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VARIATION OF PARAMETERS FOR NABLA
FRACTIONAL DIFFERENCE EQUATIONS

J.Jagan Mohan1

Abstract. The initial data associated with mathematical models or
equations that describe physical phenomena, may have errors. It is im-
portant to know the effect of these errors on the desired behaviour of
the solutions of initial value problems. In this paper, we discuss the
continuous dependence of solutions on the initial conditions for nabla
fractional difference equations. We also obtain the linear variation of
parameters formula for nabla fractional difference equations involving
Riemann-Liouville type fractional differences.

AMS Mathematics Subject Classification (2010): 39A10, 39A99.

Key words and phrases: Initial condition, Gronwall inequality, nabla frac-
tional difference

1. Introduction

Fractional calculus is a field of applied mathematics that deals with deriva-
tives and integrals of arbitrary orders. Many scientists have paid a lot of at-
tention to this calculus because of its interesting applications in various fields
of science and engineering, such as viscoelasticity, diffusion, neurology, control
theory and statistics [19]. The analogous theory for discrete fractional calculus
was initiated by Miller and Ross [18] and Gray and Zhang [14], where basic
approaches, definitions, and properties of the theory of fractional sums and dif-
ferences were discussed. After then, several authors [1–3, 5–9, 11–13, 15–17, 20]
started to deal with discrete fractional calculus on the lines of time scales cal-
culus.

The present article is organized as follows: Section 2 contains basic defi-
nitions and results concerning nabla discrete fractional calculus. In section 3,
we discuss the continuous dependence of solutions of nabla fractional difference
equations on the initial conditions. We derive the linear variation of parameters
formula for nabla fractional difference equations in Section 4.

2. Nabla Discrete Fractional Calculus

Throughout the article, we shall consider the discrete time scale

T = Na = {a, a+ 1, a+ 2, ......}, where a ∈ R is fixed.
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For any function f : Na → R, the backward difference or nabla operator is
defined as ∇f(t) = f(t)−f(t−1) for t ∈ Na+1 and the higher order differences
are defined recursively by ∇nf(t) = ∇

(
∇n−1f(t)

)
for t ∈ Na+n, n ∈ N. In

addition, we take ∇0 as the identity operator. Based on these preliminary
definitions, we say F is an anti-nabla difference of f on Na if and only if
∇F (t) = f(t) for t ∈ Na+1. We then define the definite nabla integral of
f : Na → R by

(2.1)

∫ d

c

f(s)∇s =


∑d

s=c+1 f(s), if c < d,
0, if c = d,
−
∑c

s=d+1 f(s), if c > d.

, where c, d ∈ Na.

Definition 2.1. For any real numbers α and t, the α rising function is defined
by

(2.2) tα =
Γ(t+ α)

Γ(t)
, t ∈ R \ {......,−2,−1, 0}, 0α = 0.

Definition 2.2. (Nabla Fractional Sum [2, 15]) Let f : Na → R and α > 0 be
given. Then the αth-order nabla fractional sum of f is given by

(2.3) ∇−α
a f(t) =

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1f(s) for t ∈ Na

where ρ(s) = s − 1. Also, we define the trivial sum by ∇−0
a f(t) = f(t) for

t ∈ Na.

Definition 2.3. (R-L Nabla Fractional Difference [2, 15]) Let f : Na → R,
α > 0 be given, and N ∈ N be chosen such that N − 1 < α ≤ N . Then the
αth-order Riemann-Liouville type nabla fractional difference of f is given by

(2.4) ∇α
af(t) = ∇N∇−(N−α)

a f(t) for t ∈ Na+N .

For α = 0, we set ∇0
af(t) = f(t) for t ∈ Na.

The unified definition for fractional sums and differences is as follows.

Remark 2.4. Let f : Na → R, α > 0 be given and N ∈ N be chosen such that
N − 1 < α ≤ N . Then

1. the αth-order nabla fractional sum of f is given by

(2.5) ∇−α
a f(t) =

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1f(s) for t ∈ Na.

2. the αth-order fractional difference of f is given by

(2.6) ∇α
af(t) =

{
1

Γ(−α)

∑t
s=a+1(t− ρ(s))−α−1f(s), α /∈ N

∇Nf(t), α = N ∈ N,

for t ∈ Na+N .
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We adopt the following notation given by Atici and Eloe [8].

Definition 2.5. For any functions y(t), ϕ(t) : Na → R, define

(2.7) Eyϕ = ∇−α
a y(t)ϕ(t) =

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)ϕ(s)

and

(2.8) Ek
yϕ = Ek−1

y [Eyϕ], k = 1, 2, ...

3. Continuous Dependence of Solutions

Let f(t, r) : Na × R → R, u(t) : Na → R and 0 < α < 1. Consider a
nonlinear fractional difference equation together with an initial condition of
the form

∇α
a−1u(t) = f(t, u(t)), t ∈ Na+1,(3.1)

∇−(1−α)
a−1 u(t)

∣∣∣
t=a

= u(a) = u0.(3.2)

Abdeljawad and Atici [2] established the following result.

Lemma 3.1. u(t) is a solution of the initial value problem (3.1) - (3.2) if and
only if u(t) has the following representation

(3.3) u(t) =
(t− a+ 1)α−1

Γ(α)
u0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1f(s, u(s)).

The recursive iteration to this sum equation implies the existence of unique
solution of (3.1) - (3.2). Atici and Eloe [8] proved the following theorem which
is an analogue of the Gronwalls inequality in discrete fractional calculus.

Theorem 3.2. Let u(t) and y(t) be nonnegative real valued functions such that
0 ≤ y(t) < 1 for all t ∈ Na and

(3.4) u(t) ≤ (t− a+ 1)α−1

Γ(α)
u0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)u(s).

Then

(3.5) u(t) ≤ u0

Γ(α)

∞∑
k=0

Ek
y (t− a+ 1)α−1

where

(3.6) Ey(t− a+ 1)α−1 = ∇−α
a (t− a+ 1)α−1y(t).



152 J.Jagan Mohan

Theorem 3.3. Let the following condition be satisfied.

(3.7) |f(t, u(t))− f(t, v(t))| ≤ λ(t)|u(t)− v(t)|

where v(t), λ(t) : Na → R such that 0 ≤ λ(t) < 1. Then, for the solutions u(t)
and v(t) of the initial value problems (3.1) - (3.2) and

∇α
a−1v(t) = f(t, v(t)), t ∈ Na+1,(3.8)

∇−(1−α)
a−1 v(t)

∣∣∣
t=a

= v(a) = v0(3.9)

respectively, the following inequality holds

(3.10) |u(t)− v(t)| ≤ |u0 − v0|
Γ(α)

∞∑
k=0

Ek
λ(t− a+ 1)α−1.

Proof. Using (3.3), the initial value problems (3.1) - (3.2) and (3.8) - (3.9) are
equivalent to

u(t) =
(t− a+ 1)α−1

Γ(α)
u0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1f(s, u(s)),

v(t) =
(t− a+ 1)α−1

Γ(α)
v0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1f(s, v(s)).

Then

u(t)− v(t) =
(t− a+ 1)α−1

Γ(α)
[u0 − v0](3.11)

+
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1[f(s, u(s)− f(s, v(s))].

Thus, from (3.7), it follows that
(3.12)

|u(t)−v(t)| ≤ (t− a+ 1)α−1

Γ(α)
|u0−v0|+

1

Γ(α)

t∑
s=a+1

(t−ρ(s))α−1[λ(s)|u(s)−v(s)|].

Now an application of Theorem 3.2 yields (3.10).

Hereafter, to emphasize the dependence of the initial point (a, u0) we shall
denote the solution of the initial value problem (3.1) - (3.2) as u(t, a, u0).

Theorem 3.4. Assume

(3.13) |f(t, u(t))− f(t, v(t))| ≤ g(t, |u(t)− v(t)|)

for all (t, u(t)), (t, v(t)) ∈ Na × R where g(t, r) is defined on Na × R and non-
decreasing in r for any fixed t ∈ Na. Further, let u(t, a, u1) and u(t, a, u2) be
solutions of (3.1). Then, for all t ∈ Na,

(3.14) |u(t, a, u1)− u(t, a, u2)| ≤ r(t, a, r0)
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where r(t) = r(t, a, r0) is the solution of the initial value problem

∇α
a−1r(t) = g(t, r(t)), t ∈ Na+1,(3.15)

∇−(1−α)
a−1 r(t)

∣∣∣
t=a

= r(a) = r0(= |u1 − u2|).(3.16)

Proof. Since u(t, a, u1) and u(t, a, u2) are solutions of (3.1), we have

u(t, a, u1) =
(t− a+ 1)α−1

Γ(α)
u1 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1f(s, u(s, a, u1)),

u(t, a, u2) =
(t− a+ 1)α−1

Γ(α)
u2 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1f(s, u(s, a, u2)).

Then

|u(t, a, u1)− u(t, a, u2)| ≤
(t− a+ 1)α−1

Γ(α)
|u1 − u2|

+
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1|f(s, u(s, a, u1))− f(s, u(s, a, u2))|.

Let z(t) = |u(t, a, u1)− u(t, a, u2)|. Then,

(3.17) z(t) ≤ (t− a+ 1)α−1

Γ(α)
z0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1g(s, z(s)).

Further, z0 ≤ r0 and

(3.18) r(t) =
(t− a+ 1)α−1

Γ(α)
r0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1g(s, r(s)).

Suppose that z(t) ≤ r(t) is not true. Then, because of z0 ≤ r0, there exists a
k ∈ Na such that z(m) ≤ r(m) for all m ≤ k and

(3.19) z(k + 1) > r(k + 1).

From the monotone property of g, for m ≤ k,

(3.20) g(m, z(m)) ≤ g(m, r(m)).

Using (3.17) - (3.20), we get

z(k + 1) ≤ (k − a+ 2)α−1

Γ(α)
z0 +

1

Γ(α)

k+1∑
s=a+1

(k + 1− ρ(s))α−1g(s, z(s))

=
(k − a+ 2)α−1

Γ(α)
z0

+
1

Γ(α)

k∑
s=a+1

(k + 1− ρ(s))α−1g(s, z(s)) + g(k + 1, z(k + 1))
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≤ (k − a+ 2)α−1

Γ(α)
r0

+
1

Γ(α)

k∑
s=a+1

(k + 1− ρ(s))α−1g(s, r(s)) + g(k + 1, z(k + 1))

= r(k + 1)− g(k + 1, r(k + 1)) + g(k + 1, z(k + 1))

implies

(3.21) g(k + 1, z(k + 1)) < g(k + 1, r(k + 1))

which is a contradiction to the monotone property of g. Hence the proof.

Remark 3.5. If r(t, a, 0) = 0 for all t ∈ Na+1 and r(t, a, r0) → 0 as r0 → 0, then
from (3.14) it is clear that the solution u(t, a, u0) continuously depends on u0.

4. Variation of constants

Let u(t), v(t), x(t), y(t) : Na → R such that |x(t)| < 1 and 0 < α < 1.
Consider a linear homogeneous fractional difference equation of the form

(4.1) ∇α
a−1u(t) = x(t)u(t), t ∈ Na+1.

If we take the initial condition as

(4.2) ∇−(1−α)
a−1 u(t)

∣∣∣
t=a

= u(a) = u0,

then using Lemma 3.1, we have
(4.3)

u(t, a, u0) =
(t− a+ 1)α−1

Γ(α)
u0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1x(s)u(s), t ∈ Na.

Now we use the following result given by Atici and Eloe [8].

Theorem 4.1. Assume that |x(t)| < 1 for t ∈ Na ∩ [a, b]. Then the discrete
fractional sum equation

(4.4) u(t) =
(t− a+ 1)α−1

Γ(α)
u0 +

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1x(s)u(s)

for t ∈ Na ∩ [a, b], where b ∈ R, has a solution

(4.5) u(t) =
u0

Γ(α)

∞∑
k=0

Ek
x(t− a+ 1)α−1.

Here

(4.6) Ex(t− a+ 1)α−1 = ∇−α
a (t− a+ 1)α−1x(t).
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Using Theorem 4.1,

(4.7) u(t, a, u0) =
u0

Γ(α)

∞∑
k=0

Ek
x(t−a+1)α−1, for t ∈ Na∩[a, b], where b ∈ R,

is the solution of the initial value problem (4.1) - (4.2). Now we consider a
linear nonhomogeneous fractional difference equation of the form

(4.8) ∇α
a−1v(t) = x(t)v(t) + y(t), t ∈ Na+1.

Theorem 4.2. (Superposition Principle) Let v(t) be a given solution of (4.8)
and u(t) be a solution of (4.1). Then the function w(t) = u(t) + v(t) is a
solution of (4.8).

Proof. Since u(t) satisfies (4.1) and v(t) satisfies (4.8), we have

∇α
a−1u(t) = x(t)u(t),(4.9)

∇α
a−1v(t) = x(t)v(t) + y(t), t ∈ Na+1.(4.10)

We show that w(t) satisfies the equation (4.8). From the definition of w(t) it
follows that

∇α
a−1w(t) = ∇α

a−1[u(t) + v(t)] = ∇α
a−1u(t) +∇α

a−1v(t)

= x(t)u(t) + x(t)v(t) + y(t)

= x(t)w(t) + y(t).

Therefore,
∇α

a−1w(t) = x(t)w(t) + y(t), t ∈ Na+1.

Hence w(t) is a solution of the equation (4.8).

Variation of constants is a very important technique in obtaining the asymp-
totic behavior of solutions of linear and nonlinear fractional difference equations
under perturbations. In this section we develop the variation of parameters
formula to represent the solution v(t, a, u0) of the perturbed problem (4.8) in
terms of the solution u(t, a, u0) of the unperturbed problem (4.1).

Theorem 4.3. Let u(t, a, u0) and v(t, a, u0) denote the solutions of the equa-
tions (4.1) and (4.8) respectively. Then,

(4.11) v(t, a, u0) = u(t, a, u0) +
t∑

s=a+1

u(t, s, y(s)).

Proof. Let

(4.12) p(t) =
t∑

s=a+1

u(t, s, y(s)).
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It is sufficient to show that p(t) satisfies equation (4.8). Then we apply super-
position principle to conclude that v(t, a, u0) satisfies (4.8).

Clearly p(a) = 0. We use the method of verification to show that p(t) is a
solution of (4.8). We show that

(4.13) ∇α
a−1p(t) = x(t)p(t) + y(t), t ∈ Na+1

and then

(4.14) p(t) =
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1[x(s)p(s) + y(s)], t ∈ Na.

Consider

p(t) =
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1[x(s)p(s) + y(s)]

=
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1x(s)p(s) +
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)

=
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1x(s)
[ s∑
r=a+1

u(s, r, y(r))
]

+
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)

=
t∑

r=a+1

[ 1

Γ(α)

t∑
s=r

(t− ρ(s))α−1x(s)u(s, r, y(r))
]

+
1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)

=
t∑

r=a+1

[ 1

Γ(α)

t∑
s=r+1

(t− ρ(s))α−1∇α
r−1u(s, r, y(r))

]
+

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)

=
t∑

r=a+1

[
∇−α

r ∇α
r−1u(t, r, y(r))

]
+

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)

=

t∑
r=a+1

[
u(t, r, y(r))− (t− r + 1)α−1

Γ(α)
y(r)

]
+

1

Γ(α)

t∑
s=a+1

(t− ρ(s))α−1y(s)

=
t∑

r=a+1

u(t, r, y(r)) = p(t).

The proof is complete.
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Remark 4.4. (Variation of Constants) For t ∈ Na∩ [a, b] and b ∈ R, the solution
of (4.1) - (4.2) is

u(t, a, u0) =
u0

Γ(α)

∞∑
k=0

Ek
x(t− a+ 1)α−1.

Then

(4.15) u(t, s, y(s)) =
y(s)

Γ(α)

∞∑
k=0

Ek
x(t− s+ 1)α−1.

Substituting these expressions in (4.11), we get the solution of (4.8)-(4.2) as
(4.16)

v(t, a, u0) =
u0

Γ(α)

∞∑
k=0

Ek
x(t−a+1)α−1+

1

Γ(α)

t∑
s=a+1

[
y(s)

∞∑
k=0

Ek
x(t−s+1)α−1

]
for t ∈ Na ∩ [a, b], where b ∈ R.

5. Conclusion

If we take x(t) = λ, using [8], the solution of the initial value problem

∇α
a−1u(t) = λu(t), t ∈ Na+1,(5.1)

∇−(1−α)
a−1 u(t)

∣∣∣
t=a

= u(a) = u0,(5.2)

is given by
(5.3)

u(t, a, u0) =
u0

Γ(α)

∞∑
k=0

Ek
λ(t− a+1)α−1 = (t− a+1)α−1u0Fα,α(λ(t− a+α)α).

Here F is the discrete Mittag - Leffler function defined by

(5.4) Fα,β(λt
ν) =

∞∑
k=0

λktkν

Γ(kα+ β)

where α and β are positive real numbers, ν is any real number and |λ| < 1.
Using (5.3), the solution of

(5.5) ∇α
a−1v(t) = x(t)v(t) + y(t), t ∈ Na+1

is given by

v(t, a, u0) = u(t, a, u0) +
t∑

s=a+1

u(t, s, y(s))(5.6)

= (t− a+ 1)α−1u0Fα,α(λ(t− a+ α)α)

+

t∑
s=a+1

(t− s+ 1)α−1y(s)Fα,α(λ(t− s+ α)α).
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For a particular value of a, Atici and Eloe [7] have obtained the same solution
for (5.5) using N-transform. Further, Abdeljawad et.al. [3] found the solution of
(5.5) for a = 0 by recursion. But the solution obtained in (5.6) is the solution of
the linear nonhomogeneous fractional difference equation (5.5) for any a using
the variations of constants method. We have also obtained the variation of
constants formula for any function x(t). To my knowledge, this method is not
used explicitly elsewhere.

The variation of parameters formula for linear and nonlinear differential and
difference equations is an important tool in the study of qualitative properties of
perturbed problems. The present work can be extended to a more generalized
discrete time scales discussed in [4,13]. Further, one can establish the nonlinear
variation of parameters formula for nabla fractional difference equations on
discrete time scales [4, 10,13].
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[13] Čermák, J., Nechvátal, L., On (q,h)-analogue of fractional calculus. J. Nonlinear
Math. Phys., 17 (2010), 51-68.

[14] Gray, H.L., Zhang, N.F., On a new definition of the fractional difference. Math-
ematics of Computaion, 50 (1988), 513-529.

[15] Hein, J., Mc Carthy, S., Gaswick, N., Mc Kain, B., Spear, K., Laplace trans-
forms for the nabla difference operator. PanAmerican Mathematical Journal, 21
(2011), 79-96.

[16] Jonnalagadda, J., Solutions of perturbed linear nabla fractional difference equa-
tions. Differential Equations and Dynamical Systems, Springer, 22 (2013), Num-
ber 3, 281-292.

[17] Kisela, T., Power functions and essentials of fractional calculus on isolated time
scales. Adv. Difference Equ. 2013 (2013), 18 pages.

[18] Miller, K.S., Ross, B., Fractional difference calculus. Proceedings of the In-
ternational Symposium on Univalent Functions, Fractional Calculus and Their
Applications, 139-152, Nihon University, Koriyama, Japan, 1989.

[19] Podlubny, I., Fractional Differential Equations. Academic Press, San Diego,
1999.

[20] Williams, P.A., Fractional calculus on time scales with Taylor’s theorem. Fract.
Calc. Appl. Anal., 15 (2012), 616-638.

Received by the editors March 7, 2014


	Introduction
	Nabla Discrete Fractional Calculus
	Continuous Dependence of Solutions
	Variation of constants
	Conclusion

