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SOME ABELIAN AND TAUBERIAN RESULTS FOR
THE SHORT-TIME FOURIER TRANSFORM
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Abstract. In this paper we provide some Abelian and Tauberian
type results relating the boundary asymptotic behavior of the short-time
Fourier transform with the quasiasymptotic behavior of tempered distri-
butions.
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1. Introduction

The quasiasymptotic behavior (quasiasymptotics) was introduced by Za-
vialov as a result of his investigations in quantum field theory, and further
developed by him, Vladimirov and Drožinov [17, and references therein], as
well as Pilipović and his coworkers [9, 15, 16]. It has shown to be a very effec-
tive tool in the asymptotic analysis of various integral transforms and Abelian
and Tauberian theory [7, 8, 9, 10, 12, 13, 14, 17].

The short-time Fourier transform [5] is an optimal analytic tool that conveys
the information which frequency occurs at which instant of a signal and, in
combination with moderate weights [6], is used to define modulation spaces
[5, 2, 4, 3].

In this paper we provided some Abelian and Tauberian type results relating
the quasiasymptotics at the origin and infinity of tempered distributions with
the asymptotics of the short-time Fourier transform.

The paper is organized as follows. In Section 2 we give a brief summary
to time-frequency analysis tools using mostly [5] as reference. Then we recall
the basics of quasiasymptotic analysis of distributions. Section 3 connects the
boundary asymptotic behavior of the short-time Fourier transform through
the Abelian theorems and Tauberian characterizations of the quasiasymptotic
behavior of tempered distributions.
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2. Preliminaries and notations

2.1. Spaces of Functions and Distributions

The Schwartz spaces of test functions and distributions over the space Rn are
denoted by D(Rn) and D′(Rn), respectively; the space of rapidly decreasing
smooth functions and its dual, the space of tempered distributions, are denoted
by S(Rn) and S ′(Rn), respectively, [11]. We have

D(R) ↪→ S(R) ↪→ S ′(R) ↪→ D′(R),

where ”A ↪→ B” means that A is a dense subset of B and that the inclusion
mapping is continuous.

The spaces S(R) and S ′(R) play a particularly important role in various
applications since Fourier transform is a topological isomorphism between S(R)
and S(R), and extends to a continuous linear transform from S ′(R) onto itself.

2.2. Short-time Fourier transform

The translation and modulation operators, T and M are defined by

Txf(·) = f(· − x) and Mωf(·) = e2πiω·f(·), x, ω ∈ R.

The short-time Fourier transform (STFT) of a function f ∈ L2(R) with
respect to a window function g ∈ L2(R) is defined as

(2.1) Vgf(x, ω) : = ⟨f,MωTxg⟩ =
∫
R
f(t)g(t− x)e−2πiωt dt, x, ω ∈ R

and it holds ∥Vgf∥2 = ∥f∥2 ∥g∥2. Given an analysis window g and a synthesis
window γ such that ⟨g, γ⟩ ̸= 0, for any f it holds

(2.2) f =
1

⟨γ, g⟩

∫∫
R2

⟨f,MωTxg⟩ MωTxγ dωdx.

Whenever the generalized inner product in (2.1) is well-defined, the definition of
Vgf can be generalized to larger classes, for instance: f ∈ S ′(R) and g ∈ S(R);
in fact, it is enough that g and f belong to time-frequency shift-invariant,
mutually dual spaces.

It is obvious that for g ∈ S(R) the set

(2.3) {MωTxg : (x, ω) ∈ K}

is compact in S(R), where K is a compact subset of R2.
Note that for each used window g ∈ S(R)\{0} and f ∈ S ′(R) there exist

constants C > 0 and N ≥ 0 such that

(2.4) |Vgf(x, ω)| ≤ C(1 + |x|+ |ω|)N for all x, ω ∈ R.

It is also known that if f, g ∈ S(R) then for all n ≥ 0, there exists a constant
Cn > 0 such that

(2.5) |Vgf(x, ω)| ≤ Cn(1 + |x|+ |ω|)−n for all x, ω ∈ R.
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In the proof of our results we use the relations (2.6) and (2.7) regarding the
use of an adapted STFT window. In particular, we apply dilation to adapt the
window (or any function), and we use the notation

fε(x) = f(εx), ε > 0.

It turns out that dilating the window is equivalent to the inverse dilation of
the function of interest.

(2.6) Vgfε(x, ω) =
1

ε
Vg1/εf(εx, ω/ε).

Indeed, using the substitution t = y/ε we have

Vgfε(x, ω) = ⟨fε,MωTxg⟩ =
∫
R

fε(t)g(t− x)e−2πiωtdt

=
1

ε

∫
R

f(y)g

(
y − εx

ε

)
e−2πiω

ε ydy

=
1

ε
⟨f,Mω/εTεxg1/ε⟩ =

1

ε
Vg1/εf(εx, ω/ε).

We will also prove the following relation

(2.7) εVgfε(
x0

ε
+ x, ε2ω) = Vg1/εf(x0 + εx, εω), x0 ∈ R.

Indeed, using the substitution y = t/ε we obtain

Vg1/εf(x0 + εx, εω) = ⟨f,MεωTx0+εxg1/ε⟩

=

∫
R
f(t)g(

t− x0 − εx

ε
)e−2πiωεtdt

= ε

∫
R
f(εy)g(y − x0

ε
− x)e−2πiωε2ydy

= ε⟨fε,Mε2ωT x0
ε +xg⟩ = εVgfε(

x0

ε
+ x, ε2ω).

2.3. Quasiasymptotic behavior

We will measure the behavior of a distribution by comparison with Kara-
mata regularly varying functions [1], that is, the so-called quasiasymptotic
behavior of distributions [15, 16, 9, 17].

A measurable real-valued function, defined and positive on an interval (0, A]
(resp. [A,∞)), A > 0, is called a slowly varying function at the origin (resp.
at infinity), if

lim
ε→0+

L(aε)

L(ε)
= 1 ( resp. lim

λ→∞

L(aλ)

L(λ)
= 1) for each a > 0.

Let L be a slowly varying function at the origin. We say that the distribution
f ∈ S ′(R) has quasiasymptotic behavior (quasiasymptotics) of degree α ∈ R at
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the point x0 ∈ R with respect to L if there exists u ∈ S ′(R) such that for each
φ ∈ S(R)

(2.8) lim
ε→0+

⟨f(x0 + εx)

εαL(ε)
, φ(x)⟩ = ⟨u(x), φ(x)⟩.

We will use the following convenient notation for the quasiasymptotic behavior,

f(x0 + εx) ∼ εαL(ε)u(x) as ε → 0+ in S ′(R) ,

which should always be interpreted in the weak topology of S ′(R), i.e., in the
sense of (2.8).

One can prove that u cannot have an arbitrary form; indeed, it must be
homogeneous with degree of homogeneity α, i.e., u(ax) = aαu(x), for all a ∈ R+

[9, 17]. We remark that all homogeneous distributions on the real line are
explicitly known; indeed, they are linear combinations of either xα

+ and xα
−, if

α /∈ Z−, or δ(k−1)(x) and x−k, if α = −k ∈ Z−. It can also be shown ([15],
Theorem 6.1) that if (2.8) holds just for each φ ∈ D(R), then it must hold for
each φ ∈ S(R); therefore, the quasiasymptotic behavior at finite points is a
local property. The quasiasymptotics of distributions at infinity with respect
to a slowly varying function L at infinity is defined in a similar manner, and
the notation f(λx) ∼ λαL(λ)u(x) as λ → ∞ in S ′(R) will be used in this case.

We may also consider quasiasymptotics in other distribution spaces. The
relation f(x0 + εx) ∼ εαL(ε)u(x) as ε → 0+ in A′(R) means that (2.8) is sat-
isfied just for each φ ∈ A(R); and analogously for quasiasymptotics at infinity
in A′(R).

3. Main results

Our main goal in this paper is to provide Abelian and Tauberian type results
relating asymptotics of STFT and the quasiasymptotic behavior of tempered
distributions.

Theorem 3.1. Let L be a slowly varying function at the origin, α ∈ R and
f ∈ S ′(R). Suppose that

f(εx)∼εαL(ε)u(x) as ε → 0+ in S ′(R).

Then for its STFT with respect to window g ∈ S(R)\{0} we have

Vg1/εf(εx, ω/ε)∼εα+1L(ε)Vgu(x, ω) as ε → 0+.

uniformly for x, ω in compact subsets of R.

Proof. By relation (2.6) we have

Vg1/εf(εx, ω/ε)

εα+1L(ε)
=

εVgfε(x, ω)

εα+1L(ε)
=

⟨ fε(t)

εαL(ε)
,MωTxg(t)

⟩
=

⟨ f(εt)

εαL(ε)
, MωTxg(t)

⟩
.
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Using the compactness of the set given by (2.3) and the Banach-Steinhaus
theorem we obtain

lim
ε→0+

Vg1/εf(εx, ω/ε)

εα+1L(ε)
= lim

ε→0+
⟨ f(εt)

εαL(ε)
,MωTxg(t)⟩

= ⟨u(t),MωTxg(t)⟩ = Vgu(x, ω),

uniformly for x, ω in compact subsets of R.

Remark 3.1. Let f, g1, g2 ∈ S(R)\{0} and

(3.9) g1(εx)∼εαL(ε)g2(x) as ε → 0+ in S ′(R).

According to Theorem 3.1 it follows

Vf1/εg1(εx, ω/ε)∼εα+1L(ε)Vfg2(x, ω) as ε → 0+.

By relation Vgf(x, ω) = e−2πixωVfg(x, ω), x, ω ∈ R we obtain

e−2πixωVg1f1/ε(εx,
ω

ε
)∼εα+1L(ε)e−2πixωVg2f(x, ω) as ε → 0+,

i.e.

Vg1f1/ε(εx, ω/ε)∼εα+1L(ε)Vg2f(x, ω) as ε → 0+.

This is an expected result, given that the choice of STFT window is causing
no significant change in the quality of the STFT; that is, two windows with the
same quasiasymptotic property result with STFTs with related quasiasymp-
totics.

Theorem 3.2. Let L be a slowly varying function at the origin, α ∈ R and
f ∈ S ′(R), g ∈ S(R)\{0}. The following two conditions:

(i) the limits

(3.10) lim
ε→0+

1

εα+1L(ε)
Vg1/εf(εx, ω/ε) = Mx,ω < ∞,

exist for every x, ω ∈ R, and

(ii) there exist C > 0 and N ≥ 0 such that

(3.11)
|Vg1/εf(εx, ω/ε)|

εα+1L(ε)
< C(1 + |x|+ |ω|)N ,

for all x, ω ∈ R and 0 < ε ≤ 1, are necessary and sufficient conditions for the
existence of a homogeneous distribution u such that

(3.12) f(εx) ∼ εαL(ε)u(x) as ε → 0+ in S ′(R).
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Proof. (3.10) and (3.11) imply that the function given by J(x, ω) = Mx,ω,
x, ω ∈ R is measurable and satisfies the estimate

|J(x, ω)| = |Mx,ω| ≤ C(1 + |x|+ |ω|)N ,

for all x, ω ∈ R and some constant C > 0. Moreover, by relation (2.6) and the
inversion formula we obtain

lim
ε→0+

⟨ f(εt)

εαL(ε)
, φ(t)

⟩
=

1

⟨γ, g⟩
lim

ε→0+

∫ ∫
R2

Vg1/εf(εx, ω/ε)

εα+1L(ε)
Vγφ(x, ω)dωdx,

where γ is the synthesis window for g such that ⟨g, γ⟩ ≠ 0. Because of (3.10)
and (3.11) we can use the Lebesque dominated convergence theorem

lim
ε→0+

⟨ f(εt)

εαL(ε)
, φ(t)

⟩
=

1

⟨γ, g⟩

∫ ∫
R2

J(x, ω)Vγφ(x, ω)dωdx.

Observe that the last integral converges absolutely because |J(x, ω)| = O((1 +
|x| + |ω|)N ) for some N > 0 and |Vγφ(x, ω)| = O((1 + |x| + |ω|)−n) for all
n ≥ 0, whenever φ, γ ∈ S(R) [[5], Theorem 11.2.5]. It follows that the limit

limε→0+⟨ f(εt)
εαL(ε) , φ(t)⟩ exists for each φ ∈ S(R). So, we conclude that f has

quasiasymptotic behavior at the origin in S ′(R).
We now prove the converse. If (3.12) holds, then (3.10) follows from the

Abelian type result given in Theorem 3.1. Also, from (2.6), (3.12) and (2.4) it
follows that there exist constants C1, C2 > 0 and N ≥ 0 such that

|Vg1/εf(εx, ω/ε)|
εα+1L(ε)

=
|Vgfε(x, ω)|

εαL(ε)
=

|⟨f(εt),MωTxg(t)⟩|
εαL(ε)

< C1|⟨u,MωTxg⟩| = C1|Vgu(x, ω)|
≤ C2(1 + |x|+ |ω|)N .

Remark 3.2. Clearly, the STFT Vgu(x, ω) in Theorem 3.2 is given by the limits
(3.10).

A similar assertion as previous theorem holds for quasiasymptotics at infin-
ity.

Theorem 3.3. Let L be a slowly varying function at infinity, α ∈ R and
f ∈ S ′(R), g ∈ S(R)\{0} The following two conditions:

(i) the limits

lim
λ→∞

1

λα+1L(λ)
Vg1/λf(λx, ω/λ) = Mx,ω < ∞,

exist for every x, ω ∈ R, and

(ii) there exist C > 0 and N ≥ 0 such that

|Vg1/λf(λx, ω/λ)|
λα+1L(λ)

< C(1 + |x|+ |ω|)N ,
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for all x, ω ∈ R and λ ≥ 1, are necessary and sufficient conditions for existence
of a homogeneous distribution u such that

f(λx) ∼ λαL(λ)u(x) as λ → ∞ in S ′(R).

Remark 3.3. The same consideration of Remark 3.2 applies to the case of
infinity by analogy.

Theorem 3.4. Let L be a slowly varying function at the origin, α ∈ R, x0 ∈ R
and f ∈ S ′(R). Suppose that

f(x0 + εx) ∼ εαL(ε)u(x) as ε → 0+ in S ′(R).

Then for its STFT with respect to window g ∈ S(R)\{0} we have

Vg1/εf(x0 + εx, εω) ∼ εα+1L(ε)Vgu(x, 0) as ε → 0+,

uniformly for x, ω in compact subsets of R.

Proof. Using the substitution t− x0 = εy we obtain

lim
ε→0+

Vg1/εf(x0 + εx, εω)

εα+1L(ε)
= lim

ε→0+

1

εα+1L(ε)
⟨f,MεωTx0+εxg1/ε⟩

= lim
ε→0+

1

εα+1L(ε)

⟨
f(t), g(

t− x0 − εx

ε
)e2πiεωt

⟩
= lim

ε→0+

1

εαL(ε)

⟨
f(x0 + εy), g(y − x)e2πiεω(x0+εy)

⟩
= lim

ε→0+

1

εαL(ε)

⟨
f(x0 + εy),M0Txg(y)e

2πiεω(x0+εy)
⟩
.

In view of (3.4), the Banach-Steinhaus theorem and the compactness of the
set given by (2.3) we have

lim
ε→0+

Vg1/εf(x0 + εx, εω)

εα+1L(ε)
= ⟨u(y),M0Txg(y)⟩ = Vgu(x, 0).

We now investigate the inverse (Tauberian) theorem related to Theorem
3.4.

Theorem 3.5. Let L be a slowly varying function at the origin, α ∈ R, x0 ∈ R,
and f ∈ S ′(R), g ∈ S(R)\{0}. Suppose that the limits

(3.13) lim
ε→0+

1

εα−1L(ε)
Vg1/εf(x0 + εx, εω) = Mx,ω < ∞,

exists for every x, ω ∈ R, and there exist C > 0, N ≥ 0 and M > 1 such that

(3.14)
|Vg1/εf(x0 + εx, εω)|

εα−1L(ε)
< C

(1 + |x|)N

(1 + |ω|)M
,

for all x, ω ∈ R and 0 < ε ≤ 1. Then, there exists a homogeneous distribution
u such that

(3.15) f(x0 + εx) ∼ εαL(ε)u(x) as ε → 0+ in S ′(R).
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Proof. (3.13) and (3.14) imply that the function Mx,ω = J(x, ω) satisfies the
estimate

|J(x, ω)| = |Mx,ω| ≤ C
(1 + |x|)N

(1 + |ω|)M
,

for every x, ω ∈ R and for some constants C > 0, N ≥ 0 and M > 1. Let
φ ∈ S(R) and γ ∈ S(R)\{0} be a synthesis window for g such that ⟨g, γ⟩ ̸= 0.

By inversion formula (2.2) and the substitution ω = ε2ω1, t = t1 − x0

ε
we

obtain

lim
ε→0+

⟨f(x0 + εt)

εαL(ε)
, φ(t)

⟩
=

1

⟨γ, g⟩
lim

ε→0+

∫ ∫
R2

⟨f(x0 + εt),MωTxg(t)⟩
εαL(ε)

⟨MωTxγ, φ⟩dωdx

=
1

⟨γ, g⟩
lim

ε→0+

∫ ∫
R2

⟨f(εt1),Mε2ω1
Txg(t1 − x0

ε )⟩
εα−2L(ε)

⟨Mε2ω1
Txγ, φ⟩dω1dx

=
1

⟨γ, g⟩
lim

ε→0+

∫ ∫
R2

⟨f(εt1),Mε2ω1
Tx+

x0
ε
g(t1)⟩

εα−2L(ε)
⟨Mε2ω1

Txγ, φ⟩dω1dx

=
1

⟨γ, g⟩
lim

ε→0+

∫ ∫
R2

Vgfε(x+ x0

ε , ε2ω1)

εα−2L(ε)
Vγφ(x, ε2ω1)dω1dx.

By relation (2.7) we have

lim
ε→0+

⟨f(x0 + εt)

εαL(ε)
, φ(t)

⟩
=

1

⟨γ, g⟩
lim

ε→0+

∫ ∫
R2

Vg1/εf(x0 + εx, εω1)

εα−1L(ε)
Vγφ(x, ε2ω1)dω1dx.

Because of (3.13), (3.14) and (2.4) we can use the Lebesque dominated
convergence theorem

lim
ε→0+

⟨f(x0 + εt)

εαL(ε)
, φ(t)

⟩
=

1

⟨γ, g⟩

∫ ∫
R2

J(x, ω)Vγφ(x, 0)dωdx.

Observe that the last integral converges absolutely because |J(x, ω)| = O((1 +
|x|)N (1+ |ω|)−M ) for some N ≥ 0,M > 1, and |Vγφ(x, 0)| = O((1+ |x|)−n) for

all n ≥ 0, whenever φ ∈ S(R). It follows that the limit lim
ε→0+

⟨f(x0 + εt)

εα+1L(ε)
, φ(t)

⟩
exists for each φ ∈ S(R). So, we conclude that f has quasiasymptotic behavior
in S ′(R).
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[2] Feichtinger, H. G., Gröchenig K., Gabor wavelets and the Heisenberg group:
Gabor expansions and short time Fourier transform from the group theoretical
point of view. In: Wavelets : a tutorial in theory and applications (C.K. Chui,
eds.), pp. 359–397 Wavelet Anal. Appl., Academic Press, Boston, (2), 1992.



Some Abelian and Tauberian results for STFT 89

[3] Feichtinger, H. G., Modulation spaces on locally compact Abelian groups. Tech-
nical report, January, 1983.

[4] Feichtinger, H. G., Atomic characterizations of modulation spaces through
Gabor-type representations. Proc. Conf. Constructive Function Theory,Rocky
Mountain J. Math. 19(1989) 113–126.
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