymorphism (wnu3). We did shorten the backtracking part of the array from
the length M = 36 (impossible) to the length at most 34 (possible) in the way
described above, but generating the matrices needed and assigning values to the
members at the beginning of the backtracking array do not effect overall com-
plexity of this method – it is very high due to the number of recursive calls.
Iterations mentioned above and needed to obtain results do not effect complex-
ity either, they can just alter this constant value C in the expression.

7. The time complexity of the section of the code searching for polymorphism p
and q is even greater than when searching for a majority polymorphism or a
wnu3 polymorphism since the idea is to find a wnu3 polymorphism first, then
to search for a p term for this particular wnu3, and in case it doesn’t exist we
search for another wnu3 polymorphism and then for a corresponding p term and
so on. This basically means that the complexity would be (the upper bound)
C ∗ 4M∗(M+1)/2 ∗ 4M1∗(M1+1)/2, where C is some constant value and M ,
M1 are the numbers of values to be set for these polymorphisms (wnu3 and p
respectively). The fact that in each case the term p was found for the very first
wnu3 term being examined made things much easier for us, of course, but it
does not effect the complexity – in the worst case it could be as given above.



220 Jelena Jovanović

6. Five–element digraphs

The five-element case is close to the boundary of currently available computing
power. This is the reason why we used not only C-codes but also Paradox model
builder when examining these digraphs.

For five–element digraphs exactly the same holds as for four–element ones re-
garding the strength of polymorphisms (figure 10 in [16]): if we exclude ones having
a majority polymorphism and a wnu2 polymorphism the remaining digraphs are of
’bouded width’ if and only if they have a wnu3 polymorphism. There should be 3475
of these digraphs, and exactly they would be the candidates for a counterexample.

It is here that we encountered a problem – namely we obtained results on a wnu2
polymorphism, but the source codes doing backtracking for 5–element digraphs were
not fast enough, though ran in parallel mode, so we had to use Paradox model builder
to examine these digraphs for majority, wnu3 and p and q polymorphisms.

6.1. The procedure used for a wnu2 polymorphism

Examining 5–element digraphs for a wnu2 polymorphism was done by two separate
source codes (both can be found in [18]).

The first one works in sequential mode generating all 5–element digraphs and then
detecting non–isomorphic ones. Since there are so many digraphs, the method used
for this resembles the method for identifying all prime numbers known as ’the sieve
of Eratosthen’ – namely isomorphism flags for all digraphs are previously set to ’0’,
so we take the first digraph , generate all its isomorphic copies and raise their flags to
’1’ in the array containing all digraphs. Then we take the next digraph having ’0’ on
this flag, generate its copies and set their flags to ’1’, and so on... When raising the
flags of copies to ’1’ we didn’t search for the copies, through the array of all digraphs
but rather calculate their positions in it – after generating each copy of a digraph we
turned it from string format consisting of ’0’ and ’1’ into a binary number with the
same digits, and then into a corresponding decimal number which is exactly the index
of the copy in this array. In the end we write all the non–isomorphic digraphs into an
output file. This way we came to 291968 non–isomorphic 5–element digraphs.

The second code is to be executed in parallel mode (it was originally executed on 13
processors in master–slave hierarchy) and it does the following:

• We read the output file made by the first code (containing all non–ismorphic
digraphs) and store these digraphs into an array.

• We set the matrix containing all binary idempotent commutative operations on
five nodes (because of idempotence and commutativity presumed each oper-
ation is represented by a 10–element row, this was already explained for 4–
element digraphs).

• We set the matrix of subalgebras for all digraphs which would help us when
checking the compatibility of binary operations with digraphs. In this case,
again all one element subsets are subuniverses, so the matrix has 25 columns
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for 25 potential nontrivial subalgebras (with 2, 3 or 4 elements) of a 5–element
digraph.

• We test digraphs for a wnu2–term which now means checking compatibility of
a digraph given with the operations from this matrix. This was done in exactly
the same way as explained for a 4–element case. Once a compatible operation
is found we proceed to the next digraph.

• Digraphs not having a compatible binary commutative operation (wnu2 term)
are in the end written into a new output file.

The master–slave hierarchy mentioned above was implemented in the following way:
each one of the slaves was given its own array of non–isomorphic digraphs, and also
both a matrix of subalgebras and a matrix of idempotent binary commutative oper-
ations. The master processor was just distributing to the slaves the indexes of the
digraphs to be examined and collecting results during the process (setting a wnu2–
flag to ’1’ if need be in its own array of non–isomorphic digraphs). In the end this
processor wrote the digraphs not having a wnu2 polymorphism into an output file.

The results obtained slightly differed from the ones given in [16] in the sense that we
got 132509 non–isomorphic digraphs having a wnu2 polymorphism, which is less by
one from the number given in [16]. When examining the file provided by the authors
containing the results of examination of all non–isomorphic 5–element digraphs for
18 different polymorphisms, we found out there were some redundant data at the end
of it, so this was no more than a counting mistake on their behalf. However, it caused
all the entries in the figure 7 in [16] to be greater by one then they actually are.

The erratum is now on the website presenting results from [16].

6.2. Complexity

As in the previous section we shall estimate complexity for each part of the procedure:

• The time needed to generate all digraphs of size five is a linear function of the
number of digraphs, so C ∗N , N being the number of digraphs, or C ∗ 22n , n
being the number of vertices (here five).

• Detecting non–isomorphic digraphs in the way explained above takes C ∗ N
time units, N being the number of all digraphs, because generating isomorphic
copies for each digraph and then calculating their positions and setting corre-
sponding flags to ’1’ takes a constant amount of time. This way we reduced
the complexity by an order of magnitude, namely from C ∗N2 (brute force) to
C ∗N (’the sieve of Eratosthen’ method).

• As in the case of 4–element digraphs, setting the matrix of subalgebras takes
C ∗ N time units, N being the number of non–isomorphic digraphs with five
vertices.
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• Setting the matrix of all idempotent commutative binary operations and examin-
ing non–isomorphic digraphs for this kind of operation (a wnu2 polymorphism)
takes C∗nn∗(n−1)/2∗N time units, where n is the number of vertices, here five,
and N is the number of non–isomorphic digraphs of this size. The complexity
expression is already explained in the 4–element case. Let us only notice that
executing this section of code in parallel mode does not change its complexity
but only the constant factor C, that is the actual amount of time needed.

6.3. Paradox
As mentioned above we used Paradox model builder to examine remaining digraphs
for majority, wnu3 and p and q polymorphisms (as denoted in the system 1). Paradox
was also executed in parallel mode under Linux shell. All input files were generated
by C-programming language as text files (an input file depends on a digraph and a
polymorphism). We shall present here an example of input file (this was used when
searching for p and q, q being denoted by g):

cnf(mt, axiom, p(X,X,X)=X).
cnf(mt, axiom, p(X,X,Y)=p(X,Y,Y)).
cnf(pr, axiom, ˜gr(X0,X1) | ˜gr(X2,X3) | ˜gr(X4,X5)

| gr(p(X0,X2,X4),p(X1,X3,X5))).
cnf(wnu, axiom, g(X,X,X)=X).
cnf(wnu, axiom, g(X,X,Y)=g(X,Y,X)).
cnf(wnu, axiom, g(X,X,Y)=g(Y,X,X)).
cnf(pr, axiom, ˜gr(X0,X1) | ˜gr(X2,X3) | ˜gr(X4,X5)

| gr(g(X0,X2,X4),g(X1,X3,X5))).
cnf(mt, axiom, p(X,Y,X)=g(Y,X,X)).
cnf(graph, axiom, ˜gr(n0,n0)).
cnf(graph, axiom, ˜gr(n0,n1)).
cnf(graph, axiom, ˜gr(n0,n2)).
cnf(graph, axiom, gr(n0,n3)).
cnf(graph, axiom, gr(n0,n4)).
cnf(graph, axiom, ˜gr(n1,n0)).
cnf(graph, axiom, ˜gr(n1,n1)).
cnf(graph, axiom, ˜gr(n1,n2)).
cnf(graph, axiom, ˜gr(n1,n3)).
cnf(graph, axiom, ˜gr(n1,n4)).
cnf(graph, axiom, ˜gr(n2,n0)).
cnf(graph, axiom, ˜gr(n2,n1)).
cnf(graph, axiom, ˜gr(n2,n2)).
cnf(graph, axiom, ˜gr(n2,n3)).
cnf(graph, axiom, gr(n2,n4)).
cnf(graph, axiom, gr(n3,n0)).
cnf(graph, axiom, ˜gr(n3,n1)).
cnf(graph, axiom, ˜gr(n3,n2)).
cnf(graph, axiom, ˜gr(n3,n3)).
cnf(graph, axiom, gr(n3,n4)).
cnf(graph, axiom, ˜gr(n4,n0)).
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cnf(graph, axiom, gr(n4,n1)).
cnf(graph, axiom, ˜gr(n4,n2)).
cnf(graph, axiom, ˜gr(n4,n3)).
cnf(graph, axiom, ˜gr(n4,n4)).
cnf(elems, axiom, n0!=n1).
cnf(elems, axiom, n0!=n2).
cnf(elems, axiom, n0!=n3).
cnf(elems, axiom, n0!=n4).
cnf(elems, axiom, n1!=n2).
cnf(elems, axiom, n1!=n3).
cnf(elems, axiom, n1!=n4).
cnf(elems, axiom, n2!=n3).
cnf(elems, axiom, n2!=n4).
cnf(elems, axiom, n3!=n4).
cnf(elems, axiom, (X=n0 | X=n1 | X=n2 | X=n3 | X=n4)).

We managed to isolate 3475 5–element digraphs having a wnu3 polymorphism as a
minimal one, and they proved to have p and q terms, that is to satisfy the system 1.
This means we established there was no counterexample among 5–element digraphs,
i.e. among corresponding algebras of polymorphisms.

7. The conjecture

Since we found no counterexample for the system 1 up to size 5, at this point we can
state the conjecture:

A locally finite variety is congruence meet–semidistributive if and only if it satisfies
the system 1: {

p(x, x, y) ≈ p(x, y, y)
p(x, y, x) ≈ q(x, x, y) ≈ q(x, y, x) ≈ q(y, x, x)
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