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COMMON FIXED POINT RESULT IN SYMMETRIC
SPACES

H. K. Pathak1, Rosana Rodŕıguez-López2, Rakesh Tiwari3

Abstract. In this note, a common fixed point theorem for weakly com-
patible mappings satisfying a contractive condition of integral type and
property (E.A) is established in symmetric spaces which generalizes recent
results of Aamri, El Moutawakil and A. Aliouche.
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1. Introduction

Hicks and Rhoades [4] established some common fixed point theorems in
symmetric spaces using the fact that some of the properties of metric are not
required in the proofs of certain metric theorems. Recall that a symmetric on
a set X is a nonnegative real valued function d on X ×X such that

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x).

Let d be a symmetric on a set X and for r > 0 and any x ∈ X, let

B(x, r) = {y ∈ X : d(x, y) < r}.

A topology t(d) on X is given by U ∈ t(d) if and only if for each x ∈
U,B(x, r) ⊂ U for some r > 0. A symmetric d is a semi-metric if for each x ∈ X
and each r > 0, B(x, r) is a neighborhood of x in the topology t(d). Note that
limn→∞ d(xn, x) = 0 if and only if xn → x in the topology t(d).

The following two axioms appeared in [9].
Let (X, d) be a symmetric space.

(W.3)
Given {xn}, x and y in X, limn→∞ d(xn, x) = 0 and
limn→∞ d(xn, y) = 0 imply x = y.

(W.4)
Given {xn}, {yn} and x in X, limn→∞ d(xn, x) = 0 and
limn→∞ d(xn, yn) = 0 imply that limn→∞ d(yn, x) = 0.
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Commuting, weakly commuting, compatible and weakly compatible map-
pings have been frequently used to prove existence theorems in common fixed
point theory. Recall that Jungck and Rhoades [6] defined S and T to be weakly
compatible if they commute at their coincidence points, i.e. if Su = Tu for some
u ∈ X, then STu = TSu.

There are many examples in the literature verifying that for metric spaces,
commuting implies weakly commuting implies compatible implies weakly com-
patible maps but the converse need not be true. (See [5] and [8]).

Aamri et al. [2] have established some common fixed point theorems under
strict contractive conditions on a metric space for mappings satisfying the prop-
erty (E.A). Again recall that the pair (S, T ) satisfies property (E.A) if there
exists a sequence {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

Recently, Aliouche [3] proved a common fixed point theorem for self-mappings
in a symmetric space under a contractive condition of integrals and satisfying a
new property introduced recently in [2].

The main objective of this paper is to prove a common fixed point theorem
for weakly compatible mappings in the setting of a symmetric space satisfy-
ing an integral type contractive condition and property (E.A). This Theorem
generalizes the results of Aamri et al. [1, 2] and A. Aliouche [3].

2. Preliminaries

In the sequel we need a function ϕ : R+ → R+ satisfying the conditions
0 < ϕ(t) < t for each t > 0 and ϕ(0) = 0. For example, ϕ(t) = t2 for each
t ∈ (0, 1). Note that, in these assumptions, ϕ is right continuous at t = 0.

Definition 2.1. [3, Def.4] Let (X, d) be a symmetric space. We say that (X, d)
satisfies property (HE), if given {xn}, {yn} and x in X,

lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, x) = 0 imply lim
n→∞

d(xn, yn) = 0.

For symmetric spaces, the following chain of implications is valid: com-
muting implies weakly commuting maps, compatible implies weakly compat-
ible maps, but we must add hypothesis (HE) for every weakly commuting
pair to be compatible. Indeed, suppose that (S, T ) is weakly commuting,
then d(TSx, STx) ≤ d(Sx, Tx), ∀x ∈ X. For a sequence {xn} in X with
limn→∞ Sxn = limn→∞ Txn = t ∈ X, we get d(TSxn, STxn) ≤ d(Sxn, Txn),
∀n ∈ N. Since limn→∞ d(Sxn, t) = limn→∞ d(Txn, t) = 0 and (HE), then
limn→∞ d(Sxn, Txn) = 0, and, in consequence,

lim
n→∞

d(TSxn, STxn) = 0.

Note that condition (HE) is trivially valid in metric spaces.
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3. Main Results

Now we state and prove our main result.

Theorem 3.1. Let d be a symmetric for X which satisfies (W.3), (W.4) and
(HE). Let A, B, S and T be self mappings of X such that

(3.1) A(X) ⊆ T (X) and B(X) ⊆ S(X),

(3.2)

∫ d(Ax,By)

0

φ(t)dt ≤ ϕ
(∫ aL(x,y)+(1−a)M(x,y)

0

φ(t)dt
)
,

for all x, y ∈ X, where φ : R+ → R+ is a Lebesgue-integrable mapping which is
summable, non-negative and such that

(3.3)

∫ ϵ

0

φ(t)dt > 0 for all ϵ > 0,

L(x, y) =min {L1(x, y), L2(x, y)},
L1(x, y) =max{d(Sx, Ty), d(Sx,By), d(By, Ty)},
L2(x, y) =max{d(Sx, Ty), d(Sx,Ax), d(Ax, Ty)},
M(x, y) =min {M1(x, y),M2(x, y)},
M1(x, y) =

[
max{d2(Sx, Ty), d(Sx,By)d(By, Ty), d(Sx, Ty)d(Sx,By),

d(Sx, Ty)d(By, Ty), d2(By, Ty)}
]1/2

M2(x, y) =
[
max{d2(Sx, Ty), d(Ax, Ty)d(Ax, Sx), d(Sx, Ty)d(Ax, Ty),

d(Sx, Ty)d(Ax, Sx), d2(Ax, Sx)}
]1/2

and 0 ≤ a ≤ 1. Suppose that (A,S) or (B, T ) satisfies the property (E.A) and
(A,S) and (B, T ) are weakly compatible. If one of the subspaces A(X), B(X),
S(X) and T (X) of X is complete, then A, B, S and T have a unique common
fixed point in X.

Proof. Suppose that (B, T ) satisfies the property (E.A), then there exists
a sequence {xn} in X such that

lim
n→∞

d(Bxn, z) = lim
n→∞

d(Txn, z) = 0 for some z ∈ X.

Therefore, by the property (HE), we have

lim
n→∞

d(Bxn, Txn) = 0.

Since B(X) ⊆ S(X), there exists a sequence {yn} in X such that Bxn = Syn.
Hence

lim
n→∞

d(Syn, z) = 0.
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Now we show that limn→∞ d(Ayn, z) = 0. For that, suppose

lim sup
n→∞

d(Ayn, Bxn) = p ̸= 0,

or

lim sup
n→∞

d(Ayn, Bxn) = +∞.

Using (3.2), we have

(3.4)

∫ d(Ayn,Bxn)

0

φ(t)dt ≤ ϕ
(∫ aL(yn,xn)+(1−a)M(yn,xn)

0

φ(t)dt
)
,

where

L(yn, xn) =min {L1(yn, xn), L2(yn, xn)},
L1(yn, xn) =max{d(Syn, Txn), d(Syn, Bxn), d(Bxn, Txn)} = d(Bxn, Txn),

L2(yn, xn) =max{d(Syn, Txn), d(Syn, Ayn), d(Ayn, Txn)}
=max{d(Bxn, Txn), d(Bxn, Ayn), d(Ayn, Txn)},

which implies

L(yn, xn) =min {d(Bxn, Txn),

max{d(Bxn, Txn), d(Bxn, Ayn), d(Ayn, Txn)}}
=d(Bxn, Txn),

M(yn, xn) =min {M1(yn, xn),M2(yn, xn)},
M1(yn, xn) =

[
max{d2(Syn, Txn), d(Syn, Bxn)d(Bxn, Txn),

d(Syn, Txn)d(Syn, Bxn),

d(Syn, Txn)d(Bxn, Txn), d
2(Bxn, Txn)}

]1/2
=d(Bxn, Txn).

M2(yn, xn) =
[
max{d2(Syn, Txn), d(Ayn, Txn)d(Ayn, Syn),

d(Syn, Txn)d(Ayn, Txn),

d(Syn, Txn)d(Ayn, Syn), d
2(Ayn, Syn)}

]1/2
=
[
max{d2(Bxn, Txn), d(Ayn, Txn)d(Ayn, Bxn),

d(Bxn, Txn)d(Ayn, Txn),

d(Bxn, Txn)d(Ayn, Bxn), d
2(Ayn, Bxn)}

]1/2
,

hence

M(yn, xn) = d(Bxn, Txn).
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Thus (3.4) becomes∫ d(Ayn,Bxn)

0

φ(t)dt ≤ ϕ
(∫ ad(Bxn,Txn)+(1−a)d(Bxn,Txn)

0

φ(t)dt
)

= ϕ
(∫ d(Bxn,Txn)

0

φ(t)dt
)

≤
∫ d(Bxn,Txn)

0

φ(t)dt.

Using (3.3), we get lim supn→∞
∫ d(Ayn,Bxn)

0
φ(t)dt > 0, and then

lim sup
n→∞

∫ d(Bxn,Txn)

0

φ(t)dt > 0,

which is a contradiction. Therefore lim supn→∞ d(Ayn, Bxn) = 0 and

lim
n→∞

d(Ayn, Bxn) = 0.

We deduce, by (W.4), that limn→∞ d(Ayn, z) = 0.
Now, suppose that S(X) is a complete subspace of X. Then z = Su, for

some u ∈ X. Consequently, we have

lim
n→∞

d(Ayn, Su) = lim
n→∞

d(Bxn, Su) = lim
n→∞

d(Txn, Su) = lim
n→∞

d(Syn, Su) = 0.

If Au ̸= z, using (3.2) we get∫ d(Au,Bxn)

0

φ(t)dt ≤ ϕ
(∫ aL(u,xn)+(1−a)M(u,xn)

0

φ(t)dt
)

(3.5)

≤
∫ aL(u,xn)+(1−a)M(u,xn)

0

φ(t)dt,

where

L(u, xn) ≤ L1(u, xn) = max{d(Su, Txn), d(Su,Bxn), d(Bxn, Txn)},

and

M(u, xn) ≤M1(u, xn) =
[
max{d2(Su, Txn), d(Su,Bxn)d(Bxn, Txn),

d(Su, Txn)d(Su,Bxn), d(Su, Txn)d(Bxn, Txn), d
2(Bxn, Txn)}

]1/2
.

Taking n → ∞, we get limn→∞ L(u, xn) = 0 and limn→∞ M(u, xn) = 0, respec-
tively.
Hence (3.5) provides

lim
n→∞

∫ d(Au,Bxn)

0

φ(t)dt = 0
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and (3.3) implies that limn→∞ d(Au,Bxn) = 0. By (W.3), we have z = Au,
which is a contradiction. In consequence. z = Au = Su.

Since A(X) ⊆ T (X), there exists v ∈ X such that z = Au = Tv.
If Bv ̸= z, using (3.2), we have∫ d(z,Bv)

0

φ(t)dt =

∫ d(Au,Bv)

0

φ(t)dt(3.6)

≤ϕ
(∫ aL(u,v)+(1−a)M(u,v)

0

φ(t)dt
)
,

where L(u, v) ≤ d(z,Bv), and M(u, v) ≤
[
d2(z,Bv)

]1/2
, respectively.

In fact, L(u, v) = 0, and M(u, v) = 0. Indeed,

L1(u, v) =max{d(Su, Tv), d(Su,Bv), d(Bv, Tv)} = d(z,Bv),

L2(u, v) =max{d(Su, Tv), d(Su,Au), d(Au, Tv)} = 0,

hence
L(u, v) = min {L1(u, v), L2(u, v)} = 0,

and

M1(u, v) =
[
max{d2(Su, Tv), d(Su,Bv)d(Bv, Tv), d(Su, Tv)d(Su,Bv),

d(Su, Tv)d(Bv, Tv), d2(Bv, Tv)}
]1/2

=
[
max{d2(z, z), d(z,Bv)d(Bv, z), d(z, z)d(z,Bv),

d(z, z)d(Bv, z), d2(Bv, z)}
]1/2

,

M2(u, v) =
[
max{d2(Su, Tv), d(Au, Tv)d(Au, Su), d(Su, Tv)d(Au, Tv),

d(Su, Tv)d(Au, Su), d2(Au, Su)}
]1/2

= 0,

M(u, v) =min {M1(u, v),M2(u, v)} = 0.

Thus (3.6) becomes∫ d(z,Bv)

0

φ(t)dt ≤ ϕ
(∫ 0

0

φ(t)dt
)
= ϕ(0) = 0,

which is a contradiction. Hence z = Bv = Tv.
The pair (A,S) is weakly compatible, so that ASu = SAu since Au = Su,

which implies Az = Sz.
Let us show that z is a common fixed point of A, B, S and T . If z ̸= Az,

using (3.2), we get∫ d(z,Az)

0

φ(t)dt =

∫ d(Az,Bv)

0

φ(t)dt(3.7)

≤ϕ
(∫ aL(z,v)+(1−a)M(z,v)

0

φ(t)dt
)
,



Common fixed point result in symmetric spaces 7

where

L1(z, v) =max{d(Sz, Tv), d(Sz,Bv), d(Bv, Tv)} = d(z,Az),

L2(z, v) =max{d(Sz, Tv), d(Sz,Az), d(Az, Tv)} = d(z,Az),

L(z, v) =d(z,Az),

and

M1(z, v) =
[
max{d2(Sz, Tv), d(Sz,Bv)d(Bv, Tv), d(Sz, Tv)d(Sz,Bv),

d(Sz, Tv)d(Bv, Tv), d2(Bv, Tv)}
]1/2

=
[
max{d2(Az, z), d(Az, z)d(z, z), d(Az, z)d(Az, z),

d(Az, z)d(z, z), d2(z, z)}
]1/2

=d(Az, z),

M2(z, v) =
[
max{d2(Sz, Tv), d(Az, Tv)d(Az, Sz), d(Sz, Tv)d(Az, Tv),

d(Sz, Tv)d(Az, Sz), d2(Az, Sz)}
]1/2

=
[
max{d2(Az, z), d(Az, z)d(Az,Az), d(Az, z)d(Az, z),

d(Az, z)d(Az,Az), d2(Az,Az)}
]1/2

=d(Az, z),

hence M(z, v) =
[
d2(z,Az)

]1/2
.

Thus, using that
∫ d(z,Az)

0
φ(t)dt > 0 (by (3.3), then (3.7) becomes

∫ d(Az,z)

0

φ(t)dt ≤ ϕ
(∫ ad(Az,z)+(1−a)d(Az,z)

0

φ(t)dt
)

= ϕ
(∫ d(Az,z)

0

φ(t)dt
)
<

∫ d(z,Az)

0

φ(t)dt,

which is a contradiction. Therefore z = Az = Sz.

Similarly, weak compatibility of B and T implies BTv = TBv, i.e., Bz = Tz.

If z ̸= Bz, by using (3.2) and (3.3), a similar calculation as above yields
z = Bz = Tz. Thus, z is a common fixed point of A, B, S and T .

For the uniqueness of the common fixed point z, let w ̸= z be another
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common fixed point of A, B, S and T . Then, using (3.2) and (3.3), and

L1(z, w) =max{d(Sz, Tw), d(Sz,Bw), d(Bw, Tw)} = d(z, w),

L2(z, w) =max{d(Sz, Tw), d(Sz,Az), d(Az, Tw)}} = d(z, w),

L(z, w) =d(z, w),

M1(z, w) =
[
max{d2(Sz, Tw), d(Sz,Bw)d(Bw, Tw), d(Sz, Tw)d(Sz,Bw),

d(Sz, Tw)d(Bw, Tw), d2(Bw, Tw)}
]1/2

= d(z, w),

M2(z, w) =
[
max{d2(Sz, Tw), d(Az, Tw)d(Az, Sz), d(Sz, Tw)d(Az, Tw),

d(Sz, Tw)d(Az, Sz), d2(Az, Sz)}
]1/2

= d(z, w),

M(z, w) =d(z, w),

we obtain
∫ d(z,w)

0
φ(t)dt > 0 and∫ d(z,w)

0

φ(t)dt =

∫ d(Az,Bw)

0

φ(t)dt

≤ ϕ
(∫ aL(z,w)+(1−a)M(z,w)

0

φ(t)dt
)

= ϕ
(∫ ad(z,w)+(1−a)d(z,w)

0

φ(t)dt
)

= ϕ
(∫ d(z,w)

0

φ(t)dt
)

<

∫ d(z,w)

0

φ(t)dt,

which is a contradiction. Therefore z = w.
When T (X) is assumed to be a complete subspace of X, then z = Tu, for

some u ∈ X. Consequently, we have

lim
n→∞

d(Ayn, Tu) = lim
n→∞

d(Bxn, Tu) = lim
n→∞

d(Txn, Tu) = lim
n→∞

d(Syn, Tu) = 0.

We check that Bu = z. If Bu ̸= z, using (3.2) we get∫ d(Ayn,Bu)

0

φ(t)dt ≤ϕ
(∫ aL(yn,u)+(1−a)M(yn,u)

0

φ(t)dt
)

(3.8)

≤
∫ aL(yn,u)+(1−a)M(yn,u)

0

φ(t)dt,

where

L1(yn, u) =max{d(Syn, Tu), d(Syn, Bu), d(Bu, Tu)},
=max{d(Bxn, z), d(Bxn, Bu), d(Bu, z)},

L2(yn, u) =max{d(Syn, Tu), d(Syn, Ayn), d(Ayn, Tu)}
=max{d(Bxn, z), d(Bxn, Ayn), d(Ayn, z)},
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hence L(yn, u) ≤ L2(yn, u), yielding limn→∞ L(yn, u) = 0, and

M1(yn, u) =
[
max{d2(Bxn, z), d(Bxn, Bu)d(Bu, z), d(Bxn, z)d(Bxn, Bu),

d(Bxn, z)d(Bu, z), d2(Bu, z)}
]1/2

,

M2(yn, u) =
[
max{d2(Bxn, z), d(Ayn, z)d(Ayn, Bxn), d(Bxn, z)d(Ayn, z),

d(Bxn, z)d(Ayn, Bxn), d
2(Ayn, Bxn)}

]1/2
,

hence M(yn, u) ≤ M2(yn, u) and limn→∞ M(yn, u) = 0.
Hence (3.8) provides

lim
n→∞

∫ d(Ayn,Bu)

0

φ(t)dt = 0

and (3.3) implies that limn→∞ d(Ayn, Bu) = 0. By (W.3), we have z = Bu,
which is a contradiction. In consequence. z = Bu = Tu.

The remaining part of the proof is similar to the case where S(X) is complete.
On the other hand, by (3.1), the cases in which A(X) or B(X) is a complete

subspace of X are similar to the cases in which T (X) or S(X) is complete,
respectively.

The same procedure is valid for the case where (A,S) satisfies the property
(E.A).

Note that the implicit relation can be relaxed if we restrict the hypotheses
on the mappings A, B, T and S. For instance, if (B, T ) satisfies (E.A) and S(X)
or B(X) is a complete subspace of X, then we can use the implicit relation∫ d(Ax,By)

0

φ(t)dt ≤ ϕ
(∫ aL1(x,y)+(1−a)M1(x,y)

0

φ(t)dt
)
,

for all x, y ∈ X, where L1(x, y) and M1(x, y) are given in the statement of
Theorem 3.1, obtaining the following result.

Theorem 3.2. Let d be a symmetric for X which satisfies (W.3), (W.4) and
(HE). Let A, B, S and T be self-mappings of X such that

(3.9) A(X) ⊆ T (X) and B(X) ⊆ S(X),

(3.10)

∫ d(Ax,By)

0

φ(t)dt ≤ ϕ
(∫ aL(x,y)+(1−a)M(x,y)

0

φ(t)dt
)
,

for all x, y ∈ X, where φ : R+ → R+ is a Lebesgue-integrable mapping which is
summable, non-negative and such that

(3.11)

∫ ϵ

0

φ(t)dt > 0 for all ϵ > 0,
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L(x, y) =max{d(Sx, Ty), d(Sx,By), d(By, Ty)},
M(x, y) =

[
max{d2(Sx, Ty), d(Sx,By)d(By, Ty), d(Sx, Ty)d(Sx,By),

d(Sx, Ty)d(By, Ty), d2(By, Ty)}
]1/2

and 0 ≤ a ≤ 1. Suppose that (B, T ) satisfies the property (E.A) and (A,S) and
(B, T ) are weakly compatible. If one of the subspaces B(X) and S(X) of X is
complete, then A, B, S and T have a unique common fixed point in X.

Remark 3.3. If (B, T ) satisfies the property (E.A) and one of the subspaces
A(X), T (X) of X is complete, we can use the same implicit as in Theorem 3.2,
adding the following hypotheses: ϕ continuous, and

d(xn, z) → 0 as n → ∞ =⇒ d(xn, v) → d(z, v) as n → ∞.

Note that this last condition is not deduced from (W.3), (W.4) or (HE).

Remark 3.4. On the other hand, if (A,S) satisfies (E.A), and one of the sub-
spaces A(X) or T (X) of X is complete, then we can assume the implicit relation

(3.12)

∫ d(Ax,By)

0

φ(t)dt ≤ ϕ
(∫ aL(x,y)+(1−a)M(x,y)

0

φ(t)dt
)
,

for all x, y ∈ X, where L(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ax, Ty)},
and

M(x, y) =
[
max{d2(Sx, Ty), d(Ax, Ty)d(Ax, Sx), d(Sx, Ty)d(Ax, Ty),

d(Sx, Ty)d(Ax, Sx), d2(Ax, Sx)}
]1/2

In this case, if one of the subspaces B(X) and S(X) of X is complete, the
implicit relation (3.12) can be assumed considering ϕ continuous, and

d(xn, z) → 0 as n → ∞ =⇒ d(xn, v) → d(z, v) as n → ∞.

Remark 3.5. If a = 1 in Theorem 3.1, we obtain

(3.13)

∫ d(Ax,By)

0

φ(t)dt ≤ ϕ
(∫ L(x,y)

0

φ(t)dt
)
,

for all x, y ∈ X, where

L(x, y) = min {L1(x, y), L2(x, y)},

L1(x, y) = max{d(Sx, Ty), d(Sx,By), d(By, Ty)},

L2(x, y) = max{d(Sx, Ty), d(Sx,Ax), d(Ax, Ty)}.

In case (B, T ) satisfies (E.A) and S(X) or B(X) is a complete subspace of
X, then we can take L(x, y) = L1(x, y) and get the implicit relation of Theorem
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1 of Aliouche [3]. Note that, in Theorem 1 [3], the condition ϕ(0) = 0 is needed.
This fact can be clearly deduced from the assertion

lim sup
n→∞

ϕ
(∫ d(Bxn,Txn)

0

φ(t)dt
)
≤ lim sup

n→∞

∫ d(Bxn,Txn)

0

φ(t)dt,

to cover the case where B = T , or Bxn = Txn, for n large enough.
Theorem 3.1 can be extended for the case where φ is summable on each

compact interval of R+, making some minor changes in the proof.

Besides, the same remarks concerning Theorem 3.1 are applicable to the
following Corollaries.

For φ(t) = 1 in Theorem 3.1, we obtain the following corollary.

Corollary 3.6. Let d be a symmetric for X which satisfies (W.3), (W.4) and
(HE). Let A, B, S and T be self mappings of X such that

(3.14) A(X) ⊆ T (X) and B(X) ⊆ S(X),

(3.15) d(Ax,By) ≤ ϕ
(
aL(x, y) + (1− a)M(x, y)

)
for all x, y ∈ X, where

L(x, y) =min{L1(x, y), L2(x, y)},
L1(x, y) =max{d(Sx, Ty), d(Sx,By), d(By, Ty)},
L2(x, y) =max{d(Sx, Ty), d(Sx,Ax), d(Ax, Ty)},
M(x, y) =min{M1(x, y),M2(x, y)},
M1(x, y) =

[
max{d2(Sx, Ty), d(Sx,By)d(By, Ty), d(Sx, Ty)d(Sx,By),

d(Sx, Ty)d(By, Ty), d2(By, Ty)}
]1/2

,

M2(x, y) =
[
max{d2(Sx, Ty), d(Ax, Ty)d(Ax, Sx), d(Sx, Ty)d(Ax, Ty),

d(Sx, Ty)d(Ax, Sx), d2(Ax, Sx)}
]1/2

and 0 ≤ a ≤ 1. Suppose that (A,S) or (B, T ) satisfies the property (E.A) and
(A,S) and (B, T ) are weakly compatible. If one of the subspaces A(X), B(X),
S(X) and T (X) of X is complete, then A, B, S and T have a unique common
fixed point in X.

Remark 3.7. If a = 1 in Corollary 3.6, we obtain the implicit relation

(3.16) d(Ax,By) ≤ ϕ
(
min {L1(x, y), L2(x, y)}

)
,

for all x, y ∈ X, where

L1(x, y) =max{d(Sx, Ty), d(Sx,By), d(By, Ty)},
L2(x, y) =max{d(Sx, Ty), d(Sx,Ax), d(Ax, Ty)},

which is related to Theorem 2.2 of [1].
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Again, for B = A and T = S in Theorem 3.1, we get the following corollary.

Corollary 3.8. Let d be a symmetric for X which satisfies (W.3) and (HE).
Let A and S be self mappings of X such that

(3.17) A(X) ⊆ S(X),

(3.18)

∫ d(Ax,Ay)

0

φ(t)dt ≤ ϕ
(∫ aL(x,y)+(1−a)M(x,y)

0

φ(t)dt
)

for all x, y ∈ X, where φ : R+ → R+ is a Lebesgue-integrable mapping which is
summable (or summable on each compact interval), non-negative and satisfying
(3.3),

L(x, y) =min {L1(x, y), L2(x, y)},
L1(x, y) =max{d(Sx, Sy), d(Sx,Ay), d(Ay, Sy)},
L2(x, y) =max{d(Sx, Sy), d(Sx,Ax), d(Ax, Sy)},
M(x, y) =min {M1(x, y),M2(x, y)},
M1(x, y) =

[
max{d2(Sx, Sy), d(Sx,Ay)d(Ay, Sy), d(Sx, Sy)d(Sx,Ay),

d(Sx, Sy)d(Ay, Sy), d2(Ay, Sy)}
]1/2

,

M2(x, y) =
[
max{d2(Sx, Sy), d(Ax, Sy)d(Ax, Sx), d(Sx, Sy)d(Ax, Sy),

d(Sx, Sy)d(Ax, Sx), d2(Ax, Sx)}
]1/2

and 0 ≤ a ≤ 1. Suppose that (A,S) satisfies property (E.A) and (A,S) is weakly
compatible. If one of the subspaces A(X) and S(X) of X is complete, then A
and S have a unique common fixed point in X.

Note that, following the lines of the proof of Theorem 3.1, it can be proved
that, if B = A, T = S, hypothesis (W.4) can be avoided.

Again, for φ(t) = 1 in Corollary 3.8, we obtain the following corollary.

Corollary 3.9. Let d be a symmetric for X which satisfies (W.3) and (HE).
Let A and S be self-mappings of X such that

(3.19) A(X) ⊆ S(X),

(3.20) d(Ax,Ay) ≤ ϕ
(
aL(x, y) + (1− a)M(x, y)

)
for all x, y ∈ X, where L(x, y) and M(x, y) are given in Corollary 3.8 and
0 ≤ a ≤ 1. Suppose that (A,S) satisfies the property (E.A) and (A,S) is weakly
compatible. If one of the subspaces A(X) and S(X) of X is complete, then A
and S have a unique common fixed point in X.

Remark 3.10. Compare the result obtained taking a = 1 in Corollary 3.8, with
Theorem 2.1 of [1] and Corollary 1 [3].
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Since noncompatibility of two mappings in a symmetric space implies that
they satisfy the property (E.A), we get the following corollary.

Corollary 3.11. Let d be a symmetric for X which satisfies (W.3), (W.4) and
(HE). Let A, B, S and T be self-mappings of X satisfying (3.1) and (3.2) for
all x, y ∈ X, where φ : R+ → R+ is a Lebesgue-integrable mapping which is
summable (or summable on each compact interval), non-negative and satisfying
(3.3). Suppose that (A,S) or (B, T ) is noncompatible and (A,S) and (B, T ) are
weakly compatible. If one of the subspaces A(X), B(X), S(X) and T (X) of X
is complete, then A, B, S and T have a unique common fixed point in X.

Remark 3.12. If φ(t) = 1 and a = 1 in Theorem 3.1, or a = 1 in Corollary 3.6,
we obtain a result similar to Theorem 2 in [2] for symmetric spaces. Note that,
in Theorem 2 [2], ϕ is assumed to satisfy ϕ : R+ → R+, ϕ nondecreasing and
0 < ϕ(t) < t, for every t > 0. Under these assumptions, it is easy to check that
ϕ(0) = 0.

Recently, Y. Liu et al. [7] defined a common property (E.A) as follows:

Definition 3.13. Let A,B, S, T : X → X. The pairs (A, S) and (B, T) satisfy
a common property (E.A) if there exist two sequences {xn} and {yn} such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = t ∈ X.

If B = A and S = T in the definition above, we obtain the definition of property
(E.A).

Example 3.14. Let A, B, S and T be self-maps on X = [0, 1], with the usual
metric d(x, y) = |x− y|, defined by:

Ax =

{
1− x

2 , when x ∈ [0, 1
2 ),

1, when x ∈ [ 12 , 1].

Sx =

{
1− 2x, when x ∈ [0, 1

2 ),
1, when x ∈ [ 12 , 1].

Bx = 1− x and Tx = 1− x
3 , ∀ x ∈ X.

Let {xn} and {yn} be the sequences defined by xn = 1
n+1 and yn = 1

n2+1 , then

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 1 ∈ X.

Thus, a common (E.A) property is satisfied by A, B, S and T .

Now, we prove a common fixed point Theorem using a common property
(E.A).

Theorem 3.15. Let d be a symmetric for X which satisfies (W.3) and (HE).
Let A, B, S, and T be self mappings of (X, d) satisfying (3.10) and (3.11).
Suppose that (A, S) and (B, T) satisfy a common property (E.A), S(X) and
T (X) are closed subspaces of X and the pairs (A, S) and (B, T) are weakly
compatible. Then A, B, S and T have a unique common fixed point in X.
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Proof. Since (A, S) and (B, T) satisfy a common property (E.A), then there
exist two sequences {xn} and {yn} such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

for some z ∈ X. Using that S(X) and T (X) are closed subspaces of X, then,
z = Su = Tv for some u, v ∈ X.
If Au ̸= z, using (3.10), we get

(3.21)

∫ d(Au,Byn)

0

φ(t)dt ≤ ϕ
(∫ aL(u,yn)+(1−a)M(u,yn)

0

φ(t)dt
)
,

where
L(u, yn) = max{d(Su, Tyn), d(Su,Byn), d(Byn, T yn)},

and

M(u, yn) =
[
max{d2(Su, Tyn), d(Su,Byn)d(Byn, T yn),

d(Su, Tyn)d(Su,Byn), d(Su, Tyn)d(Byn, T yn), d
2(Byn, T yn)}]

1
2 .

Taking the limit as n → ∞ and using (HE), we get limn→∞ L(u, yn) = 0 and
limn→∞ M(u, yn) = 0, respectively.

Hence (3.21) provides

lim
n→∞

∫ d(Au,Byn)

0

φ(t)dt = 0

and (3.11) implies that
lim

n→∞
d(Au,Byn) = 0.

By (W.3), we have z = Au, which is a contradiction. In consequence, z = Au =
Su.

On the other hand, if Bv ̸= z, using (3.10), we get that∫ d(z,Bv)

0

φ(t)dt =

∫ d(Au,Bv)

0

φ(t)dt(3.22)

≤ϕ
(∫ aL(u,v)+(1−a)M(u,v)

0

φ(t)dt
)
,

where L(u, v) = d(z,Bv), and M(u, v) =
[
d2(z,Bv)

]1/2
, respectively.

Hence (3.22) becomes∫ d(z,Bv)

0

φ(t)dt ≤ ϕ
(∫ ad(z,Bv)+(1−a)d(z,Bv)

0

φ(t)dt
)

= ϕ
(∫ d(z,Bv)

0

φ(t)dt
)

<

∫ d(z,Bv)

0

φ(t)dt,
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which is a contradiction. This provides that z = Bv = Tv.
The rest of the proof follows as in Theorem 3.1 using L1 and M1.
Obviously, we can replace the hypothesis: S(X) and T (X) are closed sub-

spaces of X by: A(X) and B(X) are closed subspaces of X.
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