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REGULAR GRAPHS WHOSE SECOND LARGEST
EIGENVALUE IS AT MOST 11
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Abstract. Regular graphs whose second largest eigenvalue (i.e. λ2)
is at most 1 are considered. Some structural properties of these graphs
are obtained, and all these graphs with λ2 ≤ 1 of degree at most 8 are
determined.
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1. Introduction

Let G be a simple graph with n vertices and adjacency matrix A (= A(G)).
The characteristic polynomial and the eigenvalues of A are also called the
characteristic polynomial and the eigenvalues of G. These eigenvalues, in non-
increasing order, are denoted by λ1 (= λ1(G)), . . . , λn (= λn(G)).

The problem of determining the graphs whose second largest eigenvalue is
bounded by some (relatively small) number is well studied in the literature.
The graphs whose second largest eigenvalue does not exceed 1

3 or
√
2 − 1 are

determined, while the graphs satisfying λ2 ≤
√
5−1
2 are well characterized but

not completely determined (see [8]). In addition, there are many results re-
garding the cases λ2 ≤ 1 (see [9] and the references therein) and λ2 ≤ 2 [8].
More details on this topic can be found in [3, 8], or [5] (including a various
bounds on λ2, its relation with algebraic connectivity or Markov chains, and
applications in computer sciences). Here we recall from these references that
second largest eigenvalue plays an important role in determining the structure
of regular graphs. In particular, it is known that regular graphs with small
second largest eigenvalue have more ’round’ shape, i.e. smaller diameter and
higher connectivity. Moreover, not necessarily regular, but sparse graph having
strong connectivity properties is known as an expander (for more details, see
[7]). Such graphs are relevant to theoretical computer science, the designs of
robust computer networks, the theory of error-correcting codes and to complex-
ity theory [7]. Though expanding properties of regular graphs can be measured
in several different ways, their common property is a large spectral gap (the
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difference between the degree and the second largest eigenvalue). In this paper
we obtain a number of regular graphs with small second largest eigenvalue (and
consequently, large spectral gap), and therefore they may be interesting for the
application in the above mentioned areas of research.

Regular graphs with all eigenvalues at least −2 are characterized. Namely,
they are either complete multipartite graphs with block size 2, line graphs of
regular or semiregular bipartite graphs, or embeddable in the Euclidean root
system E8 [2]. Further on, regular graphs embeddable in E8 but not of the
other types were determined in [1]. Based on these results, another general
characterization of regular graphs with all eigenvalues at least −2 is known [4];
we recall this characterization in next section. So, regular graphs with second
largest eigenvalue at most 1 can be characterized as their complements, or
complements of their disjoint unions. However, such characterization of regular
graphs with λ1 ≤ 1 is rough, and does not provide much information about
them, particularly if their complements are disconnected. Hence, our intention
is to consider some of those graphs by further analysis, deeper investigation of
their structure, and by giving their clear description in some specific cases. We
also extend the results obtained in [9] by giving some new general statements,
and by considering certain particular cases.

In the next section we fix some notation and mention some results from the
literature in order to make the paper more self-contained. The main results
are given in Section 4.

2. Preliminaries

A graph consisting of k disjoint copies of an arbitrary graph G will be
denoted by kG. A complete graph and a cycle on n vertices will be denoted by
Kn and Cn, respectively. A complete bipartite graph with partitions of size m
and n is denoted by Km,n. The cocktail party graph CP (n) is a unique regular
graph with 2n vertices of degree 2n− 2 (it is obtained by removal of a perfect
matching from K2n). The complement of G we denote by G, while ’∪’ stands
for the disjoint union of two graphs. For the remaining notation we refer the
reader to [3].

The line graph L(H) of a graph H is the graph whose vertices are the edges
of H, with two vertices in L(H) adjacent whenever the corresponding edges in
H have exactly one vertex in common. In this case H is called the root graph.

The degree of a regular graph G will be denoted by rG (= r), while the cor-
responding graph will be called r-regular. A graph is called (r1, r2)-semiregular
bipartite, with parameters (n1, n2, r1, r2), if it is bipartite (i.e. 2-colourable)
and vertices in the same colour class have the same degree (n1 vertices of degree
r1 and n2 vertices of degree r2, where n1r1 = n2r2). Note that a line graph is
regular if and only if its root graph is regular or semiregular bipartite [6].

It is known that each connected regular graph satisfying λ2 ≤ 1 is a com-
plement of a (not necessarily connected) regular graph whose each component
is either

1. a connected regular line graph,
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2. a cocktail party graph or

3. one of 187 connected regular exceptional graphs given in [4], pp. 213–227

(see [9, Theorem 3.1]).

Each of 187 connected regular exceptional graphs has between 8 and 28
vertices, while its degree is between 3 and 16. In [4], these graphs are divided
into three layers, and if n is the number of vertices, and r the degree of an
exceptional graph, then the graphs of the first (resp. the second or the third)
layer satisfy

(1) n = 2(r + 2) ≤ 28 (resp. n =
3

2
(r + 2) ≤ 27 or n =

4

3
(r + 2) ≤ 16)

Note that any regular exceptional graph belongs to exactly one of layers. This
classification will be frequently used in the next section.

3. Main results

In [9], some characterizations of regular graphs with λ2 ≤ 1 are given, and
all r-regular graphs (r ≤ 4) satisfying λ2 ≤ 1 are determined. It turns out
that some of those results can be generalized to an arbitrary degree, and this
is exactly what we do here in Theorem 3.2, and Theorem 3.3. In addition, we
give more general characterizations (Lemma 3.1, and Theorem 3.4), and then,
using them, we completely determine all r-regular graphs (5 ≤ r ≤ 8) with
λ2 ≤ 1 (Theorem 3.6 – Theorem 3.9).

Clearly, each r-regular (r ≥ 2) graph with λ2 ≤ 1 must be connected. Recall
that edge-degree of an arbitrary edge e is a number of edges adjacent to e. We
prove a lemma.

Lemma 3.1. Let G be a connected r-regular graph on n vertices. If G = L(H),
where H is a regular graph then n− r is odd and n− r + 1 divides 4n.

Proof. Let H be a regular graph on n edges. Since rG = n − r − 1, we have
that each edge of H has degree n− r − 1, and therefore rH = n−r−1

2 + 1. So,
n− r must be odd. Next, if N is the number of vertices in H, we get N = 2n

rH
,

and thus n−r−1
2 must divide 2n, that is, n− r + 1 divides 4n. This completes

the proof.

Note that we can easily construct some (infinite) families of regular graphs
with λ2 ≤ 1. Namely, it is enough that any of these graphs be a complement
of a disjoint union of graphs whose least eigenvalue is not less than −2 (see
discussion in Section 1). On the other hand, given an arbitrary regular graph
G, then, in general case, the consideration of the structure of G or G is not a
simple way to answer whether λ2(G) ≤ 1 or not. In the following two theorems
we consider some special cases. Some of resulting graphs appear in [9], as well.
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Theorem 3.2. Let G be an r-regular (r ≥ 4) graph on n = 2r vertices satis-
fying λ2 ≤ 1. We have:

(i) if r ̸= 6, 7 then G = 2Kr;

(ii) if r = 6 then G = 2K6 or G = L(K3,4);

(iii) if r = 7 then G = 2K7 or G = L(H), where H is any of two 4-regular
graphs with 7 vertices.

Proof. We have rG = r−1, so if G is disconnected then it has two components
with exactly r vertices each. Thus, each of them is a complete graph Kr, giving
G = 2Kr. In this way we get (i) and the first parts of (ii), and (iii).

Assume now that G is connected. Clearly, it cannot be a cocktail party
graph. If G is a regular exceptional graph then we get that it either belongs
to the second layer, has degree 3, and 6 vertices (which is impossible since
a regular exceptional graph in the second layer has at least 9 vertices), or it
belongs to the third layer, has degree 2, and 4 vertices (which is also impossible
since a regular exceptional graph in the second layer has at least 8 vertices).
So, there are no resulting graphs in this case.

It remains that G = L(H), where H is regular or semiregular bipartite. If
H is regular then, due to Lemma 3.1, r must be odd and r + 1 must divide
8r. In other words, r + 1 must divide 8, i.e. k = 7. Then we have that H is a
regular graph of degree rH = r−1

2 +1 = 4 with N = 2n
rH

= 7 vertices. There are

exactly two such candidates for H), and G = L(H). In this way we completed
the list of (iii).

Let now H be a semiregular bipartite graph on n = 2r edges. Since each
edge of H has degree r − 1 we have that H is a (r1, r2)-semiregular bipartite,
where r1 + r2 = r+1. With no loss of generality we can suppose that r1 ≥ r2.
If r2 is equal to 1 we get that H = 2K1,r, but then L(H) is not connected.
If r1 ≥ r2 ≥ 2, then since r1, r2 < r and since both r1 and r2 must divide
2r, we easily get that the only solution is r1 = 2r

3 and r2 = r
3 + 1, giving

that r + 3 must divide 18. So, r = 6, or r = 15. The second solution gives a
semiregular bipartite graph with parameters (5, 3, 6, 10), which is not possible
(5 > 3, but we supposed r1 ≥ r2). The first solution gives a rise to the graph
G = L(K3,4). So G = L(K3,4), which is the remaining graph from (ii), and the
proof is complete.

We proceed with the following result.

Theorem 3.3. Let G be an r–regular graph (r > 17) on n > 2r vertices
satisfying λ2 ≤ 1. Then G = L(K2,r+1).

Proof. If n > 2r then G is connected. It can be easily verified that under the
assumptions of the theorem G cannot be neither a cocktail party graph nor a
regular exceptional graph.
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Assume that G = L(H), where H is a regular graph of degree rH , and
with N vertices. Then we have N = 2n

rH
, and since n = 2rH + r − 1 it follows

that N = 4 + 2r−2
rH

. Next, we have that rH > r+1
2 (because n > 2r), and so

2r−2
rH

< 4 − 8
r+1 < 4. It immediately follows that N ∈ {5, 6, 7} (which is not

possible since rH > r+1
2 > 9).

Let now G = L(H), where H is (r1, r2)-semiregular bipartite graph on n
edges, having n1 and n2 vertices in the corresponding colour classes. Obviously,
both r1 and r2 must be greater than 1. The following facts also hold:

(i) r1n1 = r2n2 = n;

(ii) r1 + r2 = n− r + 1;

(iii) r1r2 ≤ n.

Without loss of generality we can assume that r1 ≥ r2. So we have 2 ≤
r2 ≤ r1 ≤ n− r − 1, implying that 2(n− r − 1) ≤ r1r2 ≤ n. Since n > 2r, we
get n = 2r + 1, or n = 2r + 2.

Let n = 2k + 1. Then, both r1 and r2 must be odd (since they divide n),
and r must be even (since r1+ r2 = r+2). It then follows that r1r2 ≥ 3(r−1),
so for r > 17 we have r1r2 > 2r + 1 = n, which is not possible.

Let now n = 2k + 2. We have r1r2 ≥ 2(r + 1) = n, and since r1r2 ≤ n
it immediately follows that r1 = 2, r2 = r + 1. Therefore, H = K2,r+1, i.e.

G = L(K2,r+1).

It immediately follows from the previous theorem that if the degree r of a
regular graph is greater than 17, and the number of its vertices greater than
2r+2, then such a graph must have λ2 > 1. But also if 2 ≤ r ≤ 17 and n > 2r,
besides L(K2,r+1), G can be the line graph of a regular graph H (if r ≤ 11) or
it can be a regular exceptional graph.

In the first case, we easily get that n ≤ 2r + 3, with equality holding if
r = 6, and consequently H = K6 and G = L(K6).

In the second case, using (1), we get that if r-regular graph G with n
vertices is the complement of a regular exceptional graph from the first (resp.
the second, or the third) layer, then n = 2(r − 1) (resp. n = 3(r − 1), or
n = 4(r − 1)).

Considering these results and comparing the list of regular exceptional
graphs, we get the following theorem.

Theorem 3.4. Let G be an r-regular graph on n vertices satisfying λ2 ≤ 1.
We have

(i) if r > 10 or r = 2, then n ≤ 2r+2, and if n = 2r+2 then G = L(K2,r+1),

(ii) if r = 10 then n ≤ 27, and if n = 27 then G is a complement of the
Schläfli graph,

(iii) if r = 9 then n ≤ 24, and if n = 24 then G is a complement of a regular
exceptional graph on 24 vertices from the second layer,
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(iv) if r = 8 then n ≤ 21, and if n = 21 then G is a complement of any of
two regular exceptional graphs on 21 vertices from the second layer,

(v) if r = 7 then n ≤ 18, and if n = 18 then G is a complement of any of
four regular exceptional graphs on 18 vertices from the second layer,

(vi) if r = 6 then n ≤ 15, and if n = 15 then G is a complement of any
of six regular exceptional graphs on 15 vertices from the second layer or
G = L(K6),

(vii) if r = 5 then n ≤ 16, and if n = 16 then G is a complement of the Clebsch
graph,

(viii) if r = 4 then n ≤ 12, and if n = 12 then G is a complement of any of
five regular exceptional graphs on 12 vertices from the second layer,

(ix) if r = 3 then n ≤ 10, and if n = 10 then G is the Petersen graph.

Remark 3.5. Note that the Schläfli, the Clebsch, and the Petersen graph belong
to the second, the third, and the first layer, respectively. They can be found in
[4].

In Theorem 3.4, we determine the upper bound of n for a fixed r. In
addition, we obtain all solutions in the cases when this bound is attained. We
now proceed to determine all solutions in some particular cases. It is pointed
that all regular graphs satisfying λ2 ≤ 1 are determined whenever their degree
does not exceed 4, so we continue with the next natural step.

Theorem 3.6. Let G be a 5-regular graph on n vertices satisfying λ2(G) ≤
1. Then, G is one of the following graphs: K6, C8, C3 ∪ C5, C4 ∪ C4, 2K5,
complement of any of five regular exceptional graphs on 12 vertices from the
second layer, complement of the Clebsch graph, L(CP (3)), or L(K2,6).

Proof. Due to Theorem 3.4 (vii), we have n ≤ 16, and if n = 16 then G is a
complement of the Clebsch graph.

Let n < 16 and assume first that n ≥ 11. Then, G is connected, and since
the degree of G is odd, there are two cases to consider. If G is an exceptional
graph it must have 12 or 14 vertices, and its degree is equal to n − 6. The
only solutions are five exceptional graphs on 12 vertices from the second layer.
Obviously, G cannot be a cocktail party graph (n− rG = 6 > 2).

If G is the line graph of a regular graph H, then (due to Lemma 3.1) we
have that n − 4 divides 4n, which is not possible if n = 14. If n = 12, then
the degree of H is rH = 12−6

2 + 1 = 4, and the number of vertices of H is

N = 2n
rH

= 6, so H = CP (3), G = L(CP (3)), and finally, G = L(CP (3)).

If G is the line graph of a semiregular bipartite graph, since n > 2rG we
get (similarly to Theorem 3.3) that n must be equal to 12, and G = L(K2,6).

Assume now that n < 11. If n = 10, then, due to Theorem 3.2, we have
that G = 2K5. If n = 8 then rG = 2, which yields that G is either a cycle
or it is a disconnected graph whose all components are cycles. Additionally, if
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G = Ck1 ∪Ck2 ∪ . . .∪Ckl
, then k1 + k2 + . . .+ kl = n holds. So, in this case we

have G = C8 or G = C3 ∪ C5 or G = C4 ∪ C4. Finally, if n = 6 then G = K6.
Collecting the graphs obtained, we get the above list.

Theorem 3.7. Let G be a 6-regular graph on n vertices satisfying λ2(G) ≤ 1.
Then, G is one of the following graphs: K7, CP (4), C9, C3 ∪ C6, C4 ∪ C5,
C3 ∪ C3 ∪ C3, L(K4) ∪ L(K2,3), complement of any of five regular exceptional

graphs on 10 vertices from the first layer, CP (3) ∪K5, L(K3,4), L(2K1,6),
complement of any of six regular exceptional graphs on 15 vertices from the
second layer, L(K6), or L(K2,7).

Proof. Due to Theorem 3.4 (vi), we have n ≤ 15, and if n = 15 then G is a
complement of any of six regular exceptional graphs on 18 vertices from the
second layer or G = L(K6).

Let n < 15 and assume first that n ≥ 13. Then, G is connected, and we
have two cases: n = 13 and n = 14. If G is an exceptional graph its degree
will be rG = 6 if n = 13, or rG = 7 if n = 14, but there are no such regular
exceptional graphs. It is obvious that G cannot be a cocktail party graph since
n − rG = 7 > 2. Since n − 4 does not divide 4n for n ∈ {13, 14}, due to
Lemma 3.1, G cannot be the line graph of a regular graph. If G is the line
graph of a semiregular bipartite graph, since n > 2rG, n must be equal to 14,
and G = L(K2,7) (see the proof of Theorem 3.3).

Assume now that n < 13. If n = 12, then, due to Theorem 3.2, we have
that G = 2K6, or G = L(K3,4).

If n = 11, we have that rG = 4. If a component of G is an exceptional graph
then the number of vertices in that component would be at least 8 (according
to its degree). So G would have to be a connected graph, but there are no
regular exceptional graphs of degree 4 on 11 vertices.

If a component of G is the line graph of a regular graph H, then H has
m ≤ 11 edges, and its degree is rH =

rG
2 + 1 = 3. If N is the number of

vertices in H, then we have 3N = 2m, so 3 divides 2m. The possibilities are:
m = 9 (but the other components of G would then have 2 or less vertices),
m = 6 (then H = K4, so L(H) = CP (3), while the other component of G
has 5 vertices, which yields that G = CP (3) ∪K5), or m = 3 (but this is not
possible since then we have N = 2 and rH = 3).

If a component of G is the line graph of an (r1, r2)-semiregular bipartite
graph then the sum r1+r2 is equal to rG+2 = 6. By inspecting all possibilities
we get that K1,5 is the only solution. Then, the other component of G has 6
vertices, and since its degree is 4, it must be CP (3). The solution we got is the
same as in the previous case, and the same one arises if we suppose that one
component of G is a cocktail party graph.

If n = 10, then rG = 3. If a component of G is a regular exceptional graph
then, according to its degree, the number of vertices in that component must
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be 10, so G is connected, and it is one of five cubic exceptional graphs on 10
vertices from the first layer.

The cocktail party graph cannot be a component of G, because its degree
is odd. The same argument gives us that it also cannot be the line graph of a
regular graph H since the degree of H is rH =

rG
2 + 1.

Thus, if G is disconnected, all of its components must be line graphs of
semiregular bipartite graphs, and if a component of G is a line graph of (r1, r2)-
semiregular bipartite graph then the sum r1 + r2 is equal to rG + 2 = 5. The
only solution are two components: one having 4 vertices (r1 = 1, r2 = 4),
and the other having 6 (r1 = 2, r2 = 3), i.e. G = L(K1,4) ∪ L(K2,3) or

G = L(K4) ∪ L(K2,3).
If G is a connected line graph of an (r1, r2)-semiregular bipartite graph then

we will have r1 + r2 = 5, and both r and s divide 10, which is not possible.

If n = 9, then, similarly to the previous theorem, we have that G must be a
cycle, or a disconnected graph whose all components are cycles, and so G must
be C9, C3 ∪ C6, C4 ∪ C5 or C3 ∪ C3 ∪ C3.

Finally, if n = 8, then G = CP (4), while if n = 7 then G = K7.

Collecting the graphs obtained, we get the above list.

The proofs of the following two theorems are very similar to the proofs of
Theorem 3.6 and Theorem 3.7, and therefore they will be omitted.

Theorem 3.8. Let G be a 7-regular graph on n vertices satisfying λ2(G) ≤ 1.
Then, G is one of the following graphs: K8, C10, C3 ∪ C7, C4 ∪ C6, C5 ∪ C5,
C3 ∪ C3 ∪ C4, complement of any of eight regular exceptional graphs on 12
vertices from the first layer, 2CP (3), L(Hi) (where Hi (i = 1, . . . , 5), are all
regular cubic graphs on 8 vertices), L(B1) (where B1 is semiregular bipartite
graph with parameters (3, 6, 4, 2)), L(B2) (where B2 is semiregular bipartite
graph with parameters (4, 4, 3, 3)), G = 2K7, G = L(H) (where H is any of
two regular graphs of degree 4 with 7 vertices), complement of any of 38 regular
exceptional graphs on 18 vertices from the second layer, or L(K2,8).

Theorem 3.9. Let G be an 8-regular graph on n vertices satisfying λ2(G) ≤ 1.
Then, G is one of the following graphs: K9, CP (5), C11, C3 ∪ C8, C4 ∪ C7,
C5 ∪ C6, C3 ∪ C3 ∪ C5, C3 ∪ C4 ∪ C4, 3K4, L(2K2,3), H ∪K5 (where H is

a regular exceptional graph on 8 vertices from the third layer), L(K2,4) ∪K5,
complement of any of 21 regular exceptional graphs on 14 vertices from the first
layer, CP (4) ∪K7, L(K3,5), 2K8, complement of any of two regular exceptional

graphs on 21 vertices from the second layer, or L(K2,9).
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