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MULTIPLICATION AND COMULTIPLICATION
MODULES
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Abstract. This paper deals with some results concerning multiplication
and comultiplication modules over a commutative ring.
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1. Introduction

Throughout this paper, R denotes a commutative ring with identity.

Let M be an R-module. M is said to be a multiplication module if for every
submodule N ofM there exists an ideal I of R such that N = IM . Equivalently,
M is a multiplication module if and only if for each submodule N of M , we have
N = (N :R M)M [8].

The dual notion of multiplication modules was introduced by H. Ansari-
Toroghy and F. Farshadifar in [1] and some properties of this class of modules
have been considered. M is said to be a comultiplication module if for every
submodule N of M there exists an ideal I of R such that N = (0 :M I). Also,
it is shown [1, 3.7] that M is a comultiplication module if and only if for each
submodule N of M , we have N = (0 :M AnnR(N)). More information about
this class of modules can be found in [2], [3], [4], and [5].

A proper submodule N of M is said to be prime if for each a ∈ R, the
homomorphism M/N

a→ M/N is either injective or zero. M is said to be a
prime module if the zero submodule of M is prime [7].

A non-zero submodule N of M is said to be second if for each a ∈ R, the
homomorphism N

a→ N is either surjective or zero [11].

A submodule N of M is said to be copure if (N :M I) = N + (0 :M I) for
every ideal I of R [6].

M is said to be co-Hopfian if every injective endomorphism f of M is an
isomorphism [10].

M is said to be a domain if Zd(M) = 0, where Zd(M) is the set of all zero
divisors of M [3].
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2. Main results

Theorem 2.1. Let M be an R-module. Then we have the following.

(a) If M is a multiplication module, then for each endomorphism f of M , we
have Ker(f) = (0 :M AnnR(M/Im(f))).

(b) If M is a comultiplication module, then for each endomorphism f of M ,
we have Im(f) = AnnR(Ker(f))M .

(c) If M is a multiplication module such that AnnR(M) is a prime ideal of
R, then M is a prime module.

(d) If M is a comultiplication module such that AnnR(M) is a prime ideal of
R, then M is a second module.

(e) If M is a comultiplication module, N is a minimal submodule of M and X
and Y are submodules of M with X∩N = Y ∩N = 0, then N∩(X+Y ) = 0.

Proof. (a) Since M is a multiplication module, Im(f) = (Im(f) :R M)M . Thus
M/(Ker(f)) ∼= (Im(f) :R M)M . Now since

AnnR((Im(f) :R M)M) = AnnR(M/(0 :M (Im(f) :R M))),

we have

AnnR(M/Ker(f)) = AnnR(M/(0 :M (Im(f) :R M))).

Hence Ker(f) = (0 :M AnnR(M/Im(f)) because M is a multiplication module.
(b) Since M is a comultiplication module, Ker(f) = (0 :M AnnR(Ker(f)).

Thus M/(0 :M AnnR(Ker(f)) ∼= Im(f). Now since

AnnR(M/(0 :M AnnR(Ker(f))) = AnnR(AnnR(Ker(f))M),

we have

AnnR(Im(f)) = AnnR(AnnR(Ker(f))M).

Hence Im(f) = AnnR(Ker(f))M because M is a comultiplication module.
(c) Let r ∈ R. Consider the homomorphism fr : M → M given by fr(m) =

rm for all m ∈ M . Since M is a multiplication module, there exists an ideal
I of R such that Ker(f) = IM . Thus M/IM ∼= rM . Hence rI ⊆ AnnR(M).
Since AnnR(M) is prime, rM = 0 or IM = 0 as required.

(d) Let r ∈ R. Consider the homomorphism fr : M → M given by fr(m) =
rm for all m ∈ M . Since M is a comultiplication module, there exists an ideal
I of R such that rM = (0 :M I). Thus rI ⊆ AnnR(M). Since AnnR(M) is
prime, rM = 0 or M = (0 :M I) as desired.

(e) Let N be a minimal submodule of M and let X, Y be two submodules of
M such that N ∩ Y = N ∩X = 0. Since M is a comultiplication module, X =
(0 :M AnnR(X)) and Y = (0 :M AnnR(Y )). Now (0 :M AnnR(X)AnnR(Y )) ∩



Multiplication and comultiplication modules 119

N = N or (0 :M AnnR(X)AnnR(Y ))∩N = 0 becauseN is a minimal submodule
of M . In the first case, we have

N = (0 :N AnnR(X)AnnR(Y )) = (N ∩X :N AnnR(Y )) = N ∩ Y = 0,

which is a contradiction. In the second case, N ∩(0 :M AnnR(X)AnnR(Y )) = 0
implies that N ∩ (X + Y ) = 0 because

(0 :M AnnR(X)AnnR(Y )) ⊇ (0 :M AnnR(X) ∩AnnR(Y )) = X + Y.

Proposition 2.2. Let M be an R-module. Then the following hold.

(a) If for every non-zero submodule N of M , we have that M/N is a multi-
plication module and (N :R M) ̸= AnnR(M), then M is a multiplication
module.

(b) If every proper submodule N of M is a comultiplication module and
AnnR(N) ̸= AnnR(M), then M is a comultiplication module.

(c) If R is a principal ideal ring and M is a domain such that every submodule
of M is a multiplication R-module, then every homomorphic image Q of
M (Q ̸= M) is a comultiplication R/AnnR(Q)-module.

Proof. (a) Let N be a non-zero submodule of M . Set I = (N :R M). If IM = 0,
then I = AnnR(M), which is a contradiction. Hence IM ̸= 0. Thus, by the
assumption,

N/IM = (N/IM :R M/IM)(M/IM) = 0,

as required.

(b) Let N be a proper submodule of M . If (0 :M AnnR(N)) = M , then
AnnR(N) = AnnR(M), which is a contradiction. Hence (0 :M AnnR(N)) ̸= M .
Thus by assumption,

N = (0 :(0:MAnnR(N)) AnnR(N)) = (0 :M AnnR(N))

as desired.

(c) Let K be a submodule of M and let N/K be a submodule of M/K.
Suppose that (x+K)AnnR(N/K) = 0. Then xAnnR(N/K) ⊆ K. By assump-
tion, N is a multiplication R-module. Thus xAnnR(N/K) ⊆ AnnR(N/K)N .
It follows that x ∈ N because AnnR(N/K) is a principal ideal and M is a
domain. Therefore, (0 :M/K AnnR(N/K)) ⊆ N/K. Clearly, N/K ⊆ (0 :M/K

AnnR(N/K)) and the proof is completed.

Example 2.3. Let R be a principal ideal domain and I a non-zero ideal of R.
Then by Proposition 2.2 (c), R/I is a quasi-Frobenius ring [9, Exercise. 24.1].
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Remark 2.4. It is well known that if M is a finitely generated multiplication
R-module and I, J are ideals of R such that IM ⊆ JM , then I ⊆ J+AnnR(M).
But the dual of this fact is not true in general. For example, the Z-module (here
Z denotes the ring of integers) Zp∞ is a faithful Artinian comultiplication Z-
module such that (0 :Zp∞ qZ) = (0 :Zp∞ Z) for each prime number q ̸= p, while
qZ ̸= Z. Next proposition shows that this is true for comultiplication modules
under some restrictive conditions.

Proposition 2.5. Let M be a comultiplication R-module and (0 :M I) ⊆ (0 :M
J) for some ideals I and J of R. Then we have the following.

(a) J ⊆ I if there exists a finitely generated multiplication submodule N of
M such that AnnR(N) ⊆ I.

(b) J ⊆ I if I ∈ SuppR(M).

Proof. (a) Let N be a finitely generated multiplication submodule of M . We
have (0 :M I) ⊆ (0 :M J) implying that (0 :N I) ⊆ (0 :N J). By [1, 3.17],
N is a comultiplication R-module. Therefore, JN ⊆ IN . Since N is a finitely
generated multiplication module, J ⊆ I +AnnR(N) = I by [8, Theorem 9].

(b) Let I ∈ SuppR(M). Then there existsm ∈ M such that AnnR(Rm) ⊆ I.
Now the result follows from part (a) and the proof is completed.

Recall that an ideal I of R is a pure ideal if IJ = I ∩ J for each ideal J of
R.

Proposition 2.6. Let M be an R-module. Then we have the following.

(a) If R is a Noetherian ring, I is a pure ideal of R, and N is a copure
submodule of M , then (N :M I) is a copure submodule of M .

(b) If M is a multiplication R-module such that for each endomorphism f of
M we have Im(f) is a copure submodule of M , then M is co-Hopfian.

Proof. (a) Let J be an ideal of R. We show that

((N :M I) :M J) = (N :M I) + (0 :M J).

Since R is a Noetherian ring, it is enough to show this locally. Thus we may
assume that R is a local ring. Since I is a pure ideal of R, we have I = 0 or
I = R. If I = 0, then both sides of the equality is M . If I = R, then the
copurity of N implies that

((N :M I) :M J) = (N :M J) = N + (0 :M J) = (N :M I) + (0 :M J).

(b) Let f be an endomorphism of M . Then Im(f) is a copure submodule of
M . Set I = AnnR(M/Im(f)). Then by Theorem 2.1 (a), Ker(f) = (0 :M I).
Thus

M/Im(f) = (0 :M/Im(f) I) = (Im(f) :M I)/Im(f) =

(Im(f) + (0 :M I))/Im(f) = (Im(f) +Ker(f))/Im(f).

It follows that M is co-Hopfian.
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Theorem 2.7. Let M be a comultiplication R-module. Then the following hold.

(a) If M is a finitely generated faithful R-module and N is a direct summand
of M , then AnnR(N) is a direct summand of R.

(b) If N is a copure submodule of M such that M/N is a finitely generated
R-module, then N is a direct summand of M .

Proof. (a) Let K be a submodule of M such that M = N ⊕ K. This implies
that AnnR(N) ∩AnnR(K) = 0. Since N ∩K = 0,

(0 :M AnnR(N) +AnnR(K)) = 0.

Thus by [4, 3.4], AnnR(N) +AnnR(K) = R, as required.
(b) Since AnnR(N)AnnR(M/N) ⊆ AnnR(M) and M is comultiplication,

M = (0 :M AnnR(N)AnnR(M/N)) = (N :M AnnR(M/N)).

As N is copure, it follows that

M = N + (0 :M AnnR(M/N)).

Now we show that this sum is direct. Since M is a comultiplication module and
N is a copure submodule of M ,

M = (AnnR(N)M :M AnnR(N)) = ((0 :M AnnR(AnnR(N)M)) :M AnnR(N))

= (N :M AnnR(AnnR(N)M)) = N + (0 :M AnnR(AnnR(N)M)

= N +AnnR(N)M.

Hence AnnR(N)(M/N) = M/N . Since M/N is finitely generated,

AnnR(N) +AnnR(M/N) = R

by Nakayama Lemma. Therefore, N ∩ (0 :M AnnR(M/N)) = 0, as desired.

References

[1] Ansari-Toroghy, H., Farshadifar, F., The dual notion of multiplication modules.
Taiwanese J. Math. 11 (4) (2007), 1189–1201.

[2] Ansari-Toroghy, H., Farshadifar, F., On endomorphisms of multiplication and
comultiplication modules. Arch. Math. (Brno) 44 (2008), 9–15.

[3] Ansari-Toroghy, H., Farshadifar, F., Comultiplication modules and related re-
sults. Honam Math. J. 30 (1) (2008), 91–99.

[4] Ansari-Toroghy, H., Farshadifar, F., On comultiplication modules. Korean Ann.
Math. 25 (2) (2008), 57–66.

[5] Ansari-Toroghy, H., Farshadifar, F., On multiplication and comultiplication mod-
ules. Acta Math. Sci. 31B (2) (2011), 694-700.



122 H. Ansari-Toroghy, F. Farshadifar

[6] Ansari-Toroghy, H., Farshadifar, F., Strong comultiplication modules. CMU. J.
Nat. Sci. 8 (1) (2009), 105–113.

[7] Dauns, J., Prime submodules. J. Reine Angew. Math. 298 (1978), 156–181.

[8] El-Bast, Z.A., Smith, P.F., Multiplication modules. Comm. Algebra 16 (1988),
755–779.

[9] Faith, C., Algebra II: Ring theory. New York-Heidelberg-Berlin: Springer-Verlag,
1976.

[10] Lam, T.Y., Lectures on Modules and Rings, Graduate texts in Math. New York-
Heidelberg-Berlin: Springer-Verlag, 1999.

[11] Yassemi, S., The dual notion of prime submodules, Arch. Math (Brno) 37 (2001),
273–278.

Received by the editors February 22, 2010


