
Novi Sad J. Math.
Vol. 41, No. 2, 2011, 161-179

THE PFSQL QUERY EXECUTION PROCESS1

Srdjan Škrbic2, Miloš Racković3, Aleksandar Takači4

Abstract

Usable implementations of fuzzy relational database systems are very
rare considering the long time of research on the subject. The existing
solutions are usually either obsolete or related to a specific application.
The research group that authors belong to aims at producing a general
system capable of using priority fuzzy logic with databases. The system
consists of a fuzzy extension of a relational model, a fuzzy query language
PFSQL for this data model, a CASE tool that allows easy creation of
fuzzy relational database schemas, and an extension to JDBC driver that
incorporates possibilities to use PFSQL queries.

In this paper we present details of the implementation of the PFSQL
interpreter. We describe a model that we devised and point out decisions
we made and tools we used in the implementation process. The result is
a working implementation of the first priority fuzzy logic extension of the
SQL language.

AMS Mathematics Subject Classification (2010): 68P15,68P20,68N20

Key words and phrases: PFSQL, Fuzzy database

1 Introduction

The idea to use fuzzy sets and fuzzy logic to extend the existing database models
and query languages has been utilized for a long time and in different variations.
Even after thirty years of research, working implementations usable in the real
world systems are rare, if not non-existent.

The main goal of the five-year long research conducted at the University of
Novi Sad was the implementation of a system capable of using priority fuzzy
logic with databases. The system can be divided into four main parts:

• new data model based on fuzzy extensions of the relational model,

• fuzzy query language PFSQL (Priority Fuzzy Structured Query Language)
for this data model and interpreter for this new language,

1Authors would like to acknowledge the support of the Serbian Ministry of Science, project
OI–174023 – Intelligent techniques and their integration into wide-spectrum decision support
and project III–47003 – Infrastructure for technology enhanced learning in Serbia.

2University of Novi Sad, Faculty of Science, Serbia, e-mail: shkrba@uns.ac.rs
3University of Novi Sad, Faculty of Science, Serbia, e-mail: milos.rackovic@dmi.uns.ac.rs
4University of Novi Sad, Faculty of Technology, Serbia, e-mail: stakaci@tf.uns.ac.rs

162 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

• CASE (Computer Aided Software Engineering) tool for fuzzy relational
database modelling and

• JDBC (Java DataBase Connectivity) driver extensions allowing PFSQL
querying from Java programs.

In this paper we give details related to the PFSQL interpreter implementa-
tion mechanisms and techniques. The first task in the process of building the
PFSQL interpreter was to design the language itself. This task is described in
previous papers [12, 15, 19, 21, 22] that we mention later in the text with more
details. One of the results of this sequence of papers – the EBNF (Extended
Backus-Naur Form) specification of the PFSQL is used here as the most impor-
tant input parameter. The second input parameter was the new fuzzy relational
data model. In this paper we explain how the actual implementation was done
using the previous work. We give pointers to the most important decisions
made in order to successfully implement the interpreter. The main result is a
working implementation of the PFSQL language. We also give a comparison of
our approach to the most successful competitor - the FSQL (Fuzzy Structured
Query Language) language and the interpreter for it.

In the next section of this paper we give a detailed description of a num-
ber of references that describe research in the use of fuzzy logic in relational
databases. This overview covers the topic from its beginnings, to the most re-
cent approaches. The third section contains description of the existing PFSQL
system. We omit numerous details and subtle points, but give references that
contain complete description of the existing solution and its parts. The PFSQL
interpreter details are given through three additional sections. In the first one,
we describe details about the parser of PFSQL queries using JavaCC compiler
compiler. After that we describe the mechanisms for PFSQL query parse tree
transformation to SQL (Structured Query Language) query parse tree. In the
next section, we describe details about fuzzy membership degree calculations.
We finish by giving a comparison to FSQL and some concluding remarks.

2 Related work

The literature contains references to several models of fuzzy knowledge repre-
sentation in relational databases. For example, the Buckles-Petry model [1]
is the first model that introduces similarity relations in the relational model.
The GEFRED (Generalized Model of Fuzzy Relational Databases) model [8]
is a probabilistic model that refers to generalized fuzzy domains and admits
the possibility distribution in domains. It includes the case where the un-
derlying domain is not numeric, but contains scalars of any type. Also, it
contains the notion of unknown, undefined and null values. It experienced sub-
sequent expansions, such as those presented in [4, 5]. Zvieli and Chen [23] of-
fered a first approach to incorporate fuzzy logic in the ER (Entity-Relationship)
model. Their model allows fuzzy attributes in entities and relationships. Chen
and Kerre [3] introduced the fuzzy extension of several major EER (Extended

The PFSQL query execution process 163

Entity-Relationship) concepts. Chaudhry, Moyne and Rundensteiner [2] pro-
posed a method for designing fuzzy relational databases following the extension
of the ER model of Zvieli and Chen. They propose a way to convert a crisp
database into a fuzzy one. Galindo, Urrutia and Piattini [6] describe a way
to use fuzzy EER to model the database and how to represent modeled fuzzy
knowledge using relational databases. In addition, they described specification
and implementation of the FSQL - an advanced SQL language with fuzzy ca-
pabilities.

In [11], authors studied the possibilities to extend the relational model with
fuzzy logic capabilities. The subject was elaborated in [14], where a detailed
model of fuzzy relational database was given. Moreover, using the concept
of Generalized Priority Constraint Satisfaction Problem (GPFCSP) from [7, 9,
16] the authors found a way to introduce priority queries into FRDB (Fuzzy
Relational DataBase), which resulted in the PFSQL (Priority Fuzzy Structured
Query Language) query language [15, 22]. In [12], [21] and [19], the authors
introduce similarity relations on the fuzzy domain which are used to evaluate
the FRDB conditions. They describe a solution for a fuzzy relational database
application development and give the architecture of the PFSQL interpreter,
and the data model that this implementation is based on. A brief overview of
this system is given in the next section.

3 Existing solution

In order to allow the use of fuzzy values in SQL queries, we extended the classical
SQL with several new elements. In addition to fuzzy capabilities that make
the fuzzy SQL - FSQL, we add the possibility to specify priorities for fuzzy
statements. We named the query language constructed in this manner priority
fuzzy SQL - PFSQL.

The basic difference between SQL and PFSQL interpreters is in the way
the database processes records. In a classical relational database, queries are
executed so that a tuple is either accepted in the result set if it fulfills the
conditions given in a query, or removed from the result set if it does not fulfill
the conditions. In other words, every tuple is given a value true (1) or false (0).
On the other hand, as the result set, the PFSQL returns a fuzzy relation on the
database. Every tuple considered in the query is given a value from the unit
interval. This value is calculated using the fuzzy logic operators.

3.1 The PFSQL

Details about the PFSQL syntax can be found in [14] and [19]. Here we give
some pointers to what elements of the classical SQL are extended. The variables
in a query should be allowed to have both crisp and fuzzy values, hence it
is necessary to introduce relational operators between different types of fuzzy
values as well as between fuzzy and crisp values. Next, we introduced and used
the possibility based ordering on the set of fuzzy numbers in the queries.

164 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

This possibility gives grounds for the introduction of set functions like MIN,
MAX and COUNT in the PFSQL. The Classical SQL includes the possibilities
to combine conditions using logical operators. This possibility is, of course,
also the part of our fuzzy extensions, thus combining fuzzy conditions is also a
feature of our implementation. Values are calculated using t-norms, t-conorms,
and a ”strict” negation. Queries are handled using priority fuzzy logic based
on the GPFCSP (Generalized Priority Fuzzy Constraint Satisfaction Problem)
systems [7, 9, 10,14].

In the classical SQL it is clear how to assign a truth value to every elementary
condition. With the fuzzy attributes, the situation becomes more complex. At
first, we assign a truth value from the unit interval to every elementary condi-
tion. The only way to do this is to implement a set of algorithms that calculate
truth values for every possible combination of values in a query and values in
the database. For instance, if a query contains a condition that compares a
fuzzy quantity value with a triangular fuzzy number in the database, we must
have an algorithm that calculates the compatibility degree of the two fuzzy sets.
After the truth values from the unit interval are assigned, they are aggregated
using fuzzy logic. We use a t-norm in case of the operator AND, and its dual
t-conorm in case of the operator OR. For negation we use the strict negation:
N(x) = 1− x. In case of priority statements, we use the GPFCSP system rules
to calculate the result.

We will now describe the processes that allow PFSQL queries to be executed.
The basic idea is to first transform a PFSQL query into an SQL query. Namely,
the conditions with fuzzy attributes are removed from the WHERE clause and
moved up in the SELECT clause. In this way, the conditions containing fuzzy
constructs are eliminated, so that the database will return all the tuples - ones
that fulfill fuzzy conditions as well as the ones that do not. As a result of this
transformation, we get a classical SQL query. Then, when this query is executed
against the database and results are interpreted using fuzzy mechanisms. These
mechanisms assign a value (membership degree) from the unit interval to every
tuple in the result set. If a threshold is given, all the tuples in the result set
that have satisfaction degree below the threshold are removed.

3.2 Fuzzy-Relational Database

It is clear now that the PFSQL implementation has to rely upon a metadata that
describe fuzzy attributes that reside inside the database. For these purposes, a
FRDB data model has been defined. In this section we give a brief description
of this model.

Our FRDB data model allows data values to be any fuzzy subset of the
attribute domain. User only needs to specify a membership function of a fuzzy
set. Hypothetically, for each fuzzy set we should have an algorithm on how
to calculate the values of its membership function. This would lead to a large
spatial complexity of the database and that is why only a well known standard
types of fuzzy sets (triangular, trapezoidal, etc.) are allowed as attribute values.
If a type of a fuzzy set is introduced, then we only need to store the parameters

The PFSQL query execution process 165

Figure 1: Fuzzy JDBC driver.

that are necessary to calculate values of its membership function.

Also, we introduced one more extension of the attribute value, the linguis-
tic label. Linguistic labels are in fact named fuzzy values from the domain.
Considering these extensions, we can define a domain of a fuzzy attribute as
D = DC ∪FD ∪LL, where DC is a classical attribute domain; FD is a set of all
fuzzy subsets of the domain, and LL is the set of linguistic labels.

In order to represent these fuzzy values in the database, we extend this
model with additional tables that make fuzzy metadata model. Several tables
are introduced to cover all described needs. The structure of this model is not
important for this paper, so we do not give it here, but it can be found in [14].

3.3 Fuzzy JDBC Driver and FRDB CASE Tool

The need to allow easy PFSQL usage from Java programs and still keep the
database independence is resolved with the implementation of the fuzzy JDBC
driver. This driver acts as a wrapper for the PFSQL processing mechanisms
described earlier and for the JDBC API implemented by the driver for a specific
RDBMS (Relational DataBase Management System). The JDBC driver for the
database used simply becomes a parameter that the fuzzy JDBC driver uses to
access the database. The architecture of the system built in this way is shown
at Fig. 1.

Java program uses interfaces offered by the fuzzy JDBC driver as a front
end component. These interfaces include possibilities to: initialize driver class,
create database connection, create and execute PFSQL statements, and read
result set.

When executed, PFSQL statements are pre-processed in the way described
before, and sent to the database as ordinary SQL statements using a JDBC
driver. Result returned from the database is processed again by the PFSQL
mechanisms (membership degrees are added), and returned to the Java program
using front end classes.

166 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

The Fuzzy JDBC driver with PFSQL mechanisms and the FRDB data
model described above offer a solution to develop database applications when
a database schema exists in a database. In order to ease the development of
database schemas enriched with fuzzy elements, a CASE tool is implemented
too. Again, the description of the CASE tool is omitted because it is not im-
portant for the goals set in this paper.

4 The PFSQL parser

This section contains details about how the PFSQL query parser was built.
The EBNF specification is presented in [19], and we do not give it in full here.
Instead, we give a few examples that illustrate main PFSQL features. The
queries are executed against a hypothetical student database. The first query
returns names and surnames of students whose GPA is greater than the given
triangular fuzzy number:

SELECT msd.name, msd.surname
FROM MainStudentData msd
WHERE (msd.GPA>#triangle(9,1,0.4)#)

The # symbol is chosen to mark fuzzy constants. If we defined a linguistic
label average GPA that has value triangle(9,1,0.4), the previous query could be
simplified like this:

SELECT msd.name, msd.surname
FROM MainStudentData msd
WHERE (msd.GPA>#ling(averageGPA)#)

Queries like these can be enriched with additional constraints. The next query
returns names and surnames of students that have GPA greater than average
with priority 0.7, and GPA on the fourth year greater than 8.50 with priority
0.4. The query also contains the threshold clause that limits the results and
removes tuples with fuzzy satisfaction degree smaller than 0.2.

SELECT msd.name, msd.surname
FROM MainStudentData msd
WHERE (msd.GPA>#ling(averageGPA)# PRIORITY 0.7)

AND (msd.GPA4>8.5 PRIORITY 0.4)
THRESHOLD 0.2

The aggregate functions MAX, MIN and COUNT can take fuzzy value as an
argument. The next query illustrates the usage of aggregate function MIN. It
returns the minimal GPA.

SELECT MIN(msd.GPA)
FROM MainStudentData msd

The PFSQL query execution process 167

If we assume that the variable msd.GPA is fuzzy, the execution of this query
becomes complex because it includes the ordering of fuzzy values. As a result,
for example, we could get this value: triangle(6.9,0.4,0.7).

The parser is constructed using JavaCC compiler compiler tool. This tool
automatically generates a parser for a given EBNF grammar. However, in
this case, it is not enough to simply specify a parser, it is necessary to use
mechanisms offered by JavaCC through JJTree preprocessor. Using the JJTree,
it is possible to generate a code that creates a parse tree without losing any
information contained in the original query. It is necessary to:

• alter the parse tree nodes generated automatically by the JJTree so that
they can store additional information contained in the query, and

• alter the JavaCC specification so that it includes semantic actions that
will copy all the information contained in the query to these structures.

Listing 1 contains the JavaCC code for the main part of the SELECT clause
enriched with additional semantic actions.

Listing 1: A snippet from the PFSQL JavaCC specification enriched with JJTree
semantic actions.
void SelectWithoutOrder():
{Token select;
Token distinct;}{
select=<SELECT>{jjtThis.setSelect(select.image);}
[distinct=<DISTINCT>{jjtThis.setDistinct(distinct.image);}]
SelectList()
FromClause()
[WhereClause(){jjtThis.setHasWhere(true);}]
[GroupByClause(){jjtThis.setHasGroup(true);}]
[ThresholdClause(){jjtThis.setHasThreshold(true);}]

}
void SelectList():{}{

<MULT>{jjtThis.setMult(true);}
| (ObjectName()|AggregateFunction())(","(ObjectName()

|AggregateFunction()){jjtThis.setMultipleHead(true);})*
}
void FromClause():{}{ <FROM>FromItem()(","FromItem(){jjtThis.

setMultipleHead(true);})*
}
void FromItem():
{Token t1,t2;}{

t1=<IDENTIFIER>{jjtThis.setIdent1(t1.image);}
[t2=<IDENTIFIER>{jjtThis.setIdent2(t2.image);}]

}
void WhereClause():{}{

<WHERE>SQLExpression()
}
void SQLExpression():
{Token t;}
{
SQLAndExpression()(t=<OR>{jjtThis.setOrStr(t.image);}SQLAndExpression()

)*
}

168 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

void SQLAndExpression():
{Token t;}
{ SQLUnaryLogicalExpression()(t=<AND>{jjtThis.setAndStr(t.image);}

SQLUnaryLogicalExpression())*
}
void SQLUnaryLogicalExpression():
{Token t;}
{
LOOKAHEAD(2)ExistsClause()
|([t=<NOT>{jjtThis.setNotStr(t.image);}]SQLRelationalExpression(){

jjtThis.setExistStatement(false);})
}

Let us observe the beginning of the code, around the DISTINCT keyword.
Construction shown in the listing puts the DISTINCT keyword into the corre-
sponding node of the parse tree if, during the parsing, this keyword is encoun-
tered. This is achieved by calling the setDistinct() method over the current node
in the tree, denoted by jjtThis. Similarly, with WHERE clause, the method
setHasWhere() is called over the current node, that specifies that WHERE
clause exists in the query. These methods are not generated automatically, they
are added to the generated code by hand.

The parse tree is built of different types of nodes that are instances of classes
that describe the corresponding constructions of the JavaCC specification. Ex-
cept empty nodes of different types, these nodes contain all the information
from the query that they represent.

For example, let us observe the PFSQL query shown in Listing 2.

Listing 2: An example the PFSQL query.
SELECT msd.name, msd.surname
FROM MainStudentData msd
WHERE msd.GPA>’#triangle(4,1,0.4)#’ PRIORITY 0.8 AND msd.IDnumber<200

This query returns names and surnames of the students that have a GPA
greater than the triangular fuzzy number triangle(4,1,0.4) with priority 0.8 and
have an ID number smaller than 200. A complete parse tree for this query is
given in Fig. 2.

The obtained PFSQL parser successfully checks the PFSQL query syntax
and returns appropriate error messages as needed. In the process, begging
with the query string, it builds the parse tree that preserves every information
contained in the original query. Moreover, an important feature of transforming
the parse tree back to query string is also implemented.

5 Parse Tree Transformation

The possibility to transform the parse tree back to a query string mentioned
in the previous section is vital for the PFSQL query processing. As mentioned
before, the PFSQL query processing includes transformation operations on the
parse tree, and its conversion back to the query string at the end of the process.
The obtained query string is then sent to the relational database for further

The PFSQL query execution process 169

Figure 2: Parse tree for the PFSQL query from Listing 2.

170 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

Figure 3: Activity diagram describing transformation of a PFSQL query parse
tree.

processing and returned results are interpreted using priority fuzzy logic. More
details on the parse tree transformation method is given in the next section.

The PFSQL query parse tree transformation and fuzzy membership degree
calculations are the two most demanding topics from the implementation point
of view. In this section we show the UML activity diagrams that clearly define
which actions have to be taken to achieve specific goals. More details about the
implementation and complete source code may be downloaded from [17].

The activity diagram that describes the process of PFSQL query transfor-
mation to SQL query is shown in Fig. 3. Since an initial parse tree is needed
in the process of fuzzy membership degree calculations, we are transforming its
copy only. The transformation consists of a recursive tree traversal that includes
the modification of certain elements when the need to modify them is detected.

The PFSQL query execution process 171

Let us observe the parse tree node that represents a WHERE clause. If it is
identified that some node in this node’s subtree represents a fuzzy constraint, as
mentioned before, it is removed from the tree. It is not enough only to remove
such a node from the tree, it is necessary to inspect if it contains fuzzy variables
as well. If it does contain fuzzy variables, it is necessary to add them to the
SELECT list in the same tree, in order to obtain their value from the database.
The fuzzy constraint must have a value–relational operator–value structure, as
defined by the PFSQL EBNF syntax. This means that the operations with
fuzzy values are not supported by the PFSQL language at this time.

Nested queries are constructions that need to be identified and treated sep-
arately. If a nested query is found, then we inspect if it contains any fuzzy
variables. If it does not contain them, then there is no need for special treat-
ment, and it is left as it is. But, if it contains fuzzy variables, it is removed
from the tree. It will be executed recursively as part of the fuzzy membership
degree calculation algorithm. The PFSQL query language currently supports
only non-correlated nested queries (independent from the rest of the query). If
a correlated nested query is identified, an appropriate error message is returned.

If we do not detect a fuzzy constraint or nested query while processing a
node, we continue with the analysis of this node’s children, until the complete
tree is traversed.

In the end, it is also necessary to process the appearance of aggregate func-
tions in the select list. If it is detected that some aggregate function contains
fuzzy variable as argument, then the whole aggregate function construction is
replaced by that fuzzy variable. In this way, we obtain values for that fuzzy
variable from the database, and calculate the value of the aggregate function
in the next processing step. At this time, only MIN, MAX and COUNT ag-
gregate functions are supported. If the fuzzy variable appears under any other
aggregate function, an appropriate error message is returned. Also, the GROUP
BY construct with fuzzy values is not allowed in the current implementation,
although various possibilities to do this are discussed in [18].

In accordance to the described parse tree transformation method, the query
from Listing 2 and its corresponding parse tree from Fig. 2 would take the form
shown in Listing 3 and Fig. 4.

Listing 3: SQL query obtained after the transformation of the example of PF-
SQL query.

SELECT msd.name, msd.surname, msd.GPA
FROM MainStudentData msd
WHERE msd.IDnumber<200

6 Fuzzy Membership Degree Calculations

After the parse tree transformation described in the previous section, an SQL
string is acquired and sent to the database for execution. The Database returns
a result set that, in general, contains multiple tuples. At this moment it is

172 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

Figure 4: Parse tree after transformation.

necessary to evaluate all of the tuples, one by one, and assign fuzzy membership
degree to each of them using information from the original PFSQL query. In
the case that the original PFSQL query contained an aggregate function with
fuzzy argument, instead of assigning a fuzzy membership degree to the tuples,
we use them to calculate the value of the aggregate function.

The activity diagram that specifies this process is given in Fig. 5.

In the case that the original PFSQL query contains an aggregate function
with a fuzzy attribute, the result set is analyzed. If the aggregate function
is COUNT, then simply, the number of tuples in the result set is determined.
In the case that the aggregate functions MIN or MAX are found, the fuzzy
values are compared in order to find a minimum or maximum. This minimum
or maximum may consist of more than one value, having in mind that we use a
partial order for the fuzzy sets [14,18].

If there is no aggregate function, we enter the second branch of the algorithm
that assigns a fuzzy constraint satisfaction degree to every tuple returned by the
database using the original parse tree. At the beginning, we search the parse
tree and locate a node that corresponds to the WHERE clause. We start the
calculations from that point.

We calculate the fuzzy membership degree of all subnodes recursively. In

The PFSQL query execution process 173

Figure 5: Activity diagram specifying calculations of fuzzy membership degree
for result set tuples.

this process we may encounter a node with a fuzzy condition, as well as a node
that contains a nested query with fuzzy elements. The fuzzy condition value
calculation is shown in a separate activity diagram later in the text. If a priority
is assigned, the calculated value is first aggregated with it. This aggregation
is done using the Sp (“product”) triangle conorm in the following way. If we

174 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

denote the obtained value of the fuzzy condition as x, and its assigned priority
as p, then the aggregated value is given by Sp(x, 1− p). The values obtained in
that way are then further aggregated using triangle norm TL (Lukasiewicz) in
the case of the operator AND, and its dual triangle conorm SL in the case of the
operator OR. If a negation is encountered, we use the so-called strict negation:
N(x) = 1 − x. Details about these calculations that include definition of basic
terms and formal explanations why we calculate values in this way are given
in [10,16,18].

In the case that a nested query with fuzzy elements is encountered, it is
executed independently, recursively, in the same way as the main query. The
acquired results are then used in further calculations related to the node where
this kind of content is encountered. According to the PFSQL syntax, it is
possible that the operators EXISTS, ALL, ANY and IN appear before a nested
query. In the case of the operator EXISTS, simply, we check whether the set
returned from a nested query is empty or not. In the case of the operator IN,
in general, it is necessary to check whether a fuzzy value on the left side can be
found in the result set on the right side. Finally, in the case of the operators
ALL and ANY, we compare the value from the left side of the operator to every
value from the nested query result set. This task is reduced to the process of
evaluation of fuzzy conditions described below.

The need to evaluate fuzzy satisfaction degrees demanded that the meth-
ods that calculate triangular norm and conorm values be implemented also.
However, in the case a user needs to use some other t-norm or t-conorm, not
implemented in the system, it is enough to write the corresponding methods by
hand and replace the existing methods with the new ones.

We still need to clarify the way to calculate fuzzy satisfaction degrees for
fuzzy conditions. Fuzzy conditions are expressions that consist of two (possibly)
fuzzy operands with a relational operator between them. Relational operators
defined in the PFSQL syntax can be divided into two groups:

• operators =, ! =, <> and

• operators <,>,≤,≥.

The allowed operands for these operators are fuzzy or crisp variables and
constants. In accordance with the PFSQL syntax, fuzzy constants have the
following structure:

• triangle(max, leftOffset, rightOffset) – triangle fuzzy number with
maximum in max and left and right offsets denoted by leftOffset and
right−Offset,

• trapezoid(leftMax, rightMax, leftOffset, rightOffset) – trapezoidal
fuzzy number with maximum on the [leftMax, rightMax] interval and
left and right offsets denoted by leftOffset and rightOffset,

• interval(left, right) – interval with left and right boundaries given by left
and right,

The PFSQL query execution process 175

Figure 6: Activity diagram specifying the process of fuzzy condition fuzzy mem-
bership degree calculation.

• fq(left, right, isIncreasing) – fuzzy shoulder that ascends or descends
from left to right,

• ling(name) – linguistic label with name given by name.

The activity diagram shown in Fig. 6 specifies the process of fuzzy condition
fuzzy membership degree calculation under presented assumptions.

At the beginning of the process, we check what types of operands are present,
to determine if there are any fuzzy constants or variables. Based on this analysis,
in the next step, the corresponding objects that represent those operands are
created. In essence, for every operand type, we create a class that enables
storage of the needed values for that operand type. For example, in the case of a
triangular fuzzy number, we store the values leftOffset, max and rightOffset.
In the case of constants, these objects are created by parsing the string, while in
the case of variables, the values are taken from the result set. If a value of a fuzzy

176 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

variable is obtained from the database, the obtained result set contains only a
reference to the specific fuzzy value that resides inside the fuzzy metamodel part
of the database. So, the fuzzy metamodel has to be consulted first, in order to
obtain a fuzzy value.

When the corresponding objects for the operands are created, we check the
type of the operator. In the case the operator belongs to the first group (equal-
s/nonequals), it is necessary to apply an algorithm for calculation of fuzzy com-
patibility of the two sets. If the operator belongs to the other group, then
we apply an algorithm for comparison of two fuzzy sets. These algorithms are
explained in detail in [14,18].

It is conceptually simple to calculate a compatibility value for two fuzzy sets,
but the implementation is technically demanding. It is necessary to implement
algorithms that calculate the intersection of every pair of types of fuzzy sets
that we support in our system. For instance, a class that serves for the repre-
sentation of a triangular fuzzy number also contains methods that calculate a
compatibility degree of a triangular fuzzy numbers and trapezoidal fuzzy num-
bers, intervals, fuzzy shoulders and crisp values. The same holds for all other
supported types of values. Result of these calculations is always a number from
the unit interval.

In the case of comparison of two fuzzy sets, the algorithm can return:

• value 1, if the first set is less than or equal to the second one,

• value 0, if the first set is not less than or equal to the second one and

• value 0.5, if the two sets are not comparable.

7 PFSQL and FSQL

At the end, we give a brief comparison of the PFSQL interpreter implementation
mechanisms and FSQL implementation techniques. The FSQL is considered to
be one of the most advanced fuzzy SQL languages today. The fuzzy database
query language FSQL is built on top of the FIRST-2 model using Oracle DBMS
and PL/SQL stored procedures [6]. Similarly, we used our own fuzzy-relational
data model described in [13] and [14] to build an interpreter for the PFSQL lan-
guage. The PFSQL query language allows priority statements to be specified for
query conditions, which is a new feature that FSQL does not contain. We use
the GPFCSP concept for calculating membership degrees of query tuples when
priorities are assigned to the conditions. The GPFCSP is a theoretical concept
developed just for these purposes. Although the FSQL language has more fea-
tures than PFSQL, it does not allow usage of priority statements. The PFSQL
is the first query language that does. Moreover, the PFSQL is implemented
using Java, outside the database, which makes our implementation database
independent.

The PFSQL query execution process 177

8 Concluding remarks

The main concern of this paper is the interpreter for the priority fuzzy logic
enriched SQL language – PFSQL. We gave details related to its implementation
and described main problems and decisions made during its construction. In an
effort to compare our approach to the FSQL – the most advanced competitor,
we concluded that the PFSQL is the first language that adds priority fuzzy logic
extensions to SQL.

The described implementation is tested on the fuzzified database segment
of the student affairs information system of the Faculty of Science in Novi Sad.
This segment is related to the entrance examination management. It consists
of about 30 relational tables with more than 5000 records in most of them.
PFSQL has not been used in practice so far. We plan to do that in the future.
Moreover, in order to offer a more complete solution for the fuzzy relational
database application development, it is necessary to enrich the PFSQL language
with more features of a regular SQL. Authors intend to study and solve these
problems in the future.

References

[1] Buckles, B., Petry, F., A fuzzy representation of data for relational
databases. Fuzzy Set. Syst. 7, 3 (1982), 213–226.

[2] Chaudhry, N., Moyne, J., Rundensteiner, E., A design methodology for
databases with uncertain data. In: Proc. 7th Intl. Working Conf. Scientific
Statistical Database Management (Charlottesville, VA, 1994), pp. 32–41.

[3] Chen, G., Kerre, E., Extending ER/EER concepts towards fuzzy concep-
tual data modelling. In: Proc. IEEE Intl. Conf. Fuzzy Syst. (Anchorage,
AK, 1998), pp. 1320–1325.

[4] Galindo, J., Medina, J., Aranda, M., Querying fuzzy relational databases
through fuzzy domain calculus. Int. J. Intell. Syst. 14, 4 (1999), 375–411.

[5] Galindo, J., Medina, J., Cubero, J., Garcia, M., Relaxing the universal
quantifier of the division in fuzzy relational databases. Int. J. Intell. Syst.
16, 6 (2001), 713–742.

[6] Galindo, J., Urrutia, A., Piattini, M., Fuzzy Databases: Modelling Design
and Implementation. IDEA Group, Hershey, PA, 2006.

[7] Luo, X., Lee, J., Leung, H., Jennings, N., Prioritized fuzzy constraint
satisfaction problems: Axioms, instantiation and validation. Fuzzy Set.
Syst. 136, 2 (2003), 151–188.

[8] Medina, J., Pons, O., Vila, M., GEFRED: A generalized model of fuzzy
relational databases. Inform. Sciences 76, 1–2 (1994), 87–109.

178 Srdjan Škrbić, Miloš Racković, Aleksandar Takači

[9] Takači, A., Schur-concave triangular norms: Characterization and appli-
cation in PFCSP. Fuzzy Set. Syst. 155, 1 (2005), 50–64.

[10] Takači, A., Perović, A., Jovanović, A., Measuring uncertainty with prior-
ity based logic. In: Proc. 12th Intl. Conf. Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU 2008)
(Malaga, Spain, 2008), pp. 1490–1496.

[11] Takači, A., Škrbić, S., How to implement FSQL and priority queries. In
Proc. 3rd Serbian-Hungarian Joint Symposium Intelligent Systems and In-
formatics (Subotica, Serbia, 2005), pp. 261–267.

[12] Takači, A., Škrbić, S., Measuring the similarity of different types of fuzzy
sets in FRDB. In: Proc. 5th Conf. EUSFLAT (Ostrava, Czech Republic,
2007), pp. 247–252.

[13] Takači, A., Škrbić, S., Short review of fuzzy relational databases. In: Proc.
51nd ETRAN Conf. (Herceg Novi, Montenegro, 2007), p. VI1.4(CD).

[14] Takači, A., Škrbić, S., Data Model of FRDB with Different Data Types
and PFSQL, vol. 1. USA: Information Science Reference, Hershey, PA,
2008, pp. 407–434.

[15] Takači, A., Škrbić, S., Priority, weight and threshold in fuzzy SQL systems.
Acta Polytech. Hung. 5, 1 (2008), 59–68.

[16] Takači, A., Škrbić, S., Perović, A., Generalised prioritised constraint sat-
isfaction problem. In: Proc. 7th Serbian-Hungarian Joint Symposium
Intelligent Systems and Informatics (Subotica, Serbia, 2009), pp. 145–148.

[17] Škrbić, S., Application of fuzzy logic in database systems. http://www.
is.pmf.uns.ac.rs/fuzzydb/, 2007.

[18] Škrbić, S., Using fuzzy logic with relational databases. PhD dissertation,
Faculty of Science, Novi Sad, Univerity of Novi Sad, 2009.

[19] Škrbić, S., Racković, M., PFSQL: a fuzzy SQL language with priorities.
In: Proc. PSU-UNS Inter. Conf. on Engineering Technolgies, ICET 2009
(Novi Sad, Serbia, 2009), pp. 58–63.

[20] Škrbić, S., Racković, M., Takači, A., Towards the methodology for devel-
opment of fuzzy relational database applications. Comp. Sci. and Inf. Sys.
8, 1 (2011), 27–40.

[21] Škrbić, S., Takači, A., On development of fuzzy relational database applica-
tions. In: Proc. 12th Intl. Conf. Information Processing and Management
of Uncertainty in Knowledge-Based Systems (IPMU 2008) (Malaga, Spain,
2008), pp. 268–273.

http://www.is.pmf.uns.ac.rs/fuzzydb/
http://www.is.pmf.uns.ac.rs/fuzzydb/

The PFSQL query execution process 179

[22] Škrbić, S., Takači, A., An interpreter for priority fuzzy logic enriched
SQL. In: Proc. 4th Balkan Conf. Informatics (Thessaloniki, Greece, 2009),
pp. 96–100.

[23] Zvieli, A., Chen, P., ER modelling and fuzzy databases. In: Proc. 2nd
Intl. Conf. Data Engineering (Los Angeles, CA, 1986), pp. 320–327.

Received by the editors December 22, 2010

	Introduction
	Related work
	Existing solution
	The PFSQL
	Fuzzy-Relational Database
	Fuzzy JDBC Driver and FRDB CASE Tool

	The PFSQL parser
	Parse Tree Transformation
	Fuzzy Membership Degree Calculations
	PFSQL and FSQL
	Concluding remarks

