A NOTE ON CONVERGENCE IN THE SPACES OF L^p -DISTRIBUTIONS ¹

Jelena Aleksić², Stevan Pilipović³ and Ivana Vojnović⁴

Abstract. We investigate convergence properties in weighted spaces of distributions \mathcal{D}'_{L^p} and their test spaces \mathcal{D}_{L^q} , $\frac{1}{p} + \frac{1}{q} = 1$. Also we give characterization of weak limits of weakly convergent sequences of L^p -distributions.

AMS Mathematics Subject Classification (2010): 46F05 Key words and phrases: L^p - distributions, precompactness, duals

1. Introduction and preliminaries

 L^p -distributions (also known as distributions of L^p growth or weighted spaces of distributions), are introduced in [12], further developed in [3] and widely investigated and used, cf. [1, 8, 9, 10, 11] and references given there. These spaces, denoted by $\mathcal{D}'_{L^p}(\mathbb{R}^d)$, are dual spaces of $\mathcal{D}_{L^q}(\mathbb{R}^d)$, $1 \leq q < \infty$ which consists of smooth functions whose derivatives belong to $L^q(\mathbb{R}^d)$. In particular, $\mathcal{D}'_{L^1}(\mathbb{R}^d) := (\dot{\mathcal{B}}(\mathbb{R}^d))'$, where $\dot{\mathcal{B}}(\mathbb{R}^d) \subset \mathcal{D}_{L^\infty}(\mathbb{R}^d) = \{\phi \in C^\infty(\mathbb{R}^d) | \partial^\alpha \phi \in L^\infty(\mathbb{R}^d), \alpha \in \mathbb{N}_0^d\}$ is the closure of the space of smooth functions with compact support in the topology generated by the sequence of seminorms $\|\cdot\|_{m,\infty}$:

(1.1)
$$\|\phi\|_{m,\infty} = \sup_{|\alpha| \le m} \|\partial^{\alpha}\phi\|_{L^{\infty}}, \quad m \in \mathbb{N}_0.$$

Space $\dot{\mathcal{B}}(\mathbb{R}^d)$ contains functions from $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$ with all derivatives vanishing at infinity.

Precisely, $\mathcal{D}_{L^q}(\mathbb{R}^d)$, $1 \leq q < +\infty$, denotes the space of smooth functions ϕ , such that $\partial^{\alpha}\phi \in L^q(\mathbb{R}^d)$, for all multi-indices $\alpha \in \mathbb{N}_0^d$, with the topology generated by the sequence of seminorms

(1.2)
$$\|\phi\|_{m,q} = \left(\sum_{|\alpha| \le m} \|\partial^{\alpha}\phi\|_{L^q}^q\right)^{1/q}, \quad m \in \mathbb{N}_0,$$

 $^{^1{\}rm The}$ research is partially supported by Ministry of education and science of Republic of Serbia, project no. 174024 and by Provincial Secretariat for Science, project no. 114-451-1084.

²Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, e-mail: jelena.aleksic@dmi.uns.ac.rs

³Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, e-mail: stevan.pilipovic@dmi.uns.ac.rs

⁴Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, e-mail: ivana.vojnovic@dmi.uns.ac.rs

cf. [3, Sect. 6.1] or [12, VI.§8]. It is known that $\mathcal{D}_{L^q}(\mathbb{R}^d)$ are Fréchet spaces (locally convex spaces which are metrizable and complete with respect to this metric) and that the space of smooth functions with compact support $\mathcal{D}(\mathbb{R}^d)$ is dense in $\mathcal{D}_{L^q}(\mathbb{R}^d)$, $1 \leq q < +\infty$. For $q = \infty$, instead of $\mathcal{D}_{L^\infty}(\mathbb{R}^d)$ we consider its subspace $\dot{\mathcal{B}}(\mathbb{R}^d)$. In the sequel, we will use the notation p for the conjugate number of q, $p = \frac{q}{q-1}$, $q \geq 1$ (for q = 1, $p = \infty$).

Since $\mathcal{D}_{L^q}(\mathbb{R}^d)$, $1 \leq q < +\infty$, and $\dot{\mathcal{B}}(\mathbb{R}^d)$ are Fréchet spaces, the Banach-Steinhaus theorem holds on the duals. Namely, for a subset $H \subset \mathcal{D}'_{L^p}(\mathbb{R}^d)$, H is weakly - star bounded (i.e. in the topology $\sigma(\mathcal{D}'_{L^p}, \mathcal{D}_{L^q})$) if and only if H is strongly bounded (in the topology $\beta(\mathcal{D}'_{L^p}, \mathcal{D}_{L^q})$) if and only if H is equicontinuous if and only if H is relatively compact in the weak dual topology. For the properties of these topologies cf. [13, Chpt. 33] and [6].

Schwartz [12, Theorem VI.25] provided the following representation: if $p \in [1, \infty]$, then

a) For every distribution $T \in \mathcal{D}'_{L^p}(\mathbb{R}^d)$ there exists $n \in \mathbb{N}_0$ such that T can be represented as a finite sum of derivatives of functions $f_{\alpha} \in L^p(\mathbb{R}^d)$,

(1.3)
$$T = \sum_{|\alpha| \le n} \partial^{\alpha} f_{\alpha},$$

where f_{α} are bounded continuous functions in $L^p(\mathbb{R}^d)$ and, moreover, for $p \neq \infty$ each f_{α} vanishes at infinity.

b) Also, a distribution $T \in \mathcal{D}'_{L^p}(\mathbb{I}\!\!R^d)$ if and only if

(1.4)
$$T * \psi \in L^p(\mathbb{R}^d), \text{ for all } \psi \in \mathcal{D}(\mathbb{R}^d),$$

where * denotes convolution, i.e. $\langle T * \psi, \varphi \rangle = \langle \psi(y), \langle T(x), \varphi(x+y) \rangle \rangle$ for $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Remark 1.1. Notice that (1.4) is equivalent to:

(1.5) there exists $m \in \mathbb{N}$, such that for all $\psi \in C_c^m(\mathbb{R}^d)$, $T * \psi \in L^p(\mathbb{R}^d)$.

In the above, $C_c^m(\mathbb{R}^d)$ denotes the space of continuous differentiable functions with compact support whose all derivatives up to order m are continuous. Namely, (1.5) implies (1.4) because $\mathcal{D}(\mathbb{R}^d) \subset C_c^m(\mathbb{R}^d)$. Conversely, if (1.4) holds, then we know that there exists $m \in \mathbb{N}$ such that $T = \sum_{|\alpha| \leq m} \partial^{\alpha} f_{\alpha}$ for $f_{\alpha} \in L^p(\mathbb{R}^d)$ so for every $\psi \in C_c^m(\mathbb{R}^d)$ we have that $T * \psi = \sum_{|\alpha| \leq m} \partial^{\alpha} f_{\alpha} * \psi$ and $\partial^{\alpha} f_{\alpha} * \psi = (-1)^{|\alpha|} f_{\alpha} * \partial^{\alpha} \psi \in L^p(\mathbb{R}^d)$. So, $T * \psi$ is finite sum of L^p functions and therefore $T * \psi \in L^p(\mathbb{R}^d)$.

2. Test spaces and their duals

Regarding L^q spaces, it is known that every bounded sequence in $L^q(\mathbb{I}\!\!R^d)$, $1 < q < \infty$, has a weakly convergent subsequence. The same assertion is true for $L^\infty(\mathbb{I}\!\!R^d)$ when weak convergence is replaced by weak - star convergence. Only $L^1(\mathbb{I}\!\!R^d)$ does not have this property. These assertions are proved in [5], where this property is called *precompactness*, i.e. we say that space is precompact (with respect to its topology) if and only if every bounded sequence has a weakly converging subsequence. Our aim is to see if weakly (or weakly - star) bounded sequences in $\mathcal{D}_{L^q}(\mathbb{I}\!\!R^d)$ spaces have weakly (resp. weakly - star) convergent subsequences.

Lemma 2.1 (Weak compactness of $\mathcal{D}_{L^q}(\mathbb{R}^d)$).

- a) $\mathcal{D}_{L^q}(\mathbb{R}^d)$ is weakly precompact for $1 < q < \infty$.
- b) $\dot{\mathcal{B}}(I\!\!R^d)$ is weakly precompact.
- c) $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$ is weakly star precompact.
- d) $\mathcal{D}_{L^1}(\mathbb{R}^d)$ is not weakly precompact.
- *Proof.* a) For Fréchet spaces the next theorem holds: the Fréchet space E is reflexive if and only if every bounded set in E is relatively weakly compact (meaning that it has a compact closure in weak topology, for proof see [7, Proposition 23.24, p. 276]). This immediately implies that spaces $\mathcal{D}_{L^q}(\mathbb{R}^d)$ are weakly compact for $1 < q < \infty$. But instead of using this theorem we will give here a constructive proof.

Let $1 < q < \infty$ and $(u_n)_n$ be a bounded sequence in $\mathcal{D}_{L^q}(\mathbb{R}^d)$. We have to prove that $(u_n)_n$ has a weakly convergent subsequence. If $(u_n)_n$ has a constant subsequence the proof is done, so we assume the opposite. Since $(u_n)_n$ is a bounded sequence in $\mathcal{D}_{L^q}(\mathbb{R}^d)$, i.e. with respect to seminorms (1.2), then for every $n \in \mathbb{N}$, the functions u_n and all their derivatives are bounded in $L^q(\mathbb{R}^d)$.

Since $(u_n)_n$ is bounded in $L^q(\mathbb{R}^d)$, and $L^q(\mathbb{R}^d)$ is weakly precompact, it contains a weakly convergent subsequence in $L^q(\mathbb{R}^d)$, denoted by

$$\phi_n \longrightarrow \phi_0 \in L^q(\mathbb{R}^d).$$

The sequence $(\partial_{x_1}\phi_n)_n$ is also bounded in $L^q(\mathbb{R}^d)$, so there exist its subsequence $(\partial_{x_1}\phi_{(1,0,\ldots,0),n})_n$ and a function $\phi_{(1,0,\ldots,0)} \in L^q(\mathbb{R}^d)$ with the following two properties

$$\partial_{x_1}\phi_{(1,0,\ldots,0),n} \longrightarrow \phi_{(1,0,\ldots,0)}, \text{ but also } \phi_{(1,0,\ldots,0),n} \longrightarrow \phi_0.$$

Moreover, $\partial_{x_1} \phi_0 = \phi_{(1,0,...,0)}$.

In the same manner we obtain sequences of other derivatives. So, for every $\alpha \in \mathbb{N}_0^d$, there exists $(\phi_{\alpha,n})_n$ which is a subsequence of $(\phi_n)_n$ such that

(2.1)
$$\begin{array}{c} \phi_{\alpha,n} & \longrightarrow & \phi_{0} \\ \partial_{x_{1}}\phi_{\alpha,n} & \longrightarrow & \phi_{(1,0,\dots,0)} \\ & \dots \\ \partial^{\alpha}\phi_{\alpha,n} & \longrightarrow & \phi_{\alpha} \end{array}$$

and $\phi_{\alpha} = \partial^{\alpha} \phi_0$.

Now, let $A: \mathbb{N}_0 \to \mathbb{N}_0^d$ be a bijection $A(k) = \alpha_k, k \in \mathbb{N}_0$, and choose the sequence $(\phi_{\alpha_k,k})_{k \in \mathbb{N}}$. Notice that the sequence $(\phi_{\alpha_k,k})_k$ is a subsequence of $(\phi_k)_k$ (so it does not contain any constant subsequence), sequence $(\partial_{x_1}\phi_{\alpha_k,k})_k$ is a subsequence of $(\partial_{x_1}\phi_{(1,0,\dots,0),k})_k$, and so on. Since the limit of weakly convergent sequence is unique for $\alpha \in \mathbb{N}_0^d$, we have that

$$\partial^{\alpha} \phi_{\alpha_k,k} \longrightarrow \phi_{\alpha} \text{ in } L^q(\mathbb{R}^d).$$

Now we can conclude that $(\phi_{\alpha_k,k})_k$ is a subsequence of the given sequence $(u_n)_n$ which weakly converges in $\mathcal{D}_{L^q}(\mathbb{R}^d)$. To show this, take a test function $\theta \in \mathcal{D}'_{L^p}(\mathbb{R}^d)$. Since $\theta \in \mathcal{D}'_{L^p}(\mathbb{R}^d)$ we know that θ can be represented as a finite sum of derivatives of $f_\beta \in L^p(\mathbb{R}^d)$,

(2.2)
$$\theta = \sum_{|\beta| \le p} \partial^{\beta} f_{\beta}.$$

We have that

$$\langle \phi_{\alpha_k,k}, \theta \rangle = \langle \phi_{\alpha_k,k}, \sum_{|\beta| \le p} \partial^\beta f_\beta \rangle = \sum_{|\beta| \le p} (-1)^{|\beta|} \langle \partial^\beta \phi_{\alpha_k,k}, f_\beta \rangle$$

and when $k \to \infty$

$$\langle \phi_{\alpha_k,k}, \theta \rangle \to \sum_{|\beta| \le p} (-1)^{|\beta|} \langle \partial^{\beta} \phi_0, f_{\beta} \rangle = \langle \phi_0, \theta \rangle.$$

This implies that $\phi_{\alpha_k,k} \longrightarrow \phi_0$ in $\mathcal{D}_{L^q}(\mathbb{R}^d)$.

b) Let $(u_n)_n$ be a bounded sequence of functions in $\dot{\mathcal{B}}(\mathbb{R}^d)$. This means that every function u_n is bounded with respect to seminorms (1.1). So functions u_n and all their derivatives are bounded in $L^{\infty}(\mathbb{R}^d)$. Since $(u_n)_n$ is bounded in $L^{\infty}(\mathbb{R}^d)$, there is its weakly - star convergent subsequence in $L^{\infty}(\mathbb{R}^d)$, denoted by

$$\phi_n \longrightarrow \phi_0 \in L^\infty(\mathbb{R}^d).$$

In the same manner as in the part a) we obtain sequences of derivatives of functions ϕ_n and then we choose the sequence $(\phi_{\alpha_k,k})_k$. To show that $(\phi_{\alpha_k,k})_k$ is weakly convergent in $\dot{\mathcal{B}}(\mathbb{R}^d)$, we take a test function $\theta \in \mathcal{D}'_{L^1}(\mathbb{R}^d)$ which is a finite sum of derivatives of $L^1(\mathbb{R}^d)$ functions and we get that

$$\langle \phi_{\alpha_k,k}, \theta \rangle \to \langle \phi_0, \theta \rangle, \ k \to \infty.$$

c) It is known (see [4]) that $((\dot{\mathcal{B}}(\mathbb{R}^d))')' = \mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$. Since $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$ is dual of a topological vector space, we will consider the weak - star topology on $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$. This means that the sequence $(u_n)_n$ converges

weakly - star to u in $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$ if for every $g \in (\dot{\mathcal{B}}(\mathbb{R}^d))' = \mathcal{D}'_{L^1}(\mathbb{R}^d)$ it holds that $\langle u_n, g \rangle \to \langle u, g \rangle, \ n \to \infty$.

Let $(u_n)_n$ be the given sequence in $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$, which means that all functions u_n are bounded with respect to seminorms given by (1.1). So we conclude that u_n and all their derivatives are bounded in $L^{\infty}(\mathbb{R}^d)$. Now we can apply the same procedure as in the proofs of parts a) and b) to see that this sequence has a weakly - star convergent subsequence.

d) We will construct a sequence in $\mathcal{D}_{L^1}(\mathbb{R}^d)$ which does not have a convergent subsequence. Take $\psi \in \mathcal{D}(\mathbb{R}^d)$ such that $\operatorname{supp} \psi = \overline{B(0;1)}$ (closed ball of radius 1 with center at 0), $0 \leq \psi \leq 1$, $\psi(x) > 0$ for |x| < 1 and $\int_{\mathbb{R}^d} \psi(x) dx = 1$. Define the sequence of functions $f_n(x) := n^d \psi(nx)$, $n \in \mathbb{N}$. Notice that $f_n \in \mathcal{D}(\mathbb{R}^d) \subset \mathcal{D}_{L^1}(\mathbb{R}^d)$, $n \in \mathbb{N}$, $f_n \geq 0$, $\operatorname{supp} f_n = \overline{B(0;1/n)}$ and $||f_n||_{L^1} = 1$. The sequence $(f_n)_n$ is bounded in $\mathcal{D}_{L^1}(\mathbb{R}^d)$, i.e. with respect to all seminorms in $\mathcal{D}_{L^1}(\mathbb{R}^d)$.

Suppose that $(f_n)_n$ has convergent subsequence $(f_k)_k$. Since $\sup f_k = \overline{B(0; 1/k)}$, the weak limit of $(f_k)_k$ can only be zero. Using the Schwartz characterization (1.3) of duals, we see that $1 \in (\mathcal{D}_{L^1}(\mathbb{R}^d))'$, so we have that $\int_{\mathbb{R}^d} f_n \cdot 1 \, dx \to 0, \ n \to \infty$, which contradicts the fact that $\|f_n\|_{L^1} = 1$.

Remarks about duals and reflexivity:

• The spaces $\mathcal{D}_{L^q}(\mathbb{R}^d)$, $1 < q < \infty$, are reflexive, i.e.

$$\left(\left(\mathcal{D}_{L^q}(\mathbb{R}^d) \right)' \right)' = \left(\mathcal{D}'_{L^p}(\mathbb{R}^d) \right)' = \mathcal{D}_{L^q}(\mathbb{R}^d), \quad 1 < q < \infty, \ p = q/q - 1.$$

• The space $\mathcal{D}_{L^1}(\mathbb{R}^d)$ is not reflexive. This space is a Fréchet space and we have found a bounded sequence in $\mathcal{D}_{L^1}(\mathbb{R}^d)$ which does not have a weakly convergent subsequence. Then aforementioned [7, Proposition 23.24, p. 276] implies that $\mathcal{D}_{L^1}(\mathbb{R}^d)$ is not reflexive.

We can also conclude that $(\mathcal{D}_{L^1}(\mathbb{R}^d))' = \mathcal{D}'_{L^{\infty}}(\mathbb{R}^d)$ is not reflexive.

• Since $((\dot{\mathcal{B}}(\mathbb{R}^d))')' = \mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$, it follows that $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$ is not reflexive. Indeed, $\dot{\mathcal{B}}(\mathbb{R}^d)$ is closed in $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$, and if $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$ were reflexive, then this would imply that $\dot{\mathcal{B}}(\mathbb{R}^d)$ is reflexive, which is not true (closed subspace of a reflexive Fréchet space is reflexive, see [7]).

This also implies that $\mathcal{D}_{L^{\infty}}(\mathbb{R}^d)$ is not weakly precompact.

3. Duals

Recall that $\mathcal{D}_{L^q}(\mathbb{R}^d)$ and $\mathcal{D}'_{L^p}(\mathbb{R}^d)$ can also be presented as

$$\mathcal{D}_{L^q}(\mathbb{R}^d) = \bigcap_{k \in \mathbb{N}_0} W^{k,q}(\mathbb{R}^d) \quad \text{and} \quad \mathcal{D}'_{L^p} = \bigcup_{k \in \mathbb{N}_0} W^{-k,p},$$

where $W^{k,q}(\mathbb{R}^d)$ are Sobolev spaces, for details see [3]. Properties of Sobolev spaces are sistematically studied in e.g. [2].

Let $\mathcal{A}(\mathbb{R}^d)$ be any of $W^{k,q}(\mathbb{R}^d)$ or $\mathcal{D}_{L^q}(\mathbb{R}^d)$. By $\mathcal{A}_{\text{loc}}(\mathbb{R}^d)$ we denote the space of all functions f such that $\varphi f \in \mathcal{A}(\mathbb{R}^d)$ for every $\varphi \in \mathcal{D}(\mathbb{R}^d)$. We know that weak convergence of the sequence $(v_n)_n$ in $W^{k,q}(\mathbb{R}^d)$ implies the strong convergence in $W^{k-1,q}_{\text{loc}}(\mathbb{R}^d)$, i.e. for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$, $(\varphi v_n)_n$ converges strongly in $W^{k-1,q}(\mathbb{R}^d)$. Namely, $v_n \to v$ in $W^{k,q}(\mathbb{R}^d)$ implies that $\partial^{\alpha} v_n \to$ $\partial^{\alpha} v$ in $L^q(\mathbb{R}^d)$, for all $|\alpha| \leq k$. Then $\partial^{\alpha} v_n \to \partial^{\alpha} v$ in $W^{1,q}(\mathbb{R}^d)$, for all $|\alpha| \leq k-1$ and also in $L^q_{\text{loc}}(\mathbb{R}^d)$, since $W^{1,q}(\mathbb{R}^d)$ is compactly embedded in $L^q_{\text{loc}}(\mathbb{R}^d)$, by the Rellich's lemma. So for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$ and all $|\alpha| \leq k-1$ we have that $\partial^{\alpha}(\varphi v_n) \to \partial^{\alpha}(\varphi v)$ in $L^q(\mathbb{R}^d)$. Hence, $(\varphi v_n)_n$ strongly converges in $W^{k-1,q}(\mathbb{R}^d)$. This is the reason why weak convergence in $\mathcal{D}_{L^q}(\mathbb{R}^d)$ implies the strong convergence in $\mathcal{D}_{L^{q,\text{loc}}}(\mathbb{R}^d)$

But, in $\mathcal{D}'_{L^p}(\mathbb{R}^d)$ convergence is far more complicate. Bounded sets in $\mathcal{D}'_{L^p}(\mathbb{R}^d)$ are characterized in [1]. The characterization of bounded sets is important because f_n converges strongly to zero in $\mathcal{D}_{L^q}(\mathbb{R}^d)$ if and only if for all bounded sets $B' \subseteq \mathcal{D}'_{L^p}(\mathbb{R}^d)$, $\sup_{\phi \in B'} \langle f_n, \phi \rangle \to 0$, as $n \to 0$. Recall the following theorem.

Theorem 3.1. [1, Theorem 1] Let $B' \subseteq \mathcal{D}'_{L^p}(\mathbb{R}^d)$, $1 \leq p \leq +\infty$. The following conditions are equivalent:

(I) B' is bounded;

(II) For every bounded $B \subseteq \mathcal{D}_{L^q}(\mathbb{R}^d)$ when $p \neq 1$ and for every bounded $B \subseteq \dot{\mathcal{B}}$ when p = 1, there exists M > 0 such that

$$\sup\{|(T * \phi)(x)| : T \in B', \phi \in B, x \in \mathbb{R}^d\} < M;$$

(III) For every bounded open set $\Omega \subseteq \mathbb{R}^d$ and for every $\phi \in \mathcal{D}_{L^q}(\mathbb{R}^d)$ when $p \neq 1$ and for every $\phi \in \dot{\mathcal{B}}$ when p = 1, there exists an $M_{\phi} > 0$ such that

$$\sup\{|(T * \phi)(x)| : T \in B', x \in \Omega\} < M_{\phi}.$$

As a consequence of these results, we obtain the following two propositions.

Proposition 3.2. If $T_n \rightharpoonup T$ in the sense of weak - star topology on $\mathcal{D}'_{L^p}(\mathbb{R}^d)$, then:

- (I) the sequence $T_n * \theta$ is bounded in $L^p(\mathbb{R}^d)$ for every $\theta \in \mathcal{D}(\mathbb{R}^d)$,
- (II) there exists large enough $m \in \mathbb{N}$ such that the sequence $T_n * \phi$ is bounded in $L^p(\mathbb{R}^d)$ for every $\phi \in C_c^m(\mathbb{R}^d)$.

Proof. (I) Let $q \in [1, \infty)$; the case $\dot{\mathcal{B}}$ can be treated in a similar way. Since $\{T_n : n \in \mathbb{N}\}$ is bounded in $\mathcal{D}'_{L^p}(\mathbb{R}^d)$ by Theorem 3.1 (II),

$$\sup_{n \in \mathbb{N}; \phi \in B} |(T_n * \phi)(x)| \le M,$$

for any bounded set B in $\mathcal{D}_{L^q}(\mathbb{R}^d)$.

Let $B_1 = B \cap \mathcal{D}(\mathbb{I} R^d)$ where B is the unit ball in $L^q(\mathbb{I} R^d)$. Denote $\check{\phi}(x) = \phi(0-x)$. For any $\theta \in \mathcal{D}(\mathbb{I} R^d)$ we have

$$\sup_{n \in \mathbb{N}; \varphi \in B_1} |\langle T_n * \theta, \varphi \rangle| = \sup_{n \in \mathbb{N}; \varphi \in B_1} |\langle T_n * \breve{\varphi}, \breve{\theta} \rangle| = \sup_{n \in \mathbb{N}; \varphi \in B_1} |\langle T_n * (\theta * \breve{\varphi}))(0)| \le M,$$

since $\{\theta * \breve{\varphi} : \varphi \in B_1\}$ is a bounded set in $\mathcal{D}_{L^q}(\mathbb{R}^d)$. B_1 is dense in B, so we have that

$$\sup_{n \in \mathbb{N}; \varphi \in B} |\langle T_n * \theta, \varphi \rangle| \le M.$$

This implies that $\{T_n * \theta : n \in \mathbb{N}\}$ is a bounded set in $L^p(\mathbb{R}^d)$.

(II) Let us show that $\{T_n * \theta : n \in \mathbb{N}\}$ is a bounded set in $L^p(\mathbb{R}^d)$ for every $\theta \in C_c^m(\mathbb{R}^d)$ and for enough large m.

Let $\varphi \in \mathcal{D}_K(\mathbb{R}^d) = \{\varphi \in \mathcal{D}(\mathbb{R}^d) : \operatorname{supp} \varphi \subset K\}$, for a compact set $K \subset \mathbb{R}^d$. Since $\{T_n * \varphi : n \in \mathbb{N}\}$ is a bounded set in $L^p(\mathbb{R}^d)$, it follows (with B_1 as above) that

$$\sup_{n\in\mathbb{N};\psi\in B_1}|\langle T_n\ast\psi,\varphi\rangle|=\sup_{n\in\mathbb{N};\psi\in B_1}|\langle T_n\ast\check{\varphi},\check{\psi}\rangle|<\infty.$$

Thus $\{T_n * \psi : n \in \mathbb{N}, \psi \in B_1\}$ is equicontinuous in $\mathcal{D}'_K(\mathbb{R}^d)$ and there exists a neighbourhood of zero in $\mathcal{D}_K(\mathbb{R}^d), V_m(\varepsilon) := \{h \in \mathcal{D}_K(\mathbb{R}^d) : \|h\|_{K,m} \le \varepsilon\},$ where $\|h\|_{K,m} = \sup_{|\alpha| \le m} \|\partial^{\alpha}h\|_{L^{\infty}(K)}$, such that

$$h \in V_m(\varepsilon) \implies \sup_{n \in \mathbb{N}; \psi \in B_1} |\langle T_n * \breve{\psi}, \breve{h} \rangle| = \sup_{n \in \mathbb{N}; \psi \in B_1} |\langle T_n * h, \psi \rangle| \le 1.$$

This implies that $\sup_{n \in \mathbb{N}; \psi \in B} |\langle T_n * \check{\psi}, \check{h} \rangle| \leq 1$ when $h \in V_m(\varepsilon)$, since B_1 is dense in B. The same holds for the closure of $V_m(\varepsilon)$ in

$$\mathcal{D}_{K,m}(\mathbb{R}^d) = \{ \varphi \in C^m(\mathbb{R}^d) : \operatorname{supp} \varphi \subset K \} \text{ for compact set } \mathbf{K} \subset \mathbb{R}^d.$$

Under the norm $||h||_{K,m}$ we have that $\mathcal{D}_{K,m}(\mathbb{R}^d)$ is a Banach space and for every $h \in \mathcal{D}_{K,m}(\mathbb{R}^d)$ it holds that

$$\sup_{n \in \mathbb{N}} |\langle T_n * h, \psi \rangle| \le c ||\psi||_{L^q}, \ \psi \in L^q(\mathbb{R}^d).$$

This implies that for every $h \in \mathcal{D}_{K,m}(\mathbb{R}^d)$, $\{T_n * h : n \in \mathbb{N}\}$ is bounded in $L^p(\mathbb{R}^d)$.

Proposition 3.3. If $T_n \rightharpoonup T$ in the sense of weak - star topology on $\mathcal{D}'_{L^p}(\mathbb{R}^d)$, then there exists $l \in \mathbb{N}$ and sequences $(S_{\alpha,n})_{n \in \mathbb{N}}$ converging weakly to S_{α} , $|\alpha| \leq l$, in $L^p(\mathbb{R}^d)$, such that

$$T_n = \sum_{|\alpha| \le l} \partial^{\alpha} S_{\alpha,n} \quad and \quad T = \sum_{|\alpha| \le l} \partial^{\alpha} S_{\alpha}.$$

Proof. Let $m \in \mathbb{N}$ be such that the sequence $T_n * \varphi$ is bounded in $L^p(\mathbb{R}^d)$ for every $\varphi \in C_c^m(\mathbb{R}^d)$ (existence of m is proven in Proposition 3.2). By (VI 6.22) in [12], there exists $k \in \mathbb{N}$, such that the parametrix of the operator Δ^k is in $C_c^m(\mathbb{R}^d)$, i.e. there exist $\theta \in \mathcal{D}(\mathbb{R}^d)$ and $\psi \in C_c^m(\mathbb{R}^d) \subseteq W^{m,q}(\mathbb{R}^d)$ such that $\delta = \Delta^k \psi + \theta$. Thus,

$$T_n = \Delta^k (T_n * \psi) + T_n * \theta, \quad T_n \in B'.$$

By Lemma 3.2 $\{T_n * \psi : n \in \mathbb{N}\}$ and $\{T_n * \theta : n \in \mathbb{N}\}$ are bounded sets in $L^p(\mathbb{R}^d)$. Moreover, they converge weakly in $L^p(\mathbb{R}^d)$, because for $\varphi \in \mathcal{D}(\mathbb{R}^d)$

$$\langle T_n * \psi, \varphi \rangle \to \langle T * \psi, \varphi \rangle,$$

since $\langle T_n, \check{\psi} * \varphi \rangle \to \langle T, \check{\psi} * \varphi \rangle$, and $\mathcal{D}(\mathbb{R}^d)$ is dense in $L^q(\mathbb{R}^d)$, $q \neq \infty$ and in $\dot{\mathcal{B}}$ for $q = \infty$. By the Banach-Steinhaus theorem it follows that $T_n * \psi$ converges weakly in $\mathcal{D}'_{L^p}(\mathbb{R}^d)$. The same holds for $T_n * \theta$. We see that each T_n consists of two summands, the first one is the derivative of L^p function of order k, i.e. it is a function $\Delta^k(T_n * \psi)$, and the second one is the function $T_n * \theta$, which is in $L^p(\mathbb{R}^d)$. This summands are also weakly convergent, which proves the claim. \Box

Acknowledgement

The research is partially supported by Ministry of education and science of Republic of Serbia, project no. 174024 and by Provincial Secretariat for Science, project no. 114-451-1084.

References

- Abdullah, S.; Pilipović, S. Bounded subsets in spaces of distributions of L^pgrowth. Hokkaido Math. J. 23 (1994), 51-54.
- [2] Adams, Robert A. Sobolev spaces. Pure and Applied Mathematics, 65. Academic Press, New York-London, 1975.
- [3] Barros-Neto, J. An introduction to the theory of distributions. Marcel Dekker, 1973.
- [4] Dierolf P., Voigt J. Calculation of the Bidual for Some Function Spaces. Integrable Distributions., Mathematische Annalen, 253, 63-87, Berlin, Gottingen, Heildeberg, 1980.
- [5] Evans, L. C. Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conference Series in Mathematics, AMS Providence, RI, 1990.

- [6] Horváth, J., Topological vector spaces and distributions. Vol. I. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1966.
- [7] Meise, R., Vogt, D. Introduction to Functional Analysis. Oxford Graduate Texts in Mathematics, 1992.
- [8] Ortner, N., Wagner, P. Applications of weighted \mathcal{D}_{L_p} -spaces to the convolution of distributions. Bull. Polish Acad. Sci. Math. 37 (1989), 579-595 (1990).
- [9] Ortner, N., Wagner, P. Explicit representations of L. Schwartz' spaces \mathcal{D}_{L_p} and \mathcal{D}'_{L_p} by the sequence spaces $s \hat{\otimes} l_p$ and $s' \hat{\otimes} l_p$, respectively, for 1 . J. Math. Anal. Appl. 404 (2013), 1-10.
- [10] Pahk, D. H. On the convolution equations in the space of distributions of L^pgrowth. Proc. Amer. Math. Soc. 94 (1985), 81-86.
- [11] Ruzhansky, M. $L^p\mbox{-distributions}$ on symmetric spaces. Results Math. 44 (2003), 159-168.
- [12] Schwartz, L. Théorie des distributions. Hermann, 1966.
- [13] Tréves, F. Topological vector spaces, distributions and kernels. Academic Press, 1967.

Received by the editors April 17, 2014