Some properties of the monotone Boolean functions over the finite Boolean algebras


Ratko Tošić




In this paper, using componentwise treatment, the following theorems concerning the Boolean functions over the finite Boolean algebra $B$ are proved: extsc{Theorem 1.} The range of an isotone Boolean function $f\colon B^n\to B$ is the interval $[f(0,\dots,0),f(1,\dots,1)]$ and coincides with the set of all $a\in B$ such that $f(a,\dots,a)=a$. extsc{Theorem 2.} For every Boolean function $f\colon B^n\to B$, the function $(\ldots((f(x_1,\dots,x_n))^2_1)^2_2\ldots)^2_n$ is an isotone Boolean function, where \[ (g(x,\dots,x)^2_i=g(x_1,\dots,x_{i-1}, g(x_1,\dots,x_n),\dots,x_n). \] extsc{Theorem 3.} A Boolean function $f\colon B^n\to B$ is isotone if and only if $f(x_1,\dots,x_n)=(\dots((f(x_1,\dots,x_n))^2_1)^2_2\dots)^2_n$. The theorems are generalizations of results well known for Boolean functions of one variable.