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1. Introduction and preliminaries

The theory of fractional powers of operators has an extensive and long
history, so that it would be really difficult to mention here all relevant references
on this subject. Complex powers of various types of C-sectorial operators, in
the setting of sequentially complete locally convex spaces, has been recently
analyzed in a series of papers by C. Chen, M. Li and the author of this paper
[1]-[3]. Our intention here is to incorporate some of results obtained in the
above-mentioned papers in the study of existence and growth of mild solutions
of abstract Cauchy problems involving generators of integrated C-semigroups
and cosine functions. In order to do that, we shall follow the method proposed
by J.M.A.M. van Neerven and B. Straub in [11] (cf. also [4] and [12] for some
pioneering results in this direction, and the paper [8] in which the assertions
of [11, Theorem 1.1-Theorem 1.2] has been generalized to generators with not
necessarily dense domain).

Throughout the paper, we use the standard notation. By E we denote a
Hausdorff sequentially complete locally convex space over the field of complex
numbers, SCLCS for short; the abbreviation ~ stands for the fundamental
system of seminorms which defines the topology of E. By L(E) we denote the
space which consists of all continuous linear mappings from E into E. The
domain, range and resolvent set of a closed linear operator A on E are denoted
by D(A), R(A) and ρ(A), respectively. Let C ∈ L(E) be injective. Then
the C-resolvent set of A, ρC(A) in short, is defined by ρC(A) := {λ ∈ C : λ −
A is injective and (λ−A)−1C ∈ L(E)}.We shall always assume that C−1AC =
A. The notions of C-nonnegative, C-positive and C-sectorial operators are
taken in the sense of [1].
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Given s ∈ R in advance, set ⌊s⌋ := sup{l ∈ Z : s ≥ l}. The Gamma function
is denoted by Γ(·) and the principal branch is always used to take the powers.
Set 0α := 0 and gα(t) := tα−1/Γ(α) (α > 0, t > 0). If γ ∈ (0, π] and d ∈ (0, 1],
then we define Σγ := {λ ∈ C : λ ̸= 0, | arg λ| < γ}, Bd := {z ∈ C : |z| ≤ d}
and Σ(γ, d) := Σγ ∪Bd.

For the sake of convenience, we shall repeat the following definitions of
exponentially equicontinuous integrated C-semigroups and cosine functions in
SCLCSs ([7], [6], [14]).

Definition 1.1. Suppose α > 0 and A is a closed linear operator on E. If there
exists a strongly continuous operator family (Sα(t))t≥0 (Sα(t) ∈ L(E), t ≥ 0)
such that:

(i) Sα(t)A ⊆ ASα(t), t ≥ 0,

(ii) Sα(t)C = CSα(t), t ≥ 0 and

(iii) for all x ∈ E and t ≥ 0:
∫ t

0
Sα(s)x ds ∈ D(A) and

A

t∫
0

Sα(s)x ds = Sα(t)x− gα+1(t)Cx,

then it is said that A is a subgenerator of a (global) α-times integrated C-
semigroup (Sα(t))t≥0. It is said that (Sα(t))t≥0 is an exponentially equicon-
tinuous α-times integrated C-semigroup with a subgenerator A if, in addition,
there exists ω ∈ R such that the family {e−ωtSα(t) : t ≥ 0} is equicontinuous.

Definition 1.2. Suppose α > 0 and A is a closed linear operator on E. If there
exists a strongly continuous operator family (Cα(t))t≥0 (Cα(t) ∈ L(E), t ≥ 0)
such that:

(i) Cα(t)A ⊆ ACα(t), t ≥ 0,

(ii) Cα(t)C = CCα(t), t ≥ 0 and

(iii) for all x ∈ E and t ≥ 0:
∫ t

0
(t− s)Cα(s)x ds ∈ D(A) and

A

t∫
0

(t− s)Cα(s)x ds = Cα(t)x− gα+1(t)Cx,

then it is said that A is a subgenerator of a (global) α-times integrated C-cosine
function (Cα(t))t≥0. It is said that (Cα(t))t≥0 is an exponentially equicontinu-
ous α-times integrated C-cosine function with a subgenerator A if, in addition,
there exists ω ∈ R such that the family {e−ωtCα(t) : t ≥ 0} is equicontinuous.
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The integral generator of (Sα(t))t≥0, resp. (C
α(t))t≥0, is defined by

Â :=

{
(x, y) ∈ E × E : Sα(t)x− gα+1(t)Cx =

t∫
0

Sα(s)y ds, t ≥ 0

}
, resp.,

Â :=

{
(x, y) ∈ E × E : Cα(t)x− gα+1(t)Cx =

t∫
0

(t− s)Cα(s)y ds, t ≥ 0

}
.

Recall that Â is the maximal subgenerator of (Sα(t))t≥0, resp. (Cα(t))t≥0,

with respect to the set inclusion and that C−1ÂC = Â.
We need the following useful lemma (cf. [7, Theorem 2.1.11]).

Lemma 1.3. Suppose α > 0 and A is a closed linear operator on E. Then the
following assertions are equivalent:

(i) A is a subgenerator of an α-times integrated C-cosine function (Cα(t))t≥0

in E.

(ii) The operator A :=
(

0 I
A 0

)
is a subgenerator of an (α+1)-times integrated

C-semigroup (Sα+1(t))t≥0 in E × E, where C :=
(
C 0
0 C

)
.

In this case:

Sα+1(t) =

( ∫ t

0
Cα(s) ds

∫ t

0
(t− s)Cα(s) ds

Cα(t)− gα+1(t)C
∫ t

0
Cα(s) ds

)
, t ≥ 0,

and the integral generators of (Cα(t))t≥0 and (Sα+1(t))t≥0, denoted respec-
tively by B and B, satisfy B =

(
0 I
B 0

)
. Furthermore, the integral generator of

(Cα(t))t≥0, resp. (S
α+1(t))t≥0, is C−1AC, resp. C−1AC ≡

(
0 I

C−1AC 0

)
.

2. Existence and growth of mild solutions of operators
generating fractionally integrated C-semigroups and
cosine functions

Recall that the function u(·, x0) is a mild solution of the abstract Cauchy
problem

(ACP1) : u
′(t, x0) = Au(t, x0), t ≥ 0, u(0, x0) = x0, resp.,

(ACP2) : u
′′(t, x0, y0) = Au(t, x0, y0), t ≥ 0, u(0, x0, y0) = x0, u

′(0, x0, y0) = y0,

iff the mapping t 7→ u(t, x0), t ≥ 0 is continuous,
∫ t

0
u(s, x0) ds ∈ D(A) and

A
∫ t

0
u(s, x0) ds = u(t, x0)−x0, t ≥ 0, resp., the mapping t 7→ u(t, x0, y0), t ≥ 0

is continuous,
∫ t

0
(t − s)u(s, x0, y0) ds ∈ D(A) and A

∫ t

0
(t − s)u(s, x0, y0) ds =

u(t, x0, y0)− x0 − ty0, t ≥ 0.
Suppose α ≥ 0 and A is the integral generator of a global α-times inte-

grated C-semigroup (Sα(t))t≥0 satisfying that there exists ω ≥ 0 such that
the family {e−ωtSα(t) : t ≥ 0} is equicontinuous. Let σ ∈ (0, 1] be fixed.
Then C−1AC = A and, for every γ ∈ (0, π

2 ), there exists d ∈ (0, 1] such that
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Σ(γ, d) ⊆ ρ(A−ω−σ) and that the family {(1+ |λ|)1−α(λ− (A−ω−σ))−1C :
λ ∈ Σ(γ, d)} is equicontinuous. Set Aω+σ := −(ω + σ − A) and, after that,
Cα := (−Aω+σ)

−1−⌊α⌋C2. Then C−1
α Aω+σCα = Aω+σ and it is not difficult to

prove that the operator −Aω+σ is Cα-sectorial of angle π/2 and that the con-
dition [1, (H)] holds with d = σ/2. Therefore, for every z ∈ C, we can construct
the power (−Aω+σ)z following the method proposed in [1], with the operator
C replaced by Cα. Then, for every z ∈ C, the power (−Aω+σ)z coincides with
that constructed in [2]; see [2, Remark 2.13(i)]. The following properties of
powers will be used henceforth (cf. [1]-[2] for more details):

(P0) For every k ∈ Z, we have (−Aω+σ)k = C−1
α (−Aω+σ)

kCα, where (−Aω+σ)
k

denotes the usual power of the operator −Aω+σ and (−Aω+σ)
0 := 1 (the

identity operator on E).

(P1) For every z ∈ C, the operator (−Aω+σ)z is injective and the following
equality holds:(

−Aω+σ

)
−z

=
((

−Aω+σ

)
z

)−1

=
((

−Aω+σ

)−1
)
z
.

(P2) Let z1, z2 ∈ C. Then (−Aω+σ)z1(−Aω+σ)z2 ⊆ (−Aω+σ)z1+z2 , and for
every x ∈ D((−Aω+σ)z1+z2) ∩ D((−Aω+σ)z2), one has (−Aω+σ)z2x ∈
D((−Aω+σ)z1) and (−Aω+σ)z1(−Aω+σ)z2x = (−Aω+σ)z1+z2x. Further-
more, the supposition (−Aω+σ)z1 ∈ L(E) implies (−Aω+σ)z1(−Aω+σ)z2 =
(−Aω+σ)z1+z2 .

(P3) If 0 < ℜz < 1, then(
−Aω+σ

)
−z

Cαx =
sin zπ

π

∫ ∞

0

λ−z
(
λ−Aω+σ

)−1
Cαx dλ, x ∈ E.

(P4) If C = 1, then (−Aω+σ)z ∈ L(E) for any z ∈ C with ℜz < −α.

Theorem 2.1. Let α ∈ (0,∞) \ N, let ω ≥ 0, and let A be the integral gener-
ator of an α-times integrated C-semigroup (Sα(t))t≥0 satisfying that the fam-
ily {e−ωtSα(t) : t ≥ 0} is equicontinuous. Suppose ϵ > 0, ⌊α⌋ = ⌊α + ϵ⌋,
x′
0 ∈ D((−Aω+σ)α+ϵ) ∩ D((−Aω+σ)α+ϵ−⌊α+ϵ⌋) and x0 = Cx′

0. Then the ab-
stract Cauchy problem (ACP1) has a unique mild solution, denoted by u(·, x0),
and for every ε > 0, the set {e−(ω+σ+ε)tu(t, x0) : t ≥ 0} is bounded. If, in ad-
dition, Aω+σx

′
0 ∈ D((−Aω+σ)α+ϵ) ∩D((−Aω+σ)α+ϵ−⌊α+ϵ⌋), then the solution

is classical.

Proof. Set x′′
0 := (−Aω+σ)α+ϵ−⌊α+ϵ⌋x

′
0. Denote by (Sα

ω+σ(t))t≥0 the α-times in-
tegrated C-semigroup generated by Aω+σ (cf. [6, Theorem 4.2(ii)-(b)]). Then,

for every β > α, ((Sβ
ω+σ(t) ≡ (gβ−α ∗ Sα

ω+σ))t≥0) is the β-times integrated
C-semigroup generated by Aω+σ. Furthermore, it is not difficult to prove that
the following representation formula holds:

Sβ
ω+σ(t)x =

∞∫
0

e−(ω+σ)(t−s)Sβ(t− s)x dgω+σ,β , x ∈ E, t ≥ 0,
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where

gω+σ,β(s) := χ(0,∞)(s) +
∞∑
k=1

β(β − 1) · · · (β − k + 1)(ω + σ)ksk/k!2, s ≥ 0;

cf. [11, Proposition 3.3]. Since, by (P1),
x′
0 ∈ D((−Aω+σ)α+ϵ) = R((−Aω+σ)−α−ϵ), we have the existence of an el-

ement z0 ∈ E such that x′′
0 = (−Aω+σ)α+ϵ−⌊α+ϵ⌋(−Aω+σ)−α−ϵz0. Keeping

in mind (P0) and (P2), as well as [2, Lemma 1.4], the above implies x′′
0 =

C−1
α (−Aω+σ)

−⌊α+ϵ⌋Cαz0 and (−Aω+σ)
⌊α+ϵ⌋Cx′′

0 = Cz0. Define now, for every
t ≥ 0,

S
α+ϵ−⌊α+ϵ⌋
ω+σ (t)x′′

0 := (−1)⌊α+ϵ⌋Sα+ϵ
ω+σ(t)z0 +

⌊α+ϵ⌋−1∑
i=0

gα+ϵ−i(t)A
⌊α+ϵ⌋−1−i
ω+σ Cx′′

0 .

Then [7, Proposition 2.3.3(i)] implies that, for every t ≥ 0,

S
α+ϵ−⌊α+ϵ⌋
ω+σ (t)x′′

0 = C−1
α

d⌊α+ϵ⌋

dt⌊α+ϵ⌋S
α+ϵ
ω+σ(t)Cαx

′′
0 .

We shall prove that the mild solution in (i)-(ii) is given by the formula

u(t, x0) := e(ω+σ)tvω+σ

(
t, x′′

0

)
, t ≥ 0,

where

vω+σ(t, x
′′
0) := Γα,ϵ

∞∫
0

ds

s− 1

(
s⌊α+ϵ⌋−α−ϵS

α+ϵ−⌊α+ϵ⌋
ω+σ (t)− 1

s
S
α+ϵ−⌊α+ϵ⌋
ω+σ

( t
s

))
x′′
0 ,

(2.1)

and Γα,ϵ :=
sin(α+ϵ−⌊α+ϵ⌋)π

π , see [11, Sections 3-4] and [8, Theorem 4.1]. First of
all, notice that the convergence of the singular integral appearing in (2.1), writ-
ten as the sum of corresponding integrals along the intervals (0, 1/2), (1/2, 2)
and (2,∞), comes out from the following:

Suppose that the operator family {(1+tγ)−1e−ωtSα(t) : t ≥ 0} is equicon-
tinuous. Put δ := 2−1 min(ϵ, α + ϵ − ⌊α + ϵ⌋). Then the computation
given in the proofs of [11, Lemma 4.1-Lemma 4.2] shows that there exists
cα,ϵ,γ,ω > 0 such that, for every p ∈ ~, there exist rp ∈ ~, cp > 0 and
cp,ω,γ,ϵ,σ > 0 such that:

p
(
S
α+ϵ−⌊α+ϵ⌋
ω+σ (t)x′′

0

)
≤ cp

σmin(−⌊α+ϵ⌋,α+ϵ−⌊α+ϵ⌋−γ−1)

ln
(
1 + σ

4ω+2σ

) tα+ϵ−⌊α+ϵ⌋−1

×

[
rp
(
z0
)
+

⌊α+ϵ⌋−1∑
i=0

p
(
AiCx′′

0

)]
, t ≥ 0,
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and

p
(
S
α+ϵ−⌊α+ϵ⌋
ω+σ (t)x′′

0 − S
α+ϵ−⌊α+ϵ⌋
ω+σ (τ)x′′

0

)
≤ cpcα,ϵ,γ,ω(t− s)δ

[
rp
(
z0
)
+

⌊α+ϵ⌋−1∑
i=0

p
(
AiCx′′

0

)]

× σmin(−⌊α+ϵ⌋,α+ϵ−⌊α+ϵ⌋−γ−ϵ−1)

ln
(
1 + σ

4ω+2σ

) , 0 ≤ τ ≤ t < ∞.

Similarly as in the proofs of [11, Lemma 4.3-Lemma 4.4] we obtain that the
mapping t 7→ vω+σ(t, x

′′
0), t ≥ 0 is continuous, and that the equicontinuity of

the operator family {(1+tγ)−1Sα(t) : t ≥ 0} implies that there exists cα,ϵ,γ > 0
such that, for every p ∈ ~, there exist rp ∈ ~ and cp > 0 so that:

p
(
vσ
(
t, x′′

0

))
≤ cpcα,ϵ,γσ

min(−⌊α+ϵ⌋,α−⌊α+ϵ⌋−γ−1)

×

[
rp
(
z0
)
+

⌊α+ϵ⌋−1∑
i=0

p
(
AiCx′′

0

)]
tα+ϵ−⌊α+ϵ⌋−1, t ≥ 2.(2.2)

Since
∫∞
0

e−λtSα+ϵ
ω+σ(t)x dt = λ−α−ϵ(λ − Aω+σ)

−1Cx for all x ∈ E and λ > 0,
it is not difficult to prove, with the help of proof of [11, Lemma 6.1] and the
property (P3) of powers that, for every λ > 0,

∞∫
0

e−λtCCαvω+σ

(
t, x′′

0

)
dt =

(
λ−Aω+σ

)−1
C2
(
−Aω+σ

)
⌊α+ϵ⌋−α−ϵ

Cαx
′′
0 .

Using the resolvent equation and the previous equality, we immediately obtain
that:

Aω+σ

∞∫
0

e−λt

t∫
0

CCαvω+σ

(
s, x′′

0

)
ds dt

= CCα

[ ∞∫
0

e−λtvω+σ

(
t, x′′

0

)
dt− x0

λ

]
, λ > 0.

Taking into account the Laplace transformability of the function t 7→ vω+σ(t, x
′′
0),

t ≥ 0 (this follows from its continuity and the estimate (2.2)) and the equality
(CCα)

−1Aω+σCCα = Aω+σ, we get that

Aω+σ

∞∫
0

e−λt

t∫
0

vω+σ

(
s, x′′

0

)
ds dt

=

∞∫
0

e−λtvω+σ

(
t, x′′

0

)
dt− x0

λ
, λ > 0.
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The previous equality in combination with [14, Theorem 1.1.10] implies that

Aω+σ

t∫
0

vω+σ

(
s, x′′

0

)
ds = vω+σ

(
t, x′′

0

)
− x0, t ≥ 0.

Hence, the mapping t 7→ u(t, x0), t ≥ 0 is the mild solution in (i)-(ii); the
uniqueness is a simple consequence of Lyubič type theorem [6, Theorem 4.2(i)].
If, in addition, Aω+σx

′
0 ∈ D((−Aω+σ)α+ϵ)∩D((−Aω+σ)α+ϵ−⌊α+ϵ⌋), then (P2)

implies that the terms
Aω+σ(−Aω+σ)α+ϵ−⌊α+ϵ⌋x

′′
0 and (−Aω+σ)α+ϵ−⌊α+ϵ⌋Aω+σx

′′
0 are well defined

and equal each other. As a simple consequence, we have that

Aω+σvω+σ

(
t, x′′

0

)
= vω+σ

(
t, Aω+σx

′′
0

)
, t ≥ 0

and that the constructed mild solution, for such an initial value x0, is classical
in fact.

Before proceeding further, we would like to recommend for the interested
reader the paper [13], and Section 7 of [11], for more details concerning the
exponential type of constructed classical solutions.

Remark 2.2. Suppose C = 1.

(i) Then the assumption x′
0 ∈ D((−Aω+σ)α+ϵ) implies by (P1)-(P2) that

x′
0 ∈ D((−Aω+σ)α+ϵ−⌊α+ϵ⌋) and (−Aω+σ)α+ϵ−⌊α+ϵ⌋x

′
0 ∈ D(A⌊α+ϵ⌋). Us-

ing the same properties of powers, it is checked at once that the assump-
tion x′

0 ∈ D((−Aω+σ)1+α+ϵ) implies x′
0 ∈ D(−Aω+σ)∩D((−Aω+σ)α+ϵ)∩

D((−Aω+σ)α+ϵ−⌊α+ϵ⌋) as well as
−Aω+σx

′
0 ∈ D((−Aω+σ)α+ϵ) ∩D((−Aω+σ)α+ϵ−⌊α+ϵ⌋).

(ii) It is worth noting that, for every z ∈ C with |ℜz| > α, the domain of
power (−Aω+σ)z does not depend on the particular choice of number
σ ∈ (0, 1]. In order to better explain this, suppose that 0 < σ1 < σ2 ≤ 1.
Then the operator −Aσ1,σ2 ≡ −Aσ2(−Aσ1)

−1 belongs to L(E) and the
computation given in the proof of [11, Lemma 5.2] shows that the operator
−Aσ1,σ2 is positive, so that the power (−Aσ1,σ2)z can be constructed in
the usual way (see e.g. [9] and [2]). Having in mind that (−Aω+σ)z ∈
L(E), provided ℜz < −α, it is straightforward to verify that the following
equalities hold, for every z ∈ C with ℜz < −α,
(2.3)(

−Aσ2

)
z
x =

(
−Aσ1,σ2

)
z

(
−Aσ1

)
z
x =

(
−Aσ1

)
z

(
−Aσ1,σ2

)
z
x, x ∈ E.

If ℜz > α, then one can use the equality D((−Aσ2)z) = R((−Aσ2)−z)
and (2.3) in order to see that D((−Aσ2)z) ⊆ D((−Aσ1)z). The con-
verse inclusion can be proved in a similar fashion, so that D((−Aσ2)z) =
D((−Aσ1)z) for ℜz > α. Therefore, the supposition x′

0 ∈ D((−Aσ)α+ϵ)
implies x′

0 ∈ D((−A1)α+ϵ) and, in this case, (2.3) holds with σ2 = σ,
σ1 = σ, z = α+ϵ and x′

0 = x. This simply implies that, for 0 ≤ j ≤ ⌊α+ϵ⌋,
(2.4)
AjC

(
−Aσ

)
α+ϵ−⌊α+ϵ⌋x

′
0 =

(
−A1,σ

)
⌊α+ϵ⌋−(α+ϵ)

AjC
(
−A1

)
α+ϵ−⌊α+ϵ⌋x

′
0.
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(iii) Consider the situation of Theorem 2.1 with ω = 0. Using again the com-
putation given in the proof of [11, Lemma 5.2], we get that the family
{σ−min(0,α−γ)(Aσ,1)⌊α+ϵ⌋−α−ϵ : 0 < σ ≤ 1/2} ⊆ L(E) is equicontinuous.
Combining this with the proof of [11, Theorem 1.2], and using also (2.4),
we have that the set {(1 + t)−max(α−1+ϵ,γ+ϵ,2γ−α+ϵ)u(t, x0) : t ≥ 0} is
bounded - this is certainly the fact that cannot be so easily reformulated
in the case of general operator C ̸= 1.

(iv) The assertion of [8, Theorem 4.2] continues to hold, with appropriate tech-
nical modifications in the setting of sequentially complete locally convex
spaces.

Notice that Theorem 2.1 and Remark 2.2 taken together provide a proper
extension of [8, Theorem 4.1]. As an application, we can simply state results
concerning the growth of mild solutions of abstract Cauchy problems for elliptic
differential operators acting on El-type spaces (cf. [14], [7] and apply the result
stated in Remark 2.2(iii)); we can also prove an extension of [5, Theorem 3.7]
for such operators.

Suppose now that the operator A is the integral generator of an α-times
integrated cosine function (Cα(t))t≥0 satisfying that the family {e−ωtCα(t) :
t ≥ 0} is equicontinuous for some ω ≥ 0. Then we know from Lemma 1.3 that
the operator A =

(
0 I
A 0

)
is the integral generator of an (α+1)-times integrated

C-semigroup (Sα+1(t))t≥0 in E × E, where C =
(
C 0
0 C

)
. Therefore, for any

σ ∈ (0, 1] given in advance, the operator −Aω+σ ≡ A − ω − σ is Cα-sectorial
of angle π/2, with Cα being defined by Cα := (−Aω+σ)

−1−⌊α⌋C2. Therefore,
we can construct the power (−Aω+σ)z for any z ∈ C. Keeping in mind the
representation formula for (Sα+1(t))t≥0, given in the formulation of the above-
mentioned lemma, it is not difficult to prove that the following theorem holds.

Theorem 2.3. Let α ∈ (0,∞) \ N, let ϵ > 0 such that ⌊α⌋ = ⌊α + ϵ⌋, and
let σ ∈ (0, 1]. Suppose that A is the integral generator of an α-times integrated
cosine function (Cα(t))t≥0 satisfying that the family {e−ωtCα(t) : t ≥ 0} is
equicontinuous for some ω ≥ 0. Then, for every (x0, y0) ∈ D((−Aω+σ)α+ϵ+1)∩
D((−Aω+σ)α+ϵ−⌊α+ϵ⌋), the abstract Cauchy problem (ACP2) has a unique mild
solution, denoted by u(t, x0, y0), and for every ε > 0, the set
{e−(ω+σ+ε)tu(t, x0, y0) : t ≥ 0} is bounded. If, in addition,
Aω+σx

′
0 ∈ D((−Aω+σ)α+ϵ+1) ∩ D((−Aω+σ)α+ϵ−⌊α+ϵ⌋), then the solution is

classical.

Remark 2.4. Suppose that C = 1 and that the family {(1 + tγ)−1Cα(t) :
t ≥ 0} is equicontinuous for some γ ≥ 0. By the foregoing, we have that,
for every (x0, y0) ∈ D((−Aω+σ)α+ϵ+1) ∩D((−Aω+σ)α+ϵ−⌊α+ϵ⌋), the set {(1 +
t)−max(α+ϵ,max(α,γ+2)+ϵ,2max(α,γ+2)−(α+1)+ϵ)u(t, x0, y0) : t ≥ 0} is bounded.
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