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IDEMPOTENT ELEMENTS OF WPG(2, 2) ∪ {σid}

Sorasak Leeratanavalee1

Abstract. A generalized hypersubstitution of type τ = (2, 2) is a map-
ping σ which maps the binary operation symbols f and g to terms σ(f)
and σ(g) which does not necessarily preserve arities. Any generalized
hypersubstitution σ can be extended to a mapping σ̂ on the set of all
terms of type τ = (2, 2). A binary operation on HypG(2, 2) the set of all
generalized hypersubstitutions of type τ = (2, 2) can be defined by using
this extension. The set HypG(2, 2) together with the identity hypersub-
stitution σid which maps f to f(x1, x2) and maps g to g(x1, x2) forms a
monoid. The concept of an idempotent element plays an important role
in many branches of mathematics, for instance, in semigroup theory and
semiring theory. In this paper we characterize the idempotent generalized
hypersubstitutions of WPG(2, 2) ∪ {σid} a submonoid of HypG(2, 2).
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1. Introduction

The concept of a hypersubstitution was introduced by K. Denecke, D. Lau,
R. Pöschel, and D. Schweigert [1]. In [5], the author and K. Denecke intro-
duced the concept of generalized hypersubstitutions, strong hyperidentities and
strongly solid varieties. Let {fi | i ∈ I} be an indexed set of operation symbols
of type τ , where fi is ni-ary, ni ∈ IN. Let Wτ (X) be the set of all terms of type
τ built up by the operation symbols from {fi | i ∈ I} and variables from an
alphabet X := {x1, x2, x3, . . .}. A generalized hypersubstitution is a mapping
σ : {fi | i ∈ I} −→ Wτ (X) which maps each ni-ary operation symbol of type τ
to a term of this type which does not necessarily preserve the arity. Any gener-
alized hypersubstitution σ can be uniquely extended to a mapping σ̂ on Wτ (X)
the set of all terms of the given type. To define the extension σ̂ of σ, we defined
inductively the concept of superposition of terms Sm : Wτ (X)m+1 −→ Wτ (X)
by the following steps:

for any term t ∈ Wτ (X),

(i) if t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj ,

(ii) if t = xj ,m < j ∈ IN, then Sm(xj , t1, . . . , tm) := xj ,
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(iii) if t = fi(s1, . . . , sni), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni , t1, . . . , tm)).

The generalized hypersubstitution σ can be extended to a mapping σ̂ :
Wτ (X) −→ Wτ (X) on the set of all terms of type τ inductively defined as
follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni ]), for any ni-ary operation
symbol fi supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Let HypG(τ) be the set of all generalized hypersubstitutions of type τ . We
can define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2, where ◦
denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ). This means
σ1 ◦G σ2 is the generalized hypersubstitution which maps each fundamental
operation symbol fi to the term σ̂1[σ2(fi)]. Let σid be the hypersubstitution
which maps each ni-ary operation symbol fi to the term fi(x1, . . . , xni). Then
we have the following proposition.

Proposition 1.1. ([5]) For arbitrary terms t, t1, . . . , tn ∈ Wτ (X) and for arbi-
trary generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

It turns out that HypG(τ) = (HypG(τ); ◦G, σid) is a monoid and σid is the
identity element (see [5]).

An identity s ≈ t of a variety V is called a strong hyperidentity if for every
generalized hypersubstitution σ ∈ HypG(τ) the equation σ̂[s] ≈ σ̂[t] also holds
in V . If M is a submonoid of HypG(τ), then s ≈ t is called an M -strong
hyperidentity if σ̂[s] ≈ σ̂[t] are identities for every σ ∈ M . A variety V is called
M -strongly solid if every identity satisfied in V is an M -strong hyperidentity,
and in case of M = HypG(τ), we will say V is strongly solid. For more details
on generalized hypersubstitutions and strongly solid varieties see [3], [4], [5].

2. Weak Projection Generalized Hypersubstitutions

In [2], K. Denecke and Sh.L. Wismath studied M -hyperidentities and M -
solid varieties based on submonoids M of the monoid Hyp(τ). They defined a
number of natural such monoids based on various properties of hypersubstitu-
tions. In [4] the author extended these concepts to generalized hypersubstitu-
tions. In a similar way, we can define these monoids for the type τ = (2, 2).

Definition 2.1. Let τ = (2, 2) be a type with the binary operation symbols f
and g. Any generalized hypersubstitution σ of type τ = (2, 2) is determined by
the terms t1, t2 in W(2,2)(X) to which it maps the binary operation symbols f
and g and we denote σt1,t2 , i.e. σt1,t2(f) = t1 and σt1,t2(g) = t2.
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(i) A generalized hypersubstitution σ of type τ = (2, 2) is called a projec-
tion generalized hypersubstitution if the terms σ(f) and σ(g) are variables,
i.e. {σ(f), σ(g)} ⊆ {xi ∈ X | i ∈ IN}. We denote the set of all pro-
jection generalized hypersubstitutions of type τ = (2, 2) by PG(2, 2), i.e.
PG(2, 2) := {σxi,xj | i, j ∈ IN, xi, xj ∈ X}.

(ii) A generalized hypersubstitution σ of type τ = (2, 2) is called a weak
projection generalized hypersubstitution if the term σ(f) or σ(g) belongs
to {xi ∈ X | i ∈ IN}. We denote the set of all weak projection generalized
hypersubstitutions of type τ = (2, 2) by WPG(2, 2).

In [4] the author proved that for any type τ , the set PG(τ) ∪ {σid} is a
submonoid of HypG(τ). It is easy to see that WPG(τ) ∪ {σid} is a submonoid
of HypG(τ), and PG(τ) ∪ {σid} forms a submonoid of WPG(τ) ∪ {σid}. It is
obvious that every projection generalized hypersubstitution is idempotent and
σid is also idempotent. Next, we will consider a necessary condition for weak
projection generalized hypersubstitutions to be idempotent.

3. Idempotent Elements of WPG(2, 2) \ PG(2, 2)

In this section, we consider especially the idempotent elements ofWPG(2, 2)\
PG(2, 2). For any semigroup S, x ∈ S is called an idempotent element of S if
and only if xx = x. Then we have the following proposition.

Proposition 3.1. Let σt1,t2 be a generalized hypersubstitution of type τ = (2, 2).
Then σt1,t2 is idempotent if and only if σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] = t2.

Proof. Assume that σt1,t2 is idempotent, i.e. σ2
t1,t2 = σt1,t2 . Then

σ̂t1,t2 [t1] = σ̂t1,t2 [σt1,t2(f)] = σ2
t1,t2(f) = σt1,t2(f) = t1.

Similarly, we get σ̂t1,t2 [t2] = σ̂t1,t2 [σt1,t2(g)] = σ2
t1,t2(g) = σt1,t2(g) = t2.

Conversely, let σ̂t1,t2 [t1] = t1 and σ̂t1,t2 [t2] = t2. Since σ̂t1,t2 [t1] = t1, then

(σt1,t2 ◦G σt1,t2)(f) = σ̂t1,t2 [σt1,t2(f)] = σ̂t1,t2 [t1] = t1 = σt1,t2(f).

Similarly, since σ̂t1,t2 [t2] = t2, then

(σt1,t2 ◦G σt1,t2)(g) = σ̂t1,t2 [σt1,t2(g)] = σ̂t1,t2 [t2] = t2 = σt1,t2(g).

Thus σ2
t1,t2 = σt1,t2 .

For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \ PG(2, 2), where
t1, t2 ∈ W(2,2)(X), we have exactly the following cases:

(i) t1 ∈ X, t2 /∈ X and op(t2) = 1,

(ii) t2 ∈ X, t1 /∈ X and op(t1) = 1,

(iii) t1 ∈ X, t2 /∈ X and op(t2) > 1,
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(iv) t2 ∈ X, t1 /∈ X and op(t1) > 1,

where op(t1) and op(t2) denote the numbers of all operation symbols occurring
in the terms t1 and t2, respectively.

Lemma 3.2. Let σt1,t2 ∈ WPG(2, 2) \ PG(2, 2) be idempotent. Then we have:

(i) if t1 ∈ X and op(t2) = 1, then the binary operation symbol occurring in t2
is g, and

(ii) if t2 ∈ X and op(t1) = 1, then the binary operation symbol occurring in t1
is f .

Proof. (i) Let t1 ∈ X and op(t2) = 1. By Proposition 3.1, σ̂t1,t2 [t2] = t2 and
since op(t2) = 1, then the term t2 begins with exactly one binary operation
symbol either f or g. In case of t2 = f(xi, xj), where i, j ∈ IN, xi, xj ∈ X, since
σt1,t2 maps f to a variable, we have σ̂t1,t2 [t2] ̸= t2, which is a contradiction.
Thus the binary operation symbol occurring in t2 is g.

(ii) The proof is similar to the proof of (i).

Proposition 3.3. Let σt1,t2 ∈ WPG(2, 2) \ PG(2, 2). Then we have:

(i) if t1 ∈ X, t2 /∈ X and op(t2) = 1, then σt1,t2 is idempotent if and only
if t2 ∈ {g(xi, xj) | i, j ∈ IN, xi, xj ∈ X} \ ({g(x2, xi) | i ∈ IN, i ̸= 2} ∪
{g(xi, x1) | i ∈ IN, i ̸= 1, 2}),

(ii) if t2 ∈ X, t1 /∈ X and op(t1) = 1, then σt1,t2 is idempotent if and only
if t1 ∈ {f(xi, xj) | i, j ∈ IN, xi, xj ∈ X} \ ({f(x2, xi) | i ∈ IN, i ̸= 2} ∪
{f(xi, x1) | i ∈ IN, i ̸= 1, 2}).

Proof. (i) Assume that σt1,t2 is idempotent. Since op(t2) = 1, then by Lemma
3.2(i)

t2 ∈ {g(xi, xj) | i, j ∈ IN, xi, xj ∈ X}.

If t2 = g(x2, xi), where i ∈ IN and i ̸= 2,

σ̂t1,t2 [t2] = σ̂t1,t2 [g(x2, xi)] = g(xi, xi) for some i ∈ IN, i ̸= 2.

It contradicts to Proposition 3.1.
If t2 = g(x2, x2), σ̂t1,t2 [g(x2, x2)] = g(x2, x2).
In case of t2 = g(xi, xj), where i, j ∈ IN and i ̸= 1, 2,

σ̂t1,t2 [g(xi, xj)] =

{
g(xi, xi) ; j = 1,
g(xi, xj) ; j ≥ 2.

If t2 = g(x1, xj), σ̂t1,t2 [g(x1, xj)] = g(x1, xj).
Conversely, we can check easily that if t2 ∈ {g(xi, xj) | i, j ∈ IN, xi, xj ∈

X} \ ({g(x2, xi) | i ∈ IN, i ̸= 2} ∪ {g(xi, x1) | i ∈ IN, i ̸= 1, 2}) and t1 ∈ X then
σt1,t2 is idempotent.

(ii) The proof is similar to the proof of (i).
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Next, let F be a variable over the two-element alphabet {f, g}. For an
arbitrary term t of type τ = (2, 2), we define two semigroup words Lp(t) and
Rp(t) over {f, g} inductively as follows:

(i) if t = F (xi, t2), i ∈ IN, xi ∈ X, t2 ∈ W(2,2)(X), then Lp(t) := F ,

(ii) if t = F (t1, xi), t1 ∈ W(2,2)(X), i ∈ IN, xi ∈ X, then Rp(t) := F ,

(iii) if t = F (t1, t2), t1, t2 ∈ W(2,2)(X) \ X, then Lp(t) := F (Lp(t1)) and
Rp(t) := F (Rp(t2)).

Instead of F1(F2(...Fn)...)) it will be used: F1F2...Fn... for the semigroup words:
LP (t) and Rp(t).

As an example, let t, t1, t2 ∈ W(2,2)(X), where t1 = f(x1, g(x4, x3)), t2 =
g(f(x2, x1), f(x1, x5)) and t = f(t1, t2), as shown by a tree below in Figure 1,
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Figure 1:

then Lp(t1) = f,Rp(t1) = fg, Lp(t2) = gf,Rp(t2) = gf, Lp(t) = ff and
Rp(t) = fgf .

Notice that Lp(t) is the left path from the root to the leaf which is labelled
by the leftmost variable in t and Rp(t) is the right path from the root to the
leaf which is labelled by the rightmost variable in t.

We denote the sets of all operation symbols occurring in Lp(t) and Rp(t) by
ops(Lp(t)) and ops(Rp(t)), respectively. So, from the previous example we have
ops(Lp(t)) = {f}, ops(Rp(t)) = {f, g}.

Next, we consider in case (iii) t1 ∈ X, t2 /∈ X and op(t2) > 1, and case (iv)
t2 ∈ X, t1 /∈ X and op(t1) > 1. For the case t1 ∈ X, t2 /∈ X and op(t2) > 1, we
have the following propositions.

Proposition 3.4. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2), where t1, t2 ∈ W(2,2)(X). If t1 = x1, t2 /∈ X, op(t2) > 1 and if Lp(t2) =
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F1...Fn, where Fj ∈ {f, g}; j = 1, . . . , n, then σt1,t2 is idempotent if and only
if there exists i ∈ {1, . . . , n} such that Fi = g with the subterm t′2 of t2, where
t′2 = g(s1, s2); s1, s2 ∈ W(2,2)(X), and the following conditions are satisfied:

(i) if x1 ∈ var(t2) and s1 ∈ X, then s1 = x1,

(ii) if x2 ∈ var(t2) and s2 ∈ X, then s2 = x2,

(iii) if x1 ∈ var(t2) and s1 /∈ X, then ops(Lp(s1)) = {f} and leftmost(s1) =
x1,

(iv) if x2 ∈ var(t2) and s2 /∈ X, then ops(Lp(s2)) = {f} and leftmost(s2) =
x2,

where leftmost(s1) and leftmost(s2) is the first variable (from the left) which
occur in s1 and s2, respectively.

Proof. Assume that σt1,t2 is idempotent and let Lp(t2) = F1 . . . Fn, where Fj ∈
{f, g}; j = 1, . . . , n, then there must exist the least i ∈ {1, . . . , n} such that Fi =
g since otherwise σ̂t1,t2 [t2] ∈ X which contradicts to t2 /∈ X and σ̂t1,t2 [t2] = t2.
Thus, there exists the least i ∈ {1, . . . , n} such that Fi = g with the subterm
t′2 of t2, where t′2 = g(s1, s2); s1, s2 ∈ W(2,2)(X). Since σt1,t2 is idempotent
and F1 . . . Fi−1 ∈ {f}, then t2 = σ̂t1,t2 [t2] = σ̂t1,t2 [t

′
2] = σ̂t1,t2 [g(s1, s2)] =

S2(σt1,t2(g), σ̂t1,t2 [s1], σ̂t1,t2 [s2]) = S2(t2, σ̂t1,t2 [s1], σ̂t1,t2 [s2]).

(i) If x1 ∈ var(t2) and s1 ∈ X, then we have to replace x1 in the term t2 by
σ̂t1,t2 [s1]. Since σ̂t1,t2 [t2] = t2, then σ̂t1,t2 [s1] must be x1. Thus s1 = x1.

(ii) If x2 ∈ var(t2) and s2 ∈ X, then we have to replace x2 in the term t2 by
σ̂t1,t2 [s2]. Since σ̂t1,t2 [t2] = t2, then σ̂t1,t2 [s2] must be x2. Thus s2 = x2.

(iii) If x1 ∈ var(t2) and s1 /∈ X, then s1 = f(r1, r2) or g(r1, r2), where r1, r2 ∈
W(2,2)(X). We will prove by induction on the number of operation symbols
which occur in Lp(s1) that ops(Lp(s1)) = {f}. If the number of operation
symbols which occur in Lp(s1) is 1, then s1 = f(xj , r2) or g(xj , r2), j ∈
IN, xj ∈ X. If s1 = g(xj , r2), then t′2 = g(g(xj , r2), s2). Consider

σ̂t1,t2 [t
′
2] = S2(σt1,t2(g), S

2(σt1,t2(g), xj , σ̂t1,t2 [r2]), σ̂t1,t2 [s2])

= S2(t2, S
2(t2, xj , σ̂t1,t2 [r2]), σ̂t1,t2 [s2]).

Since x1 ∈ var(t2), we have to replace x1 in the term t2. After replac-
ing, the term S2(t2, S

2(t2, xj , σ̂t1,t2 [r2]), σ̂t1,t2 [s2]) must be longer than
the term t2, implying that σ̂t1,t2 [t2] ̸= t2, which is a contradiction. Thus
s1 = f(xj , r2). Assume that ops(Lp(s)) = {f} if the number of opera-
tion symbols which occur in Lp(s) is n − 1. Consider s1 = g(s, r2), then
the number of operation symbols which occur in Lp(s1) is n and by the
same argument as before, we have a contradiction. Thus s1 = f(s, r2).
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By the induction hypothesis, ops(Lp(s1)) = {f}. Next, assume that
leftmost(s1) = x2, and since ops(Lp(s1)) = {f}, then

t2 = σ̂t1,t2 [t
′
2]

= S2(σt1,t2(g), S
2(σt1,t2(f), x2, σ̂t1,t2 [r2]), σ̂t1,t2 [s2])

= S2(t2, x2, σ̂t1,t2 [s2]).

Since x1 ∈ var(t2), we have to replace x1 in the term t2 by x2. This
contradicts to σ̂t1,t2 [t2] = t2. In case of leftmost(s1) = xj , where j ∈
IN, j > 2. Because of ops(Lp(s1)) = {f}, then

t2 = σ̂t1,t2 [t
′
2]

= S2(σt1,t2(g), S
2(σt1,t2(f), xj , σ̂t1,t2 [r2]), σ̂t1,t2 [s2])

= S2(t2, xj , σ̂t1,t2 [s2]).

Since x1 ∈ var(t2), we have to replace x1 in the term t2 by xj . This
contradicts to σ̂t1,t2 [t2] = t2. Thus leftmost(s1) = x1.

(iv) The proof is similar to (iii).

Conversely, it is left to prove that in each of the conditions (i) - (iv) the gener-
alized hypersubstitution σt1,t2 is idempotent. But this is a routine work.

Note that, for the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2)\PG(2, 2),
where t1, t2 ∈ W(2,2)(X), t1 = x1, t2 /∈ X, op(t2) > 1 and Lp(t2) = F1...Fn,
where Fj ∈ {f, g}; j = 1, . . . , n. If there exists the least i ∈ {1, . . . , n} such that
Fi = g with the subterm t′2 of t2, where t′2 = g(s1, s2); s1, s2 ∈ W(2,2)(X) and
x1, x2 /∈ var(t2) then σt1,t2 is idempotent because we have nothing to substitute
in σ̂t1,t2 [t2], so σ̂t1,t2 [t2] = t2, and it is obvious that σ̂t1,t2 [t1] = t1.

Proposition 3.5. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2), where t1, t2 ∈ W(2,2)(X). If t1 = x2, t2 /∈ X, op(t2) > 1 and if Rp(t2) =
F1...Fn, where Fj ∈ {f, g}; j = 1, . . . , n, then σt1,t2 is idempotent if and only
if there exists i ∈ {1, . . . , n} such that Fi = g with the subterm t′2 of t2, where
t′2 = g(s1, s2); s1, s2 ∈ W(2,2)(X), and the following conditions are satisfied:

(i) if x1 ∈ var(t2) and s1 ∈ X, then s1 = x1,

(ii) if x2 ∈ var(t2) and s2 ∈ X, then s2 = x2,

(iii) if x1 ∈ var(t2) and s1 /∈ X, then
ops(Rp(s1)) = {f} and rightmost(s1) = x1,

(iv) if x2 ∈ var(t2) and s2 /∈ X, then
ops(Rp(s2)) = {f} and rightmost(s2) = x2,

where rightmost(s1) and rightmost(s2) are the last variables which occur in s1
and s2, respectively.
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Proof. The proof is similar to Proposition 3.4.

Note that, for the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2)\PG(2, 2),
where t1, t2 ∈ W(2,2)(X), t1 = x2, t2 /∈ X, op(t2) > 1 and Rp(t2) = F1...Fn,
where Fj ∈ {f, g}; j = 1, . . . , n. If there exists the least i ∈ {1, . . . , n} such that
Fi = g with the subterm t′2 of t2, where t′2 = g(s1, s2); s1, s2 ∈ W(2,2)(X) and
x1, x2 /∈ var(t2) then σt1,t2 is idempotent because we have nothing to substitute
in σ̂t1,t2 [t2], so σ̂t1,t2 [t2] = t2, and it is obvious that σ̂t1,t2 [t1] = t1.

Lemma 3.6. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2)\PG(2, 2),
where t1, t2 ∈ W(2,2)(X). If t1 = xi, i ∈ IN, i > 2, t2 /∈ X, op(t2) > 1 and σt1,t2 is
idempotent, then firstop(t2) = g, where firstop(t2) is the first operation symbol
(from the left) occurring in t2.

Proof. Assume that firstop(t2) = f . Let t2 = f(s1, s2), where s1, s2 ∈ W(2,2)(X)
and either s1 or s2 can be a variable but not both. Consider t2 = σ̂t1,t2 [t2] =
S2(σt1,t2(f), σ̂t1,t2 [s1], σ̂t1,t2 [s2]) = S2(xi, σ̂t1,t2 [s1], σ̂t1,t2 [s2]) = xi ∈ X. This
contradicts to t2 /∈ X. Thus firstop(t2) = g.

Lemma 3.7. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2)\PG(2, 2),
where t1, t2 ∈ W(2,2)(X). If t2 = xi, i ∈ IN, i > 2, t1 /∈ X, op(t1) > 1 and σt1,t2

is idempotent, then firstop(t1) = f , where firstop(t1) is the first operation
symbol (from the left) occurring in t1.

Proof. Assume that firstop(t1) = g. Let t1 = g(s1, s2), where s1, s2 ∈ W(2,2)(X)
and either s1 or s2 can be a variable but not both. Consider t1 = σ̂t1,t2 [t1] =
S2(σt1,t2(g), σ̂t1,t2 [s1], σ̂t1,t2 [s2]) = S2(xi, σ̂t1,t2 [s1], σ̂t1,t2 [s2]) = xi ∈ X. This
contradicts to t1 /∈ X. Thus firstop(t1) = f .

Proposition 3.8. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2), where t1, t2 ∈ W(2,2)(X). If t1 = xi, i > 2, t2 /∈ X, op(t2) > 1, then
σt1,t2 is idempotent if and only if t2 = g(s1, s2) where s1, s2 ∈ W(2,2)(X) and
either s1 or s2 can be a variable but not both, and the following conditions are
satisfied:

(i) if x1 ∈ var(t2) and s1 ∈ X, then s1 = x1,

(ii) if x2 ∈ var(t2) and s2 ∈ X, then s2 = x2.

Proof. Assume that σt1,t2 is idempotent. By Lemma 3.6 and since t2 /∈ X,
op(t2) > 1, then t2 = g(s1, s2), where s1, s2 ∈ W(2,2)(X) and either s1 or s2 can
be a variable, but not both. Consider

t2 = σ̂t1,t2 [t2] = σ̂t1,t2 [g(s1, s2)]

= S2(σt1,t2(g), σ̂t1,t2 [s1], σ̂t1,t2 [s2])

= S2(t2, σ̂t1,t2 [s1], σ̂t1,t2 [s2]).

(i) If x1 ∈ var(t2) and s1 ∈ X, then we have to replace x1 in the term t2 by
σ̂t1,t2 [s1]. Since σ̂t1,t2 [t2] = t2, then σ̂t1,t2 [s1] must be x1. Thus s1 = x1.
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(ii) If x2 ∈ var(t2) and s2 ∈ X, then we have to replace x2 in the term t2 by
σ̂t1,t2 [s2]. Since σ̂t1,t2 [t2] = t2, then σ̂t1,t2 [s2] must be x2. Thus s2 = x2.

Conversely, it is left to prove that in each of the conditions (i) - (ii) the gener-
alized hypersubstitution is idempotent. But, it is a routine work.

Proposition 3.9. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2), where t1, t2 ∈ W(2,2)(X), t1 = xi, i > 2, t2 /∈ X, op(t2) > 1, t2 =
g(s1, s2), where s1, s2 ∈ W(2,2)(X) and either s1 or s2 can be a variable but not
both. The following conditions are satisfied:

(i) if x1 ∈ var(t2) and s1 /∈ X, then σt1,t2 is not idempotent,

(ii) if x2 ∈ var(t2) and s2 /∈ X, then σt1,t2 is not idempotent.

Proof. (i) Since s1 /∈ X, then s1 = f(r1, r2) or s1 = g(r1, r2), where r1, r2 ∈
W(2,2)(X).

If s1 = f(r1, r2), t2 = g(f(r1, r2), s2). Consider

σ̂t1,t2 [t2] = S2(σt1,t2(g), S
2(σt1,t2(f), σ̂t1,t2 [r1], σ̂t1,t2 [r2]), σ̂t1,t2 [s2])

= S2(t2, S
2(xi, σ̂t1,t2 [r1], σ̂t1,t2 [r2]), σ̂t1,t2 [s2])

= S2(g(f(r1, r2), s2), xi, σ̂t1,t2 [s2]).

Since x1 ∈ var(t2), then x1 must occur in the term r1, or r2, or s2. We have
to replace x1 by xi and thus σ̂t1,t2 [t2] ̸= t2. This implies that σt1,t2 is not
idempotent.

If s1 = g(r1, r2), t2 = g(g(r1, r2), s2). Consider

σ̂t1,t2 [t2] = S2(σt1,t2(g), S
2(σt1,t2(g), σ̂t1,t2 [r1], σ̂t1,t2 [r2]), σ̂t1,t2 [s2])

= S2(t2, S
2(t2, σ̂t1,t2 [r1], σ̂t1,t2 [r2]), σ̂t1,t2 [s2]).

Since x1 ∈ var(t2), then we have to replace x1 in the term t2. After replacing,
the term S2(t2, S

2(t2, σ̂t1,t2 [r1], σ̂t1,t2 [r2]), σ̂t1,t2 [s2]) ̸= t2. This implies that
σt1,t2 is not idempotent.

(ii) We can proof in the similar way as the proof of (i).

For the case t2 ∈ X, t1 /∈ X and op(t1) > 1, we have also the following
propositions and these propositions can be proved in the same manner as in the
case t1 ∈ X, t2 /∈ X, op(t2) > 1.

Proposition 3.10. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2), where t1, t2 ∈ W(2,2)(X). If t2 = x1, t1 /∈ X, op(t1) > 1 and if Lp(t1) =
F1...Fn, where Fj ∈ {f, g}; j = 1, . . . , n, then σt1,t2 is idempotent if and only
if there exists i ∈ {1, . . . , n} such that Fi = f with the subterm t′1 of t1, where
t′1 = f(s1, s2); s1, s2 ∈ W(2,2)(X), and the following conditions are satisfied:

(i) if x1 ∈ var(t1) and s1 ∈ X, then s1 = x1,

(ii) if x2 ∈ var(t1) and s2 ∈ X, then s2 = x2,
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(iii) if x1 ∈ var(t1) and s1 /∈ X, then
ops(Lp(s1)) = {g} and leftmost(s1) = x1,

(iv) if x2 ∈ var(t1) and s2 /∈ X, then
ops(Lp(s2)) = {g} and leftmost(s2) = x2.

Note that, for the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2)\PG(2, 2)
where t1, t2 ∈ W(2,2)(X), t2 = x1, t1 /∈ X, op(t1) > 1 and Lp(t1) = F1...Fn where
Fj ∈ {f, g}; j = 1, . . . , n. If there exists the least i ∈ {1, . . . , n} such that
Fi = f with the subterm t′1 of t1 where t′1 = f(s1, s2); s1, s2 ∈ W(2,2)(X) and
x1, x2 /∈ var(t1) then σt1,t2 is idempotent because we have nothing to substitute
in σ̂t1,t2 [t1], so σ̂t1,t2 [t1] = t1 and it is obvious that σ̂t1,t2 [t2] = t2.

Proposition 3.11. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2) where t1, t2 ∈ W(2,2)(X). If t2 = x2, t1 /∈ X, op(t1) > 1 and if Rp(t1) =
F1...Fn where Fj ∈ {f, g}; j = 1, . . . , n, then σt1,t2 is idempotent if and only
if there exists i ∈ {1, . . . , n} such that Fi = f with the subterm t′1 of t1 where
t′1 = f(s1, s2); s1, s2 ∈ W(2,2)(X) and the following conditions are satisfied:

(i) if x1 ∈ var(t1) and s1 ∈ X, then s1 = x1,

(ii) if x2 ∈ var(t1) and s2 ∈ X, then s2 = x2,

(iii) if x1 ∈ var(t1) and s1 /∈ X, then
ops(Rp(s1)) = {f} and rightmost(s1) = x1,

(iv) if x2 ∈ var(t1) and s2 /∈ X, then
ops(Rp(s2)) = {f} and rightmost(s2) = x2.

Note that for the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2)\PG(2, 2),
where t1, t2 ∈ W(2,2)(X), t2 = x2, t1 /∈ X, op(t1) > 1 and Rp(t1) = F1...Fn,
where Fj ∈ {f, g}; j = 1, . . . , n. If there exists the least i ∈ {1, . . . , n} such that
Fi = f , with the subterm t′1 of t1, where t′1 = f(s1, s2); s1, s2 ∈ W(2,2)(X) and
x1, x2 /∈ var(t1), then σt1,t2 is idempotent because we have nothing to substitute
in σ̂t1,t2 [t1], so σ̂t1,t2 [t1] = t1, and it is obvious that σ̂t1,t2 [t2] = t2.

Proposition 3.12. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2), where t1, t2 ∈ W(2,2)(X). If t2 = xi, i > 2, t1 /∈ X, op(t1) > 1, then
σt1,t2 is idempotent if and only if t1 = f(s1, s2) where s1, s2 ∈ W(2,2)(X) and
either s1 or s2 can be a variable but not both, and the following conditions are
satisfied:

(i) if x1 ∈ var(t1) and s1 ∈ X, then s1 = x1,

(ii) if x2 ∈ var(t1) and s2 ∈ X, then s2 = x2.

Proposition 3.13. For the generalized hypersubstitution σt1,t2 ∈ WPG(2, 2) \
PG(2, 2), where t1, t2 ∈ W(2,2)(X), t2 = xi, i > 2, t1 /∈ X, op(t1) > 1, t1 =
f(s1, s2), where s1, s2 ∈ W(2,2)(X) and either s1 or s2 can be a variable but not
both. The following conditions are satisfied:
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(i) if x1 ∈ var(t1) and s1 /∈ X, then σt1,t2 is not idempotent,

(ii) if x2 ∈ var(t1) and s2 /∈ X, then σt1,t2 is not idempotent.
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