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BEURLING TEMPERED ULTRADISTRIBUTIONS
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Abstract. In this paper we give necessary and sufficient conditions for
a function f belonging to Hp space with the convergence in the sense of
ultradistribution S′(s), s > 1.
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1. Introduction

In [11], the next theorem is proved:

Theorem 1.1. Let f be an analytic function in the upper half-plane Imz ≥ 0
and suppose that there exists n ∈ N such that in every half-plane Imz ≥ δ > 0,
there exists Cδ > 0 such that

|f(z)| ≤ Cδ(1 + |z|)n

Then, f is in Hp(Π+) (1 ≤ p ≤ ∞) if and only if f(x + iy) converges to
f(x) ∈ Lp(−∞,∞) in the sense of converges in (S1)′, as y → 0 .

S. Pilipović in 2004 posed the following problem: Let s > 1 and let f(z) be
an analytic function in the upper half plain Π+ and let for every δ > 0 there
exist Cδ > 0 and Kδ > 0 such that:

|f(z)| ≤ Cδe
Kδ|z|1/s , Imz ≥ δ.

Is it true that f ∈ Hp(Π+) (1 ≤ p ≤ ∞) if and only if f(z) converges to
f(x) ∈ Lp(R) in the sense of ultradistribution S

′(s), s > 1?

We refer to Section 2 for generalized function spaces (S1)′ and S′(s).

The aim of this paper is to give the positive answer to this question (The-
orem 3.2).

Boundary values in ultradistributions spaces were studied by many authors,
for example, [5], [7], [9], [10], [12]. (see references therein).
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2. Notation and notions

The following definitions and results are given in [1]. By (Mp) = (Mp)p∈N0

we will denote a sequence of positive numbers which satisfies some of the fol-
lowing conditions:

(2.1) M2
p ≤Mp−1Mp+1, p ∈ N;

there are positive constants A and H such that

(2.2) Mp ≤ AHp min
0≤q≤p

MqMp−q p ∈ N0;

there is a constant A > 0 such that

(2.3)
∞∑

q=p+1

Mq−1/Mq ≤ ApMp/Mp+1, p ∈ N;

Sometimes (2.2) and (2.3) will be replaced by the following weaker condi-
tions:

(2.4) there are constants A and H such that Mp+1 ≤ AHpMp, p ∈ N0

(2.5)
∞∑
p=1

Mp−1/Mp <∞.

If s > 1 the Gevrey sequence (Mp) given by Mp = (p!)s, Mp = pps and Mp =
Γ(1+ps), where Γ denotes the gamma function, are basic examples of sequences
satisfying some of the above stated conditions.

For a sequence (Mp), the associated functions M and M∗ of Komatsu, are
defined by

M(ρ) = sup
p∈N0

log(ρpM0/Mp), 0 < ρ <∞,

M∗(ρ) = sup
p∈N0

log(ρpp!M0/Mp), 0 < ρ <∞.

The formal series
∞∑
j=0

ajz
j , j ∈ C

is an ultrapolynomial of class (Mp) (resp. of class {Mp}) if there are constants
A > 0, h > 0 (resp. for every h > 0 there is an A > 0) such that

|aj | ≤ Ahj/Mj , j ∈ N0.
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Let (Mp), p ∈ N0, be a sequence of positive numbers. We define D((Mp),Ω)
(resp. D({Mp},Ω)), where Ω is an open set in Rn to be the set of all complex
valued infinitely differentiable functions φ with compact support in Ω such that
there exists an N > 0 for which

(2.6) sup
t∈Rn

|Dα
t φ(t)| ≤ NHαMα, α ∈ Nn0

for all h > 0 (resp. for some h > 0). Here the positive constants N and h
depend only on φ: they do not depend on α.

The topologies of D((Mp),Ω) and D({Mp},Ω) are given in Komatsu [4].
Let D(h,K) denote the space of smooth functions supported by a compact set
K for which (2.6) holds and D((Mp),K) and D({Mp},K) denote subspaces
of D((Mp),Ω) and D({Mp},Ω) consisting of the elements supported by K,
respectively. Recall that

D(Mp)(Ω) = D((Mp),Ω) = ind limK⊂Ω proj limh→0D(h, k)
= ind limK⊂ΩD((Mp),K);

D{Mp}(Ω) = D((Mp),Ω) = ind limK⊂Ω ind limh→0D(h, k)
= ind limK⊂ΩD({Mp},K).

The dual space of D(Mp)(Ω) equipped with strong topology will be denoted
with D′(MP )(Ω), and will be called a space of ultradistribution of Beurling type.
Respectively, with D′{Mp}(Ω) will be denoted the dual space of D{MP },Ω and
will be called ultradistribution of Roumieu type.

Let the sequence (Mp) satisfies the conditions (2.1) and (2.5). The spaces
of the ultradifferentiable functions which has an ultrapolynomial growth are
test spaces for the spaces of tempered ultradistributions.

Let S
(Mp),m
r = S

(Mp),m
r (Rn) and S

(Mp),m
∞ = S

(Mp),m
∞ (Rn) be the space of

smooth functions φ on Rn such that

σm,r(φ) =
[∑

α,β∈Nn
0

∫
Rn

∣∣∣ mα+β

MαMβ
< x >β φ(α)(x)

∣∣∣r dx]1/r
=

[∑
α,β∈Nn

0

(
∥ mα+β

MαMβ
< x >β φ(α)∥r

)r]1/r
<∞,

and

σm,∞(φ) = sup
α,β∈Nn

0

mα+β

MαMβ
∥ < x >β φ(α)∥∞,

equipped with the topology induced by the norms σm,r and σm,∞, respectively,
where < x >= (1 + |x|2)1/2.

Let S(Mp) = S(Mp)(Rn) and S{Mp} = S{Mp}(Rn) be the projective (as

m→ ∞) and the inductive (as m→ 0) limits of the space S
(Mp),m
2 respectively.

The dual spaces of S(Mp) and S{Mp} are denoted by S′(Mp) and S′{Mp}

respectively. These are the spaces of tempered ultradistributions of Beurling
and Roumie type, respectively.
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In the case when the sequence (Mp) is defined with Mp = p!s, s > 1, the
spaces of tempered ultradistributions S′(Mp) and S′{Mp} will be denote with
S′(s) and S′{s}, respectively. These spaces are studied in Grudzinski [3] and
Pilipović [8].

A non-trivial example, in case n = 1 , of an element of the space S′∗ is

< f, φ >=

∫
R

fφdx, φ ∈ S∗,

where f is a locally integrable function of the ultrapolynomial growth of the
class ∗, i.e.

|f(x)| ≤ P (x), x ∈ R

where P is an ultrapolynomial of the class ∗ (∗ denotes (Mp) or {Mp}). Note
that if (2.4) is fulfilled the function f is of the ultrapolynomial growth of the
class (Mα) (respectively,{Mp}) if and only if for some m > 0 and some C > 0
(respectively, for every m > 0 there exists C > 0) such that

|f(x)| ≤ CexpM(m|x|), x ∈ R.

Let f be an analytic function in the upper half-plane Π+ = {z : Imz > 0}
and let p > 0. Then f ∈ Hp(Π+) = Hp if

sup
y>0

∫ ∞

−∞
|f(x+ iy)|pdx < +∞.

We need the following results.

Theorem 2.1 ([6]). Let f ∈ Hp(Π+), p ≥ 1. Then there exists f∗ ∈ Lp(R)
such that for almost every t ∈ R the nontangential limit

lim
z→t

f(z) = f∗(t).

Theorem 2.2 ([6]). If f ∈ Hp(Π+), 1 ≤ p, then

f(z) =
1

π

∫ ∞

−∞

y

(x− t)2 + y2
f∗(t)dt, z = x+ iy.

Also, if h ∈ Lp, (1 ≤ p) and

f(z) =
1

π

∫ ∞

−∞

y

(x− t)2 + y2
h(t)dt, z = x+ iy

is an analytic function in Π+, then f ∈ Hp(Π+), and for its boundary function
it is true that f∗(t) = h(t) almost everywhere in R.

Theorem 2.3 ([2]). If f ∈ Hp, 1 ≤ p, then

f(z) =
1

2πi

∫ ∞

−∞

f(t)

t− z
dt, Imz = y > 0

and the integral is equal to zero for each Imz = y < 0.
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Also, the opposite is true. If h ∈ Lp, (1 ≤ p ≤ ∞) and if

1

2πi

∫ ∞

−∞

h(t)

t− z
dt = 0, Imz = y < 0

then for each y > 0 the integral represents the function f ∈ Hp(Π+) with the,
boundary function f∗(x) = h(x) almost everywhere in R.

Theorem 2.4 ([13]). Let f be an analytic function at V \ Ω. If f(x ± i0) =
limy→0+ f(x±iy) exist in D′∗(Ω), if f(x±i0) is bounded in Ω and if f(x+i0) =
f(x− i0), then f is analytic at V .

3. Main Results

In Rajna’s paper [11], a characterization of the functions from the Hp(Π+)
-space, with asymptotic behavior and distributional boundary values, in the
space of distribution (S1)′, is given through Theorem 1.1. The distributions
(S1)′ are defined in the following way: S1 is the space of all functions ϕ which
are infinite differential on R such that |ϕ(n)(x)| ≤ Cne

−a|x|, n ∈ N, where
Cn > 0 and a > 0 depend upon ϕ. The space S1 is the image of S1 by a
Fourier transformation. Their duals distributional spaces are denoted by (S1)

′

and (S1)′, respectively.
Let (Mp) be a sequence satisfying conditions (M.1), (M.2) and (M.3). Let

mp =Mp/Mp−1, p ∈ N . A polynomial

PL(z) =
∞∏
p=1

(1 +
L

mp
z), Rez > 0

where L > 0 is some constant is an ultrapolynomial of (Mp) class.
The next inequality is true, and it is given in [4]. There existK1 > 0, C1 > 0

such that

(3.1) eM(L|z|) ≤ |PL(z)| ≤ C1e
M(K1|z|), Rez > 0.

Lemma 3.1. Let s > 1 and f be an analytic function in the upper half plain
Π+ = {z : Imz > 0}. Then, for every δ > 0 there exist Cδ > 0 and Kδ > 0
such that:

|f(z)| ≤ Cδe
Kδ|z|1/s , Imz ≥ δ

if and only if for every δ > 0 there exist Cδ > 0 and the ultrapolynomial PL of
(p!s) - class, such that

|f(z)| ≤ Cδ|PL(iz)| , Imz ≥ δ.

Proof. Let for every δ > 0 there exist Cδ > 0 and the ultrapolynomial PL(z)
of (p!s) - class such that

|f(z)| ≤ Cδ|PL(iz)| , Imz ≥ δ.
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The inequality (3.1) implies that there exist C1 > 0 and L1 > 0 such that

|PL(−iz)| ≤ C1e
M(L|z|) ≈ C1e

KL1/s|z|1/s , Imz ≥ δ > 0

(We used the fact that M(|z|) ≈ C|z|1/s , for some C > 0).
Now we will show that the opposite holds. Let for every δ > 0 there exist

C > 0 and Kδ > 0 such that

|f(z)| ≤ Cδe
Kδ|z|1/s , Imz ≥ δ

From (3.1), it follows

eL|z|
1/s

≤ |PL(z)| , Rez > 0.

The next theorem is the main result of the paper. It answers positively the
posed question, as we noted in Introduction.

Theorem 3.2. Let s > 1 and let f be an analytic function in the upper half-
plane Π+ and let for each δ > 0 there exist Cδ > 0 and the ultrapolynomial
PL(z) of (p!

s)-class, such that

(3.2) |f(z)| ≤ Cδ|PL(iz)|, Imz ≥ δ.

Then, f ∈ Hp(Π+), (1 ≤ p ≤ ∞) if and only if f(z) converges to f(x) ∈
Lp(R) in the sense of the ultradistributions S

′(s).

Proof. Let f(z) ∈ Hp(Π+). We will show that f(x+ iy) → f(x) when y → 0 in
the sense of ultradistributions S

′(s) (f(x) is a bounded function for f(z)). Note
that the following is true: for every y > 0,fy(x) = f(x+ iy) is ultradistribution

in S
′(s), because fy(x) is locally integrable and it is ultrapolinomial bounded,

i.e. there exists an ultrapolinomial P so that |fy(x)| ≤ P (x) holds for every
x ∈ R. This is true because of the condition (3.2). Now, we will show that
f(x + iy) → f(x) when y → 0 in the sense of ultradistribution S

′(s). Let
ϕ ∈ S(s). We have:

| < fy, ϕ > − < f, ϕ > | = | < fy − f, ϕ > |

≤
∫ ∞

−∞
|f(x+ iy)− f(x)||ϕ(x)|dx

≤
(∫ ∞

−∞
|f(x+ iy)− f(x)|pdx

) 1
p
(∫ ∞

−∞
|ϕ(x)|p

′
) 1

p′

→ 0

when y → 0. Where 1
p +

1
p′ = 1.

Now, we will prove the opposite. Let f(x+iy) converge to f(x) ∈ Lp(−∞,∞)
in the sense of the ultradistribution S

′(s) as y → 0. We will prove that
f ∈ Hp(Π+).

Let Np = (p!)s−ρ, where s− ρ > 1, ρ > 0. Let P̃L(z) be an ultrapolynomial
of (p!s)-class which corresponds to the sequence (Np).
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Let ϵ > 0. We will define a function gϵ(z) =
f(z)
ψϵ(z)

, where ψϵ(z) = P̃L(iϵz),

Rez > 0.

Step one:

Let ϵ > 0 be fixed. We will show that for every fixed y > 0,

Gϵ(u) =
1√
2π
eyu

∫ ∞

−∞
gϵ(x+ iy)e−ixudx, u ∈ R

is a smooth function independent of y > 0.
Let y1 > y2 > 0 be fixed numbers and let δ > 0 such that y2 > δ.
We will approximate |gϵ(z)| in {z : Imz ≥ δ}.
We will use the inequalities in (3.1). Takeing into consideration (3.2) we

have that

|gϵ(z)| =
|f(z)|
|ψϵ(z)|

≤ Cδ|PL(−iz)|
P̃L(−iϵz)|

≤ CδCe
M(L1|z|)

e2N(Lϵ|z|) , Imz ≥ δ > 0

Since M(t) ≈ Kt
1
s and N(t) ≈ K1t

1
s−ρ , for some K,K1 > 0, we obtain

eM(L1|z|)

e2N(Lϵ|z|) ≈ eKL
1
s
1 |z|

1
s −2K1L

1
(s−ρ) ϵ

1
(s−ρ) |z|

1
(s−ρ) → 0, |z| → ∞

So there exists Kϵ,δ > 0 such that, for every z ∈ C Imz ≥ δ > 0 there holds:

|gϵ(z)| ≤ Kϵ,δe
−d|z|

1
(s−ρ)

where d = K1L
1

(s−ρ) ϵ
1

(s−ρ) > 0. This implies that gϵ is a smooth function.
We will use the integral

∫
Γ
gϵ(z)e

−izudz, where the contour Γ is the bound-
ary of Ω = {z : −a < Rez < a, y1 < Imz < y2}.

For the fixed u ∈ R the function z 7→ gϵ(z)e
−izu , z ∈ Π+ is an analytic

function in Ω, so by Cauchy’s Theorem we obtain
∫
Γ
gϵ(z)e

−izudz = 0.
Hence,

ey2u
∫ a

−a
gϵ(x+ iy2)e

−ixudx+ ey1u
∫ −a

a

gϵ(x+ iy)e−ixudx

+e−iau
∫ y1

y2

gϵ(a+ iy)eyudy + eiau
∫ y2

y1

gϵ(−a+ iy)eyudu = 0.

Because of |gϵ(±a+ iy)| ≤ Kϵ,δe
−d|±a+iy|1/(s−ρ) ≤ Kϵ,δe

−d|a|1/(s−ρ)

we obtain

lim
a→∞

∫ y2

y1

|gϵ(a+ iy)|eyudy = lim
a→∞

∫ y1

y2

|gϵ(−a+ iy)|eyudy = 0.
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So ey2u
∫∞
−∞ gϵ(x+ iy2)e

−ixudx = ey1u
∫∞
−∞ gϵ(x+ iy1)e

−ixudx i.e.

(3.3) Gϵ(u) =
1√
2π
eyu

∫ ∞

−∞
gϵ(x+ iy)e−ixudx

is independent of y > 0. So, we have proved step one.

Step two:

We shall prove that, for Gϵ(u) = 1√
2π
eyu

∫∞
−∞ gϵ(x + iy)e−ixudx, u ∈ R, it is

true that Gϵ(u) = 0 for u < 0 and Gϵ(u) has an exponential growth, when
u > 0.

Since,
∫∞
−∞ |gϵ(x + iy)|dx < +∞, there exists Kϵ > 0 such that for every

u ∈ R and y ≥ δ it is true that |Gϵ(u)| ≤ Kϵe
uy.

So, if u < 0, we obtain Gϵ(u) = 0 and if u > 0 we obtain that |Gϵ(u)| ≤
Aδ,ϵe

δu for some constant Aδ,ϵ.

Step three:

Let ϵ > 0 be fixed. We shall prove that e−yuGϵ(u) → Gϵ(u) in the sense of
S

′(s) when y → 0, i.e.

(3.4)
< e−yuGϵ(u), ϕ(u) >→< Gϵ(u), ϕ(u) >, when y → 0 for every ϕ ∈ S(s).

Let ϕ1, ϕ2 ∈ S(s), that they are equal at (−∞, p) for some p > 0. Because
of suupGϵ ⊂ [0,∞) it is true < Gϵ(u), ϕ1 >=< Gϵ(u), ϕ2 >. So, if γ ∈ S(s)

such that γ(u) = 0 for u < −2 and γ(u) = 1 for u > −1 we obtain that

< e−yuGϵ(u), ϕ >=< Gϵ(u), e
−yuϕ >=< Gϵ(u), γ(u)e

−yuϕ >

To prove (3.4), it suffices to show that γe−yuϕ→ ϕ when y → 0 in S(s).
Let h > 0 be fixed. We will show that ∥e−yuθ(u)−θ(u)∥h → 0 when y → 0,

where θ(u) = γ(u)ϕ(u), u ∈ R, and ∥θ∥h = σh,∞(ϕ). We have (for every
u ∈ R),

|h
α+β(1 + u2)α/2

α!sβ!s
(e−yuθ(u)− θ(u))(β)|

=
hα+β(1 + u2)α/2

α!sβ!s
|
β∑
j=0

(
β

j

)
(e−yu − 1)(β−j)θ(j)(u)|

=
hα+β(1 + u2)α/2

α!sβ!s
|(e−yu − 1)θ(β)(u) +

β−1∑
j=0

(
β

j

)
(−y)(β−j)e−yuθ(j)(u)|

≤ (e−yu − 1) sup
α,β

hα+β(1 + u2)α/2|θ(β)(u)|
α!sβ!s
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+e−yu|y| (2h)
α+β(1 + u2)α/2

α!sβ!s
1

2α+β
|
β−1∑
j=0

(
β

j

)
(−1)β−jyβ−j−1e−yuθ(j)(u)|

= ∥θ∥h(e−yu − 1)

+e−yu|y| 1

2α+β
|
β−1∑
j=0

(
β

j

)
(−1)β−jyβ−j−1

(β − j)!s
(2h)α+β(1 + u2)α/2θ(j)(u)

α!sj!s
|

≤ ∥θ∥h(e−yu − 1) + e−yu|y| ∥θ∥2h
2α+β

β−1∑
j=0

(
β

j

)
|y|β−j−1

(β − j)!s

≤ ∥θ∥h(e−yu − 1) + e−yu|y| ∥θ∥2h
2α+β

(1 + |y|)β−1.

The last expression, for a sufficient small |y| will be less than

∥θ∥h(e−yu − 1) + e−yu|y| ∥θ∥2h
2α+1

,

and this yields

∥e−yuθ(u)− θ(u)∥h ≤ ∥θ∥h(e−yu − 1) + e−yu|y|∥θ∥2h, u ∈ R.

Thus, it is proved that γe−yuϕ → γϕ in S(s) when y → 0. So, for every
ϵ > 0 it is true that e−yuGϵ → Gϵ in S

′(s) when y → 0. This completes the
prof of step 3.

Notice that gϵ(x+ iy) is a Fourier transform of e−yuGϵ(u). It is known that
the Fourier transformation F : S

′(s) → S
′(s), is continuous in week topology.

Hence, the ultradistributional Fourier transform of gϵ(x+ iy) converges in S
′(s)

when y → 0 to the ultradistributional Fourier transform of Gϵ which we denote
by gϵ.

Step four:

We will prove that gϵ(x) =
f(x)
ψϵ(x)

, x ∈ R, as an ultradistribution in S
′(s).

Notice that, (1/ψϵ)(x + iy) → (1/ψϵ)(x) in the sense of ultradistribution
S

′(s) when y → 0, and because f(x + iy) → f(x) in the sense of ultradistri-
bution S

′(s) when y → 0 , we get gϵ(x + iy) = (f/ψϵ)(x + iy) → (f/ψϵ)(x)
in the sense of ultradistribution S

′(s) when y → 0 (as a product of regular
ultraultradistribution). It holds that gϵ(x + iy) → gϵ(x) in S

′(s) when y → 0.

Thus we obtain that gϵ(x) =
f(x)
ψϵ(x)

, x ∈ R, as an ultradistribution in S
′(s).

Step five:

We shall show that gϵ ∈ Hp,p ∈ [2,∞), for every ϵ > 0.
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We need the following result:
If f ∈ L2(R), then F (f̃) = ˜F (f), where on the left-hand side is an F−trans-

formation in the sense of ultradistribution S′(s), and on the right-hand side is
a regularization of F -transformation of f defined by f̃ = F (f) = lim

n→∞
F (ϕn),

where (ϕn) is a sequence in S(s) which converges to f in the space L2(R).
Because, f ∈ Lp, in view of H0̈lder’s inequality, we get∫ ∞

−∞
|gϵ(x)|2dx =

∫ ∞

−∞
|f(x)|2 1

|ψϵ(x)|2
dx

≤ (

∫ ∞

−∞
(|f(x)|2)p/2dx)2/p(

∫ ∞

−∞

dx

|ψϵ(x)|2q
)1/q.

where 1/p + 1/q = 1. So gϵ(x) ∈ L2(−∞,∞). Because the function 1/ψϵ
is bounded, we get that gϵ(x) ∈ Lp(−∞,∞). Also, because gϵ is a Fourier
transform of Gϵ, and gϵ ∈ L2(−∞,∞), we obtain Gϵ ∈ L2(0,∞) ,(Gϵ(u) = 0
for u < 0).

Now, because gϵ is a Fourier transform of e−yuGϵ we get

gϵ(z) = gϵ(x+ iy) =
1√
2π

∫ ∞

−∞
Gϵ(u)e

−yueixudu =

=
1√
2π

∫ ∞

0

Gϵ(u)e
i(xu+iyu)du =

1√
2π

∫ ∞

0

Gϵ(u)e
iuzdu, z ∈ C, y > 0

Now, from the Theorem (Paley-Wiener)[2] we obtain gϵ ∈ H2 and from Pois-
son’s Theorem [2] for integral representation we obtain that gϵ ∈ Hp. Thus
step five is proved.

Step six:

Now we will prove that f(z) ∈ Hp for p ∈ [2,∞). It is true that gϵ(x) → f(x)
in Lp(−∞,∞) when ϵ → 0. It follows that gϵ(z) → f1(z) when ϵ → 0, where
f1 ∈ Hp and f(x) is its bounded function. The above is true, because of the
next arguments.

Let f1(z) =
1

π

∫ ∞

−∞

y

y2 + (x− t)2
f(t)dt ∈ Hp(Π+) .

Now we obtain

|gϵ(z)− f1(z)| =
1

π
|
∫ ∞

−∞

y

y2 + (x− t)2
(gϵ(t)− f(t))dt|

≤ 1

π

∫ ∞

−∞

y

y2 + (x− t)2
|gϵ(t)− f(t)|dt

≤ 1

π
(

∫ ∞

−∞
|gϵ(t)− f(t)|pdt)1/p(

∫ ∞

−∞
(

y

y2 + (x− t)2
)2dt)1/q → 0 , ϵ→ 0

So limϵ→0 gϵ(z) = f1(z), Imz > 0.
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Now, we obtain (f − f1)(x+ iy) → 0 in the sense of ultradistribution S
′(s)

when y → 0. Because S
′(s) ⊆ D

′(s)(Ω) ,Ω = (−R,R) we can use Theorem 2.4.
So, from (f − f1)(x + iy) → 0 in the sense of D

′(s), when y → 0, we
obtain f − f1 ≡ 0 in the neighborhood of Ω, i.e. there exist r > 0 such that
(f − f1)(x + iy) = 0 for |x| < R and 0 < y < r. With analytic continuation,
we get that f(z) = f1(z) for every z ∈ Π+ i.e. f ∈ Hp.

Step seven:

We will show that gϵ ∈ Hp(Π+) , p ∈ [1, 2) for every ϵ > 0. Under the condition
of Theorem 2.3, f ∈ Lp(R). So, since 1/ψϵ is bounded, it is true that gϵ ∈
Lp(−∞,∞) and

Gϵ ∈ Lq(0,∞) , (q = p/(p− 1).

Again, we get the representation (3.3) with Gϵ as the Fourier transform of some
function in Lp(−∞,∞).

The following is true:

(3.5)
1

i(t−z) =
∫∞
0
e−itueizudu , (Imz > 0)

= −
∫ 0

−∞ e−itueizudu , (Imz < 0)

Now we use Fubini’s Theorem the fact that gϵ is the Fourier transform of
Gϵ and the equality (3.5) and obtain∫ ∞

−∞

gϵ(t)

i(t− z)
dt =

∫ ∞

−∞
(gϵ(t)

∫ ∞

0

e−itueizudu)dt =

∫ ∞

0

(eizu

∫ ∞

−∞
gϵ(t)e

−itudt)du =
√
2π

∫ ∞

0

Gϵ(u)e
izudu = 2πgϵ(z), (Imz > 0).

The same argument gives that gϵ(z) = 0 for Imz < 0 because that Gϵ(u) =
0 for u < 0.

Thus, Theorem 2.3 implies gϵ ∈ Hp.

Step eight:

The proof that f ∈ Hp(R) for p ∈ [1, 2) is the same as in step six.

References

[1] Carmichael, R. D., Kaminski, A., Pilipović, S.,Notes on Boundary Values in
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