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UNIQUE FIXED POINT IN G-METRIC SPACE
THROUGH GREATEST LOWER BOUND
PROPERTIES

T. Phaneendra® and K. Kumara Swamy®?

Abstract. In this paper, we prove the celebrated Banach contraction
mapping theorem and a result of Mustafa and Obiedat in a G-metric
space using only elementary properties of greatest lower bound. This
idea of using greatest lower bound properties in metric space was ini-
tiated by Joseph and Kwack in 1999. Also we introduce the notion of
G-contractive fixed point and demonstrate that the unique fixed point
will be a G-contractive fixed point for the underlying self-map in both
the results. Our proof is highly distinct in repeatedly employing the rect-
angle inequality of the G-metric rather than using traditional iterative
procedure.
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1. Introduction

Let A be a nonempty set of nonnegative real numbers which is bounded
below. Then by the infimum property of R (Sec. 2.4, [1]), A will have a greatest
lower bound, say a in R . Also any number in A which exceeds a cannot be its
lower bound.

The following is an easy consequence of properties of the infimum:

Lemma 1.1. If A is a nonempty set of nonnegative real numbers with zero
as its greatest lower bound, then there is a sequence (ry) 52, in A such that
lim r, = 0.
n—oo

Let M be a metric space with metric p. Using Lemma [ and the repeated
application of the triangle inequality of p, Joseph and Kwack [@] in 1999 proved
the following theorem.

Theorem 1.2. Let f be a self-map on M, and there exist constants a; > 0,
5

1=1,2,...,5 such that 0 < Zai <1 and
i=1
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(1.1) p(fx, fy) < a1p(x,y) + azxp(z, fx) + azp(y, fy)
+ asp(z, fy) + asp(y, fx) for all z,y € M.

If M is complete, then f will have a unique fized point p.

We note that if ay = -+ = a5 = 0 in (), f reduces to a contraction and
Theorem =2, to the well-known Banach contraction mapping theorem.
In this paper, we present the proofs of G-contraction mapping theorem
(See Theorem P2) and of results of Mustafa and Obiedat [G] and Mustafa
et al. [6] only using the basic properties of greatest lower bound of a set of
nonnegative real numbers. Interestingly, our technique focuses on repeat-
edly employing the axiom (A-5) (see below) instead of the routine iterative
procedure.

Definition 1.3. Let X be a nonempty set and d : X x X — R satisfy the
following axioms:

(A-1) d(x,y,2) >0 for all z,y,z € X with d(z,y,2) =0if x =y = 2,

(A-2) d(z,z,y) >0 for all z,y € X with z # y,

(A-3) d(z,z,y) < d(z,y,2) for all x,y,z € X with z # y,

(A-4) d(2,y,2) = d(z,2,y) = d(y,z,2) = d(z,2,9) = dy,z,2) = d(z,y,7)

for all z,y,z € X
(A-5) d(z,y,2) <d(z,w,w) + d(w,y, z) for all z,y,z,w € X

Then the function d is called a G-metric on X and the pair (X, d) a G-metric
space, which was introduced by Mustafa and Sims [[7] as a generalization of
metric space.

Axiom (A-1) asserts that a G-metric d is nonnegative. Axiom (A-4) asserts
that the value of d(z,y,2) is independent of the order of z,y and z, and is
usually known as the symmetry of d in them.

Example 1.4. Let X be a metric space with the metric p(z,y).
For all z,y, z € X, define

(a) ds(w,y,2) = p(z,y) + p(y, 2) + p(z,2)

(b) dm(z,y,2) = max{p(z,y), p(y, 2), p(2, ) }.

Then dy and d,,, satisfy Axioms (A-1)-(A-5) and hence they are G-metrics
on X.
Conversely, every G-metric d on X induces a metric pg on it, given by

(¢) palx,y) =d(z,y,y) +d(y,z,z) for all z,y € X

(d) palz,y) =max{d(z,y,y),d(y,z,z)} for all z,y € X.
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Geometrically, ds represents the perimeter of a triangle with the vertices z,y
and z in the plane. Further, if w is an interior point of the triangle, then (A-5)
is the best possible. That is why Axiom (A-5) is referred to as the rectangle
inequality of the G-metric d.

From this definition, it immediately follows that

(1.2-a) If 2 and y are points in X such that d(z,z,y) =0, then x =y
and
(1.2-b) d(z,y,y) < 2d(y,x,x) for all x,y € X.

Definition 1.5. Let (X, d) be a G-metric space. Then the G-metric d is called
a symmetric [B] if

d(z,y,y) =d(z,z,y) foral =z,ye€ X.

The G-metric spaces in (a) and (b) of Example 1.4 are symmetric, while
the following is nonsymmetric:

Example 1.6. Consider (X,d) with X = {z,y} and
d(z,z,2) = d(y,y,y) = 0,d(z,z,y) = 1 and d(z,y,y) =2 for all z,y € X.
Then d is a G-metric, but not symmetric.

We require the following terminology and some topological concepts
developed in [A] and [(]:

Lemma 1.7. Consider a G-metric space (X,d) and the induced metric pg
given by (¢) of Example 1.4. Then

(i) pa(z,y) = 2d(x,y,y) for all z,y € X, provided X is symmetric,

(i) 2d(z,y,y) < pale,y) < 3d(x,y,y) for all 2,y € X with x # y, if X is
not symmetric. In general, these inequalities cannot be improved.

Lemma 1.8. Consider a symmetric G-metric space (X, d) the induced metric
pc given by (d) of Example 1.4. Then pg(x,y) = d(z,y,y) for all z,y € X.

Definition 1.9. A sequence (z,) 52, C X is said to be G-convergent with
limit p € X if lim d(p,zn,2z,) = 0, that is if for any € > 0 there is a
n,m— oo

positive integer N such that n > N and m > N = d(x,, Tm,p) < €, and we
write z, £ p.

An immediate consequence of Definition 1.9 is

Lemma 1.10. In a G-metric space (X,d), the following statements are
equivalent:

(a) (xn) 52, C X is G-convergent with the limit p € X,
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(b) lim d(zn,7n,p) =0,

n—oo
(¢) lim d(x,,p,p) =0.
n—oo

Also, it is known that d is jointly continuous in all the three variables, as a
metric is continuous in two variables.

Definition 1.11. A sequence (x,) 2 C X is G-Cauchy if

lim  d(xp, Tm,x;) =0
n,m,l—oo

that is given € > 0, we can find a positive integer N such that d(x,,, T, z;) < €
whenever n > N, m > N and [ > N.

It follows that a sequence (z,) 52; C X is G-Cauchy if and only if for
every € > 0, there is a positive integer N such that d(x,, Zm, Tm) < € whenever
n > N and m > N. Note that every G-convergent sequence is G-Cauchy (in a
G-metric space).

Definition 1.12. A G-metric space X is said to be G-complete or simply
complete if every G-Cauchy sequence in it is G-convergent with limit in it.

The G-metric space given in Example 1.6 is complete. Further, a G-metric
space (X,d) is complete if and only if the induced metric space (X, pg) is
complete.

Definition 1.13. The self-map f on a G-metric space (X,d) is G-continuous
at © € X if and only if for every sequence (z,,) 22, C X with z,, 4 x, we have

2. Maim Results

In this paper, X denotes a G-metric space with G-metric d and f, a self-map
on X.
First we have

Definition 2.1. The self-map f on X is a G-contraction if there is a constant
« with the choice 0 < a < 1 such that

(2.1) d(fz, fy, fz) < ad(z,y,z) forall z,y,z¢€ X.

Now we have the following analogue of the celebrated Banach contraction
mapping theorem for a G-metric space, which we shall call the G-Contraction
mapping theorem:

Theorem 2.2. Let f be a G-contraction with choice (2.1). Then f will have a
unique fized point p, provided X is G-complete.
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Proof. From (), we get

d(fz, fy, fy) < ad(z,y,y) and d(fy, fz, fr) < ad(y, z, ),

which in view of Example 1.4-(d) gives

pG(fx,fy) =< amax{d(x,y,y),d(y,x,x)} = Oépg(l',y) for all T,y € X.

Thus the existence and uniqueness of the fixed point is ensured by the Banach
contraction mapping theorem (BCT). O

Now we demonstrate in the next few lines that the existence of the fixed
point can be effectively established using only elementary properties of a
G-metric, without the application of BCT and usual iteration procedure.

Let S = {d(z, fz, fz) : © € X}. Each S is a nonempty set of nonnegative
numbers which is bounded below. Hence it has a greatest lower bound, say a.

Our claim is that a = 0. If possible, suppose that a > 0. Since o < 1,
we see that a/a being greater than a cannot be a lower bound of S. Thus

d(z, fz, fz) < 2 or ad(z, fz, fr) < a for some z € X, so that () gives
a

d(fz, f2x, f?xr) < ad(z, fx, fr) < a, which implies that a cannot be lower
bound of S, as d(fxz, f?z, f2x) € S. This would contradict the choice of a.
Therefore, a = inf{d(z, fz, fx):z € X} =0.

Then by Lemma I, we choose points x1, X2, ..., Ty, ... in X such that

(2.2)  d(xn, fen, fz,) € Sforn=1,2,... and li_>m d(xp, fTn, fo,) = 0.

Next we establish that
(e) (xn) 52, is G-Cauchy.
Repeatedly employing (A-5) and using (1.2-b) and (E7T), we get

d(l'm fzna fl'n) + d(fzna Tm,y xm)
d<xn7 fxna fxn) + d(fxna f-rmv fmm) + Qd(fl'm, Ty xm)
d(Tn, fan, frn) + ad(Tn, Tm, Tm) + 2d(Tm, fZm, fTm)

d(l‘n, Tm, xm)

IAINCIA

so that

(1 - O‘)d(xnvxm; zm) < d(gjn7 fl'na fxn) + Zd(l'm; fxmv fl'm)

for all » > 1 and all m > 1. Applying the limit as n,m — oo and using (2732),

this gives lim  d(xy, Zm, Tm) = 0 proving (e).
7,1M— 00

Since X is G-complete, we can find a point p € X satisfying (b) of
Lemma [, that is

(2.3) lim d(xy,x,,p) = 0.

n—roo
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Again from repeated application of (A-5); (20), and (1.2-b), we have

d(p, fp, fp) < d(p, fTn, fzn) + d(fn, D, fP)

< d(p, Tn, xn) + d(xn, fTn, fr,) + ad(z,, p,p)

< |d(p, T, Tn) + d(Tp, fT0, frn)] + 2ad(p, T, 20)
= (2a + 1)(d(p, xn, Tn) + d(zp, f2n, fr,).

Applying the limit as n — oo in this, and then using (2.2) and (2.3),
we obtain that d(p, fp,p) <0 or fp =p, in view of (A-4) and (1.2-a).

That is, p is a fixed point of f.
Uniqueness: Let g be also a fixed point of f so that fq¢ = ¢q. Then from the
condition (E), (A-4) and (1.2-a), we get d(p, q,q) = d(fp, fq, fq) < ad(p,q,q)
or (1 —a)d(p,q,q) <0 and hence p = ¢q. Thus the fixed point of f is unique.
We give an analogue of the notion of contractive fixed point [] to a G-metric
space:

Definition 2.3. A fixed point p of f on X is a G-contractive fixed point of it
if the orbital sequence z, fx, ..., f*x, ... at each z € X G-converges to p.

We see that p is a G-contractive fized point of f under the stated conditions
of Theorem E2. In fact, for any 2 € X by repeatedly applying (E) n times,

(2.4) d(f"z,p,p) = d(f"z, f'p, f"p) < a"d(z,p, p).

But the rectangle inequality (A-5) and (E70) give

d(z,p,p) = d(z, fp, fp) < d(z, fz, fx)+d(fz, [p, fp) < d(, fz, fr)+ad(z, p,p)

or d(z,p,p) < -d(z, f, fr). With this, (Z4) becomes

— 1

n

(25)  d(f"z,p,p) <

<7 d(m,fx,fx) forall z€ X andall n>1.
Since lim o™ =0, from (E3) it follows that d(f™z,p,p) — 0 as n — oo for all
n—oo

2 € X. Thus in view of Lemma 1.3-(c), we get fz, i<e p for each z € X.

In other words, p is a G-contractive fixed point of f.
We now prove the following result due to Mustafa et al. [6], extending the
same technique:

Theorem 2.4. Suppose for all x,y,z € X that

(2.6) d(fz, fy, f2) < ad(x, fz, fx)+Bd(y, [y, [y) +vd(z, f2, f2)+dd(z,y, 2)

where a + B+ v+ 0 < 1. If X is G-complete, then f will have a unique fized
point p and f is continuous at p.

Proof. From (20) with y = z, we have

(2.7) d(fx, fy, fy) < ad(z, fz, fr) + (B +7)d(y, fy, fy) + éd(x,y,y)
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for all z,y € X. As in the proof of Theorem 22, if a > 0, then (220) with
y = fx would give

d(fz, f?z, f*z) < ad(z, fz, fx) + (B +7)d(fz, [z, fPx) + 6d(z, fz, fz)

or
6
(2.8) d(fr. fx, o) < 2T d(a, fr, f).
1-B—x
oa+0 .
But Fep— < 1, since a + S+ v+ 3 < 1. Then, from (Z]) we would get
— P =7

d(fx, f?z, f>x) < a for some x € X, which contradicts with the choice of a.
Therefore, a = 0.
Hence, again by Lemma [T, we choose a sequence (d(z, f2n, fz,))
satisfying (272).
Now, repeatedly using (A-5), (E24) and (1.2-b), we see that
< d(@n, fon, fon) + ad(Tn, fTn, f2n) + (B +7)d(fTm, Tm, Tm)
+ (5d(l‘n, Tm, xm) + d(fajmy Tm,y xm)
+ 6d('rn7 IWH l'm)
< L+ a)d(@n, fon, fon) + 208+ + D)d(@m, fTm, fom)
+ 8d(Zn, Ty Trn)

[eS)
n=1

so that

14+« B+v+1)

2
< = .
d(l‘n;mmywm) =15 d($n7fmn7fxn) + 1-35 d($m7fwm7fxm)

for all n > 1 and m > 1. Employing the limit as m,n — oo in this and
using (22), we get liril d(Tpn, T, Tm) = 0, proving (e).
Since X is G-complete, we can find a point p € X satisfying (E23).
Again by repeated application of (A-5); from (A-4), (224) and (1.2-b), we have
d(p, fp, fp) < d(p, fn, fon) + d(fzn, D, [D)
<[d(p; v, 20) + d(@n, frn, fon)] + ad(@n, fon, fon)

or (1—=B—=%)d(p, fp, fp) < d(@n, Ty, p) + (1 + @)d(zy, f2n, frn) + 6d(xn, p, p).
Proceeding the limit as n — oo in this, and using (22), (23), Lemma 1.10,
we obtain that (1—8—~)d(p, fp, fp) <0or fp =p, in view of (1.2-a). That is
p is a fixed point of f. The uniqueness of the fixed point of f follows easily
from (23).

To prove that f is G-continuous at p, consider (y,) 52, C X with nl;rrgo Yn = P.

Then from (E72), (A-5) and (1.2-b),
AP, fyn: fyn) = d(f; fyn, fyn)

< ad(p, fp, fp) + (B +7)dYn> [Yns fyn) + 3d(D, Yns Yn)
< (B+9)[d(Wns 2 p) + dD; fyns fyn)] + 0d(D, Yns Yn)
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or d(pa fyna fyn) < 153;_17 d(yn,pvp) + ﬁ : d(p> Yn, yn)
Applying the limit as n — oo in this and using Lemma 1.10, we find that

fyn £ p = fp. Thus f is G-continuous at p. O

Here also we see that p will be a G-contractive fixed point of f. Indeed,
taking y = z = p in (EZ0) and using (A-5), we get

d(f"x,p,p) = d(f"z, fp, fp)
<ad(f*a, fha, fhx) + (B +7)d(p, fp, fp) + 6d(f" 'z, p,p)
= ad(f" 'z, [z, fr) + 6d(f" a, p,p)
< ad(f"ta, [, fra) 4+ 6 [d(fP e, e, fh) + d(f s, p, )]

or

(2.9) d(f"z,p,p) < (a4 &)d(f" ', fra, fhx).

But again from (222) with y = f"~ 1z, we have

d(f"ta, fra, frr) < ad(ff %, S0 ) + (B+)d(f e, e [
+8d(f" P, 1 e, [ )

or d(f" e, fra, frz) < 1o d(f 2, fr e, fr ).
Hence by the induction, it follows that

d(fnfl f T f ) ( a;ify)n_ld(x’fx,fx) forall n>1.

Substituting this in (Z9), we get

n—1
d(f"z,p,p) < (a+9) ( a;i{) d(z, fx, fx) for all x € X and n > 1,

n—1
which as n — oo gives f"x £ p for each x € X, since lim (f‘;‘s ) = 0.
n—o00 P

Thus p is a G-contractive fixed point of f.
3. Discussion of the results

If X is symmetric, in view of Lemma 1.7-(i) and (220), from [5] we find that

pc(fz, fy) < 2 [pe(, fr) + pa(y, fy)] + dpc(z, y).

Then the existence and uniqueness of the fixed point is ensured from the Reich
theorem [@] in the metric space (X, pg), since a + 8+ + 6 < 1.
But if X is not symmetric, Lemma 1.7-(ii) and (EZ4) would imply that

pa(fz, fy) < F(a+B+7)[pa(x, fz) + pa(y, fy)] + dpa(z,y),

2 2
which gives no information about f, since g(a +08+v)+ 3 (a+B+7)+~ may

not be less than 1. This fact led the authors of [B] to implement the routine
iteration procedure to prove the result.
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However, if the induced metric in the above argument is replaced by that
of Example 1.4-(d), iteration procedure can be avoided. Still, the unique fixed
point is an immediate consequence of the Cirié’s result [?], for a complete metric
space (X, pg), as shown in a recent paper [3].

The significance of our proof technique is three-fold:

1. It asserts that a unique fixed point can be effectively obtained wusing

elementary properties of a G-metric.

2. It does not utilize the traditional iteration procedure.

3. The results obtained are not consequences of the Banach, Ciri¢ and Reich
contraction theorems.
Finally, writing « = 8 = v = ¢ and § = 0 in Theorem P4, we get 0 < g < %
and hence the following result of [5]:

Corollary 3.1. Suppose that there exists a constant q such that 0 < q < % and
d(fz, fy, [z) < qld(z, fz, fx) + d(y, fy, fy) + d(z, fz, [2)] forall x,y,z € X.

If X is complete, then f will have a unique fized point p and f is G-continuous
at p.
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