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UNIQUE FIXED POINT IN G-METRIC SPACE
THROUGH GREATEST LOWER BOUND

PROPERTIES

T. Phaneendra1 and K. Kumara Swamy2

Abstract. In this paper, we prove the celebrated Banach contraction
mapping theorem and a result of Mustafa and Obiedat in a G-metric
space using only elementary properties of greatest lower bound. This
idea of using greatest lower bound properties in metric space was ini-
tiated by Joseph and Kwack in 1999. Also we introduce the notion of
G-contractive fixed point and demonstrate that the unique fixed point
will be a G-contractive fixed point for the underlying self-map in both
the results. Our proof is highly distinct in repeatedly employing the rect-
angle inequality of the G-metric rather than using traditional iterative
procedure.
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1. Introduction

Let A be a nonempty set of nonnegative real numbers which is bounded
below. Then by the infimum property of R (Sec. 2.4, [1]), A will have a greatest
lower bound, say a in R . Also any number in A which exceeds a cannot be its
lower bound.

The following is an easy consequence of properties of the infimum:

Lemma 1.1. If A is a nonempty set of nonnegative real numbers with zero
as its greatest lower bound, then there is a sequence ⟨rn⟩ ∞

n=1 in A such that
lim
n→∞

rn = 0.

Let M be a metric space with metric ρ. Using Lemma 1.1 and the repeated
application of the triangle inequality of ρ, Joseph and Kwack [4] in 1999 proved
the following theorem.

Theorem 1.2. Let f be a self-map on M, and there exist constants ai ≥ 0,

i = 1, 2, ..., 5 such that 0 ≤
5∑

i=1

ai < 1 and
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ρ(fx, fy) ≤ a1ρ(x, y) + a2ρ(x, fx) + a3ρ(y, fy)(1.1)

+ a4ρ(x, fy) + a5ρ(y, fx) for all x, y ∈ M.

If M is complete, then f will have a unique fixed point p.

We note that if a2 = · · · = a5 = 0 in (1.1), f reduces to a contraction and
Theorem 1.2, to the well-known Banach contraction mapping theorem.

In this paper, we present the proofs of G-contraction mapping theorem
(See Theorem 2.2) and of results of Mustafa and Obiedat [5] and Mustafa
et al. [6] only using the basic properties of greatest lower bound of a set of
nonnegative real numbers. Interestingly, our technique focuses on repeat-
edly employing the axiom (A-5) (see below) instead of the routine iterative
procedure.

Definition 1.3. Let X be a nonempty set and d : X × X → R satisfy the
following axioms:

(A-1) d(x, y, z) ≥ 0 for all x, y, z ∈ X with d(x, y, z) = 0 if x = y = z,

(A-2) d(x, x, y) > 0 for all x, y ∈ X with x ̸= y,

(A-3) d(x, x, y) ≤ d(x, y, z) for all x, y, z ∈ X with z ̸= y,

(A-4) d(x, y, z) = d(x, z, y) = d(y, x, z) = d(z, x, y) = d(y, z, x) = d(z, y, x)
for all x, y, z ∈ X

(A-5) d(x, y, z) ≤ d(x,w,w) + d(w, y, z) for all x, y, z, w ∈ X

Then the function d is called a G-metric on X and the pair (X, d) a G-metric
space, which was introduced by Mustafa and Sims [7] as a generalization of
metric space.

Axiom (A-1) asserts that a G-metric d is nonnegative. Axiom (A-4) asserts
that the value of d(x, y, z) is independent of the order of x, y and z, and is
usually known as the symmetry of d in them.

Example 1.4. Let X be a metric space with the metric ρ(x, y).
For all x, y, z ∈ X, define

(a) ds(x, y, z) = ρ(x, y) + ρ(y, z) + ρ(z, x)

(b) dm(x, y, z) = max{ρ(x, y), ρ(y, z), ρ(z, x)}.

Then ds and dm satisfy Axioms (A-1)-(A-5) and hence they are G-metrics
on X.

Conversely, every G-metric d on X induces a metric ρG on it, given by

(c) ρG(x, y) = d(x, y, y) + d(y, x, x) for all x, y ∈ X

(d) ρG(x, y) = max{d(x, y, y), d(y, x, x)} for all x, y ∈ X.
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Geometrically, ds represents the perimeter of a triangle with the vertices x, y
and z in the plane. Further, if w is an interior point of the triangle, then (A-5)
is the best possible. That is why Axiom (A-5) is referred to as the rectangle
inequality of the G-metric d.

From this definition, it immediately follows that

(1.2-a) If x and y are points in X such that d(x, x, y) = 0, then x = y

and

(1.2-b) d(x, y, y) ≤ 2d(y, x, x) for all x, y ∈ X.

Definition 1.5. Let (X, d) be a G-metric space. Then the G-metric d is called
a symmetric [6] if

d(x, y, y) = d(x, x, y) for all x, y ∈ X.

The G-metric spaces in (a) and (b) of Example 1.4 are symmetric, while
the following is nonsymmetric:

Example 1.6. Consider (X, d) with X = {x, y} and

d(x, x, x) = d(y, y, y) = 0, d(x, x, y) = 1 and d(x, y, y) = 2 for all x, y ∈ X.

Then d is a G-metric, but not symmetric.

We require the following terminology and some topological concepts
developed in [6] and [7]:

Lemma 1.7. Consider a G-metric space (X, d) and the induced metric ρG
given by (c) of Example 1.4. Then

(i) ρG(x, y) = 2d(x, y, y) for all x, y ∈ X, provided X is symmetric,

(ii) 3
2d(x, y, y) ≤ ρG(x, y) ≤ 3d(x, y, y) for all x, y ∈ X with x ̸= y, if X is
not symmetric. In general, these inequalities cannot be improved.

Lemma 1.8. Consider a symmetric G-metric space (X, d) the induced metric
ρG given by (d) of Example 1.4. Then ρG(x, y) = d(x, y, y) for all x, y ∈ X.

Definition 1.9. A sequence ⟨xn⟩ ∞
n=1 ⊂ X is said to be G-convergent with

limit p ∈ X if lim
n,m→∞

d(p, xn, xm) = 0, that is if for any ϵ > 0 there is a

positive integer N such that n ≥ N and m ≥ N ⇒ d(xn, xm, p) < ϵ, and we

write xn
G→ p.

An immediate consequence of Definition 1.9 is

Lemma 1.10. In a G-metric space (X, d), the following statements are
equivalent:

(a) ⟨xn⟩ ∞
n=1 ⊂ X is G-convergent with the limit p ∈ X,
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(b) lim
n→∞

d(xn, xn, p) = 0,

(c) lim
n→∞

d(xn, p, p) = 0.

Also, it is known that d is jointly continuous in all the three variables, as a
metric is continuous in two variables.

Definition 1.11. A sequence ⟨xn⟩ ∞
n=1 ⊂ X is G-Cauchy if

lim
n,m,l→∞

d(xn, xm, xl) = 0

that is given ϵ > 0, we can find a positive integer N such that d(xn, xm, xl) < ϵ
whenever n ≥ N , m ≥ N and l ≥ N .

It follows that a sequence ⟨xn⟩ ∞
n=1 ⊂ X is G-Cauchy if and only if for

every ϵ > 0, there is a positive integer N such that d(xn, xm, xm) < ϵ whenever
n ≥ N and m ≥ N . Note that every G-convergent sequence is G-Cauchy (in a
G-metric space).

Definition 1.12. A G-metric space X is said to be G-complete or simply
complete if every G-Cauchy sequence in it is G-convergent with limit in it.

The G-metric space given in Example 1.6 is complete. Further, a G-metric
space (X, d) is complete if and only if the induced metric space (X, ρG) is
complete.

Definition 1.13. The self-map f on a G-metric space (X, d) is G-continuous

at x ∈ X if and only if for every sequence ⟨xn⟩ ∞
n=1 ⊂ X with xn

G→ x, we have

fxn
G→ fx.

2. Maim Results

In this paper, X denotes a G-metric space with G-metric d and f , a self-map
on X.

First we have

Definition 2.1. The self-map f on X is a G-contraction if there is a constant
α with the choice 0 ≤ α < 1 such that

(2.1) d(fx, fy, fz) ≤ αd(x, y, z) for all x, y, z ∈ X.

Now we have the following analogue of the celebrated Banach contraction
mapping theorem for a G-metric space, which we shall call the G-Contraction
mapping theorem:

Theorem 2.2. Let f be a G-contraction with choice (2.1). Then f will have a
unique fixed point p, provided X is G-complete.
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Proof. From (2.1), we get

d(fx, fy, fy) ≤ αd(x, y, y) and d(fy, fx, fx) ≤ αd(y, x, x),

which in view of Example 1.4-(d) gives

ρG(fx, fy) =≤ αmax{d(x, y, y), d(y, x, x)} = αρG(x, y) for all x, y ∈ X.

Thus the existence and uniqueness of the fixed point is ensured by the Banach
contraction mapping theorem (BCT).

Now we demonstrate in the next few lines that the existence of the fixed
point can be effectively established using only elementary properties of a
G-metric, without the application of BCT and usual iteration procedure.

Let S = {d(x, fx, fx) : x ∈ X}. Each S is a nonempty set of nonnegative
numbers which is bounded below. Hence it has a greatest lower bound, say a.

Our claim is that a = 0. If possible, suppose that a > 0. Since α < 1,
we see that a/α being greater than a cannot be a lower bound of S. Thus

d(x, fx, fx) <
a

α
or αd(x, fx, fx) < a for some x ∈ X, so that (2.1) gives

d(fx, f2x, f2x) ≤ αd(x, fx, fx) < a, which implies that a cannot be lower
bound of S, as d(fx, f2x, f2x) ∈ S. This would contradict the choice of a.
Therefore, a = inf{d(x, fx, fx) : x ∈ X} = 0.

Then by Lemma 1.1, we choose points x1, x2, ..., xn, ... in X such that

(2.2) d(xn, fxn, fxn) ∈ S for n = 1, 2, ... and lim
n→∞

d(xn, fxn, fxn) = 0.

Next we establish that

(e) ⟨xn⟩ ∞
n=1 is G-Cauchy.

Repeatedly employing (A-5) and using (1.2-b) and (2.1), we get

d(xn, xm, xm) ≤ d(xn, fxn, fxn) + d(fxn, xm, xm)

≤ d(xn, fxn, fxn) + d(fxn, fxm, fxm) + 2d(fxm, xm, xm)

≤ d(xn, fxn, fxn) + αd(xn, xm, xm) + 2d(xm, fxm, fxm)

so that

(1− α)d(xn, xm, xm) ≤ d(xn, fxn, fxn) + 2d(xm, fxm, fxm)

for all n ≥ 1 and all m ≥ 1. Applying the limit as n,m → ∞ and using (2.2),
this gives lim

n,m→∞
d(xn, xm, xm) = 0 proving (e).

Since X is G-complete, we can find a point p ∈ X satisfying (b) of
Lemma 1.10, that is

(2.3) lim
n→∞

d(xn, xn, p) = 0.
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Again from repeated application of (A-5); (2.1), and (1.2-b), we have

d(p, fp, fp) ≤ d(p, fxn, fxn) + d(fxn, fp, fp)

≤ d(p, xn, xn) + d(xn, fxn, fxn) + αd(xn, p, p)

≤ [d(p, xn, xn) + d(xn, fxn, fxn)] + 2αd(p, xn, xn)

= (2α+ 1)(d(p, xn, xn) + d(xn, fxn, fxn).

Applying the limit as n → ∞ in this, and then using (2.2) and (2.3),
we obtain that d(p, fp, p) ≤ 0 or fp = p, in view of (A-4) and (1.2-a).

That is, p is a fixed point of f .
Uniqueness: Let q be also a fixed point of f so that fq = q. Then from the
condition (2.1), (A-4) and (1.2-a), we get d(p, q, q) = d(fp, fq, fq) ≤ αd(p, q, q)
or (1− α)d(p, q, q) ≤ 0 and hence p = q. Thus the fixed point of f is unique.
We give an analogue of the notion of contractive fixed point [8] to a G-metric
space:

Definition 2.3. A fixed point p of f on X is a G-contractive fixed point of it
if the orbital sequence x, fx, ..., fnx, ... at each x ∈ X G-converges to p.

We see that p is a G-contractive fixed point of f under the stated conditions
of Theorem 2.2. In fact, for any x ∈ X by repeatedly applying (2.1) n times,

(2.4) d(fnx, p, p) = d(fnx, fnp, fnp) ≤ αnd(x, p, p).

But the rectangle inequality (A-5) and (2.1) give

d(x, p, p) = d(x, fp, fp) ≤ d(x, fx, fx)+d(fx, fp, fp) ≤ d(x, fx, fx)+αd(x, p, p)

or d(x, p, p) ≤ 1
1−α · d(x, fx, fx). With this, (2.4) becomes

(2.5) d(fnx, p, p) ≤ αn

1− α
· d(x, fx, fx) for all x ∈ X and all n ≥ 1.

Since lim
n→∞

αn = 0 , from (2.5) it follows that d(fnx, p, p) → 0 as n → ∞ for all

x ∈ X. Thus in view of Lemma 1.3-(c), we get fxn
G→ p for each x ∈ X.

In other words, p is a G-contractive fixed point of f .
We now prove the following result due to Mustafa et al. [6], extending the

same technique:

Theorem 2.4. Suppose for all x, y, z ∈ X that

(2.6) d(fx, fy, fz) ≤ αd(x, fx, fx)+βd(y, fy, fy)+γd(z, fz, fz)+δd(x, y, z)

where α + β + γ + δ < 1. If X is G-complete, then f will have a unique fixed
point p and f is continuous at p.

Proof. From (2.6) with y = z, we have

(2.7) d(fx, fy, fy) ≤ αd(x, fx, fx) + (β + γ)d(y, fy, fy) + δd(x, y, y)
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for all x, y ∈ X. As in the proof of Theorem 2.2, if a > 0, then (2.7) with
y = fx would give

d(fx, f2x, f2x) ≤ αd(x, fx, fx) + (β + γ)d(fx, f2x, f2x) + δd(x, fx, fx)

or

(2.8) d(fx, f2x, f2x) ≤ α+ δ

1− β − γ
· d(x, fx, fx).

But
α+ δ

1− β − γ
< 1, since α + β + γ + δ < 1. Then, from (2.8) we would get

d(fx, f2x, f2x) < a for some x ∈ X, which contradicts with the choice of a.
Therefore, a = 0.

Hence, again by Lemma 1.1, we choose a sequence ⟨d(xn, fxn, fxn)⟩ ∞
n=1

satisfying (2.2).
Now, repeatedly using (A-5), (2.7) and (1.2-b), we see that

d(xn, xm, xm) ≤ d(xn, fxn, fxn) + d(fxn, fxm, fxm) + d(fxm, xm, xm)

≤ d(xn, fxn, fxn) + αd(xn, fxn, fxn) + (β + γ)d(fxm, xm, xm)

+ δd(xn, xm, xm) + d(fxm, xm, xm)

≤ (1 + α)d(xn, fxn, fxn) + (β + γ + 1)d(fxm, xm, xm)

+ δd(xn, xm, xm)

≤ (1 + α)d(xn, fxn, fxn) + 2(β + γ + 1)d(xm, fxm, fxm)

+ δd(xn, xm, xm)

so that

d(xn, xm, xm) ≤ 1 + α

1− δ
· d(xn, fxn, fxn) +

2(β + γ + 1)

1− δ
· d(xm, fxm, fxm)

for all n ≥ 1 and m ≥ 1. Employing the limit as m,n → ∞ in this and
using (2.2), we get lim

n,m→∞
d(xn, xm, xm) = 0, proving (e).

Since X is G-complete, we can find a point p ∈ X satisfying (2.3).
Again by repeated application of (A-5); from (A-4), (2.7) and (1.2-b), we have

d(p, fp, fp) ≤ d(p, fxn, fxn) + d(fxn, fp, fp)

≤ [d(p, xn, xn) + d(xn, fxn, fxn)] + αd(xn, fxn, fxn)

+ (β + γ)d(p, fp, fp) + δd(xn, p, p)

or (1− β− γ)d(p, fp, fp) ≤ d(xn, xn, p)+ (1+α)d(xn, fxn, fxn)+ δd(xn, p, p).
Proceeding the limit as n → ∞ in this, and using (2.2), (2.3), Lemma 1.10,
we obtain that (1−β−γ)d(p, fp, fp) ≤ 0 or fp = p, in view of (1.2-a). That is
p is a fixed point of f . The uniqueness of the fixed point of f follows easily
from (2.6).
To prove that f is G-continuous at p, consider ⟨yn⟩ ∞

n=1 ⊂ X with lim
n→∞

yn = p.

Then from (2.7), (A-5) and (1.2-b),

d(p, fyn, fyn) = d(fp, fyn, fyn)

≤ αd(p, fp, fp) + (β + γ)d(yn, fyn, fyn) + δd(p, yn, yn)

≤ (β + γ) [d(yn, p, p) + d(p, fyn, fyn)] + δd(p, yn, yn)
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or d(p, fyn, fyn) ≤ β+γ
1−β−γ · d(yn, p, p) + δ

1−β−γ · d(p, yn, yn).
Applying the limit as n → ∞ in this and using Lemma 1.10, we find that

fyn
G→ p = fp. Thus f is G-continuous at p.

Here also we see that p will be a G-contractive fixed point of f . Indeed,
taking y = z = p in (2.7) and using (A-5), we get

d(fnx, p, p) = d(fnx, fp, fp)

≤ αd(fn−1x, fnx, fnx) + (β + γ)d(p, fp, fp) + δd(fn−1x, p, p)

= αd(fn−1x, fnx, fnx) + δd(fn−1x, p, p)

≤ αd(fn−1x, fnx, fnx) + δ
[
d(fn−1x, fnx, fnx) + d(fnx, p, p)

]
or

(2.9) d(fnx, p, p) ≤ (α+ δ)d(fn−1x, fnx, fnx).

But again from (2.7) with y = fn−1x, we have

d(fn−1x, fnx, fnx) ≤ αd(fn−2x, fn−1x, fn−1x) + (β + γ)d(fn−1x, fnx, fnx)

+ δd(fn−2x, fn−1x, fn−1x)

or d(fn−1x, fnx, fnx) ≤ α+δ
1−β−γ · d(fn−2x, fn−1x, fn−1x).

Hence by the induction, it follows that

d(fn−1x, fnx, fnx) ≤
(

α+δ
1−β−γ

)n−1

d(x, fx, fx) for all n ≥ 1.

Substituting this in (2.9), we get

d(fnx, p, p) ≤ (α+ δ)
(

α+δ
1−β−γ

)n−1

d(x, fx, fx) for all x ∈ X and n ≥ 1,

which as n → ∞ gives fnx
G→ p for each x ∈ X, since lim

n→∞

(
α+δ

1−β−γ

)n−1

= 0.

Thus p is a G-contractive fixed point of f .

3. Discussion of the results

If X is symmetric, in view of Lemma 1.7-(i) and (2.7), from [5] we find that

ρG(fx, fy) ≤ α+β+γ
2 [ρG(x, fx) + ρG(y, fy)] + δρG(x, y).

Then the existence and uniqueness of the fixed point is ensured from the Reich
theorem [9] in the metric space (X, ρG), since α+ β + γ + δ < 1.

But if X is not symmetric, Lemma 1.7-(ii) and (2.7) would imply that

ρG(fx, fy) ≤ 2
3 (α+ β + γ) [ρG(x, fx) + ρG(y, fy)] + δρG(x, y),

which gives no information about f , since
2

3
(α+β+γ)+

2

3
(α+β+γ)+γ may

not be less than 1. This fact led the authors of [6] to implement the routine
iteration procedure to prove the result.
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However, if the induced metric in the above argument is replaced by that
of Example 1.4-(d), iteration procedure can be avoided. Still, the unique fixed
point is an immediate consequence of the Ćirić’s result [2], for a complete metric
space (X, ρG), as shown in a recent paper [3].

The significance of our proof technique is three-fold:

1. It asserts that a unique fixed point can be effectively obtained using
elementary properties of a G-metric.

2. It does not utilize the traditional iteration procedure.

3. The results obtained are not consequences of the Banach, Ćirić and Reich
contraction theorems.

Finally, writing α = β = γ = q and δ = 0 in Theorem 2.4, we get 0 ≤ q < 1
3

and hence the following result of [5]:

Corollary 3.1. Suppose that there exists a constant q such that 0 ≤ q < 1
3 and

d(fx, fy, fz) ≤ q [d(x, fx, fx) + d(y, fy, fy) + d(z, fz, fz)] for all x, y, z ∈ X.

If X is complete, then f will have a unique fixed point p and f is G-continuous
at p.
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