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Abstract

Skew lattices are the most successful generalization of lattices to the

noncommutative case to date. Roughly speaking, each skew lattice can

be seen as a lattice of rectangular bands. A coset decomposition can

be given to each pair of comparable maximal rectangular bands. The

internal structure of skew lattices is revealed by their coset structure. In

the present paper we study the coset structure of skew lattices in rings and

present certain coset laws that describe the connections among the coset

decompositions given by distinct pairs of maximal rectangular bands.
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Introduction

The study of noncommutative lattices began in 1949 with Pascual Jordan’s
paper [7] that was motivated by certain questions in quantum mechanics. Skew
lattices turned out to be the most fruitful class of noncommutative lattices and
were thus studied the most. The foundations of the modern theory of skew
lattices can be found in Jonathan Leech’s 1989 paper [9]. Special attention was
devoted to the skew lattices in rings. The operations defined by x ∧ y = xy
and x ∨ y = x + y − xy succeeded to provide a rather large class of examples
which have motivated many of the properties studied in the general case. A
good survey on skew lattices can be found in Leech [11].

In the study of skew lattice there are two perspectives that complement each
other. One perspective considers skew lattices as non-commutative lattices. The
other perspective sees the skew lattices as double bands. Therefore we introduce
the natural partial order and skew lattice varieties as well as Green’s relations
and other semigroup theoretical notions. Given a pair of comparable D-classes
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each of the two classes induces a partition of the other class, and the blocks of
these partitions are called cosets. (See Section 1 for precise definitions.) The
coset structure reveals a new perspective that does not have a counterpart either
in the theory of lattices or in the theory of bands. The study of the coset struc-
ture of skew lattices began with Leech [11] in 1996. It gives an introspective into
how the D-classes are glued into a lattice thus providing important additional
information. In the present paper we present certain coset laws that reveal the
relation among the coset decompositions given by distinct pairs of D-classes.

In Section 2 we consider the coset structure of skew lattices in rings. In
order to obtain a larger class of examples we shall work with a more general
version of the join operation, namely the cubic join, defined in Section 1. We
will be able to prove certain coset laws joining the partitions that different
D-classes induce on each other. In Section 3 we demonstrate the results of
Section 2 in the case of skew lattices in rings of matrices, while in Section 4 we
derive a combinatorial result for finite skew lattices in rings, namely given non
comparable D-classes A and B with the join class J and the meet class M we
shall obtain |A||B| = |M ||J |.

1 Preliminaries

A skew lattice S is a nonempty set S equipped with two associative binary
operations ∧ and ∨, called the meet and the join, that satisfy the absorption
laws (b∧a)∨a = a = a∨(a∧b) and their duals. Both operations are idempotent
by the usual argument: a ∧ a = a ∧ (a ∨ (a ∧ b)) = a.

Given nonempty sets L and R their direct product L×R is a skew lattice with
the operations defined by (x, y) ∨ (x′, y′) = (x′, y) and (x, y) ∧ (x′, y′) = (x, y′).
A rectangular skew lattice is an isomorphic copy of such a skew lattice.

Skew lattices can be viewed as non-commutative generalizations of lattices
or as double bands, where a band is a semigroup of idempotents. Recall that in
a band (B, ·), the Green’s equivalence relations can be defined by:

xRy ⇔ (xy = y & yx = x),
xLy ⇔ (xy = x & yx = y),
xHy ⇔ (xRy & xLy),
D = L ◦ R = R ◦ L.

Furthermore, a band (B, ·) is called regular if it satisfies the identity axaya =
axya.

Given a skew lattice S and U ∈ {R,L,H,D} denote by U∨ the Green’s
relation corresponding to the band (S,∨) and by U∧ the relation corresponding
to the band (S,∧). Furthermore, the abbreviated notation U is used strictly for
U∧ and the U-class containing an element x ∈ S is denoted by Ux.

Leech’s First Decomposition Theorem [9] states that in a skew lattice S

relations D∨ and D∧ coincide, D is a congruence, the D-classes are exactly the
maximal rectangular subalgebras of S and S/D is a lattice.
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The natural partial order ≥ is defined on a skew lattice S by x ≥ y if and
only if x∧y = y = y∧x or dually, x∨y = x = y∨x. The natural equivalence is
compatible with the natural partial order. Relation D is also called the natural
equivalence (Note that Leech’s First Decomposition Theorem is a generalization
of the Clifford-McLean Theorem for bands.)

A skew lattice is right handed if it satisfies the identity x∧ y ∧x = y∧x and
its dual x ∨ y ∨ x = x ∨ y. These identities essentially assert that xDy implies
x ∧ y = y and x ∨ y = x. Left handed skew lattices are defined by the opposite
identities. Leech’s Second Decomposition Theorem [9] yields that every skew
lattice is biregular, that is both (S,∨) and (S,∧) are regular bands, relations
R = R∧ = L∨ and L = L∧ = R∨ are both congruencies and S factors as
the fiber product (pull-back) of the right handed skew lattice S/L by the left
handed skew lattice S/R over their common maximal lattice image S/D. (This
is a skew lattice version of the Kimura Factorization Theorem [8] for regular
bands.)

In skew lattices the following dualities hold: x ∨ y = x iff x ∧ y = y, and
x ∨ y = y iff x ∧ y = x. A skew lattice S is symmetric if given x and y in S,
x ∧ y = y ∧ x if and only if x ∨ y = y ∨ x. On the other hand, a skew lattice S

is cancellative if for all x, y, z ∈ S, x ∨ y = x∨ z and x∧ y = x∧ z imply y = z,
and x∨ y = z∨ y and x∧ y = z∧ y imply x = z. Cancellative skew lattices were
introduced in [9] and extensively studied in [4].

Let R = (R, +, ·) be a ring and E(R) the set of all idempotent elements in R.
Set x∧ y = xy and x∨ y = x ◦ y = x+ y−xy. If S ⊆ E(R) is closed under both
∨ and ∧ then (S;∧,∨) is a skew lattice. Maximal regular multiplicative bands
need not to be closed under the circle operation. Indeed, examples are easily
found within rectangular bands. Although, such examples are closed under the
following cubic variant ∇ of ∨ defined by

x∇y = x + y + yx − xyx − yxy,

since in the rectangular case x∇y reduces to yx and one obtains a rectangular
skew lattice. By a skew lattice in a ring R we mean a set S ⊆ E(R) that is
closed under both multiplication and ∇, and forms a skew lattice for the two
operations. (In particular, we have to make sure that ∇ is associative on S.)
Given a multiplicative band B in a ring R the relation between ◦ and ∇ is
given by e∇f = (e ◦ f)2 for all e, f ∈ B. In the case of right [left] handed skew
lattices the nabla operation reduces to the circle operation. Skew lattices in
rings are always symmetric and cancellative. (In general, symmetry is implied
by cancellation, see [4].) In the remainder of the paper we shall assume that R

is a fixed ring and S is a skew lattice in R.

Lemma 1 ([1]). Let S be a skew lattice and a1, a2, u, v ∈ S such that Du ≤
Dai

≤ Dv in the lattice S/D. Then a1va2 = a1a2 and a1∇u∇a2 = a1∇a2.

Proof. We obtain

a1va2 = (a1va1)v(a2va2) = a1(va1va2v)a2 = (a1va1)(a2va2) = a1a2

by regularity; a1∇u∇a2 = a1∇a2 follows from the regularity of ∇.
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Lemma 1 implies that if S is a skew lattice consisting of exactly two D-
classes A > B then BaB = B and A∇b∇A = A, for all a ∈ A and b ∈ B. On
the other hand, B∇a∇B and AbA are in general non-trivial and B∇a∇B =
{ b∇a∇b : b ∈ B } and AbA = { aba : a ∈ A }, for all a ∈ A, b ∈ B. (Note that
by Lemma 1 given b′, b′′ ∈ B, u = b′∇a∇b′′ and b ∈ B such that b < u we
obtain u = b∇u∇b = b∇b′∇a∇b′′∇b = b∇a∇b.)

To describe the coset structure, we need to focus our attention on prim-
itive skew lattices, ie. skew lattices with exactly two D-classes. Let S be
a primitive skew lattice with D-classes A > B. Given b ∈ B the subset
AbA = { aba : a ∈ A } is called a coset of A in B. Similarly, a coset of B
in A is any subset of A of the form B∇a∇B = { b∇a∇b : b ∈ B }, for a ∈ A.

For a ∈ A the set

aBa = { aba : b ∈ B } = { b ∈ B : b ≤ a }

is the image of a in B. Dually, for b ∈ B the set b∇A∇b = { a ∈ A : b ≤ a } is
the image of b in A. Leech’s Theorem [11] yields that the D-class B is partitioned
by the cosets of A and the image set in B of any element a ∈ A is a transversal
of cosets of A in B; furthermore, given cosets Ai in A and Bj in B there is a
natural bijection of cosets φji : Ai → Bj , called the coset bijection, such that
φji(x) = y iff x ≥ y. Moreover, both operations · and ∇ are determined by the
coset bijections. If S is right handed then given x ∈ Ai and y ∈ Bj we obtain

φji(x) = yx and φ−1

ji (y) = y∇x.

Let A and B be incomparable D-classes in S, J = A∇B and M = AB. By a
skew diamond { J > A, B > M } we refer to the sub-skew lattice in S with the
universe M ∪ A ∪ B ∪ J .

Theorem 2 (Leech, [10]). Let S be a skew lattice and { J > A, B > M } a
skew diamond in S. Given j ∈ J there exist a ∈ A and b ∈ B such that
a ∨ b = j = b ∨ a. Dually, given m ∈ M there exist a ∈ A and b ∈ B such that
ab = m = ba.

The double partition of either J or M by A-cosets and B-cosets can be
refined by the coset partition which J and M directly induce on each other.
The double partition coincides with the partition by J-M cosets exactly when
the skew lattice is symmetric.

Theorem 3 (Leech, [10]). A skew lattice S is symmetric if and only if for any
skew diamond { J > A, B > M } in S the partition of J by intersections of the
A-cosets with the B-cosets equals the partition of J by the M -cosets and a dual
assertion holds for the meet class M .
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M J-coset
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. . .

. . .

. . .
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...
...

A-coset

B-coset

We finish this section with a couple of examples of skew lattices in rings.

Example. Let F be a field, n ∈ N and S ⊆ Mn(F ) the set of all matrices of
the form





0k S ST
0 Il T
0 0 0m



 ,

where Il is an l × l identity matrix for some l ∈ {0, 1, . . . , n}, 0k and 0m are
the k × k and m × m zero matrices, respectively, while S and T are arbitrary
matrices over F of the suiting dimensions. Then S = (S, ·, ◦) is a multiplicative
band that is closed under the circle operation and hence forms a skew lattice.
Furthermore, S is right-handed, hence ◦ coincides with ∇ on S.

Example. Let F be a field and consider the matrix ring M4(F ). Denote

A =















a =









1 0 a13 a14

0 1 0 a24

0 0 0 0
0 0 0 0









: aij ∈ F















,

B =















b =









1 b12 0 b14

0 0 0 0
0 0 1 b34

0 0 0 0









: bij ∈ F















,

M =















m =









1 m12 m13 m14

0 0 0 0
0 0 0 0
0 0 0 0









: mij ∈ F














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and

J =















j =









1 0 0 j14
0 1 0 j24
0 0 1 j34
0 0 0 0









: jij ∈ F















.

It is an easy exercise to check that S = A ∪ B ∪ M ∪ J is closed under both
multiplication and the circle operation. It forms a right-handed skew lattice, so
again ◦ = ∇. Furthermore, { J > A, B > M } is a skew diamond.

2 The coset laws

It was shown in [2] that cancellative skew lattices satisfy two specific coset laws.
In this section we are going to present these and other coset laws in the context
of skew lattices in rings where the idea first came up.

We begin with a technical result that shall be useful in the continuation.
Recall that given D-classes X > Y , an X-coset Yi in Y and a Y -coset Xj in X
there exist x ∈ Xj and y ∈ Yi such that x > y.

Lemma 4. Let S be a skew lattice and { J > A, B > M } a skew diamond in
S. If m ∈ M and j ∈ J are such that m < j then there exist a ∈ A and b ∈ B
such that m < a, b < j, ab = ba = m and a∇b = j = b∇a.

Proof. Take any a′ < j in A, b′ < j in B and set a = m∇a′∇m, b = m∇b′∇m.
Observe that m < a, b < j. Furthermore, ab = abmab = m = bamba = ba and
similarly a∇b = j = b∇a.

Let S be a skew lattice with two comparable D-classes X > Y . For all
x ∈ X and y ∈ Y , XyX = {wyw : w ∈ X } is the coset of X in Y and,
regardless of associativity, Y ∇x∇Y = { y + x − xyx : y ∈ Y } is the coset of Y
in X for the nabla operation [1]. As skew lattices in rings are always symmetric
the Theorem 3 characterization can be rephrased as:

(i) JmJ = (AmA)
⋂

(BmB), for all m ∈ M ;

(ii) M∇j∇M = (A∇j∇A)
⋂

(B∇j∇B), for all j ∈ J .

Theorem 3 yields the following coset laws:

Theorem 5. Let S be a skew lattice and { J > A, B > M } a skew diamond in
S. Given m, m′ ∈ M and j, j′ ∈ J the following identities hold on S:

(i) JmJ = Jm′J if and only if AmA = Am′A and BmB = Bm′B;

(ii) M∇j∇M = M∇j′∇M if and only if A∇j∇A = A∇j′∇A and B∇j∇B =
B∇j′∇B.

The following result was first observed in [3]. We restate the proof for the
sake of completeness.
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Lemma 6. Let X > Y be D-classes in S and let Yj be an X-coset in Y and Xi

a Y -coset in X. If elements y1, y2 ∈ Yj, x1, x2 ∈ X are such that y1 ≤ x1 and
y2 ≤ x2 hold then y1 − x1 = y2 − x2.

Proof. Consider the coset bijection φji : Xi → Yj . Since φji(x1) = y1 and
φji(x2) = y2 one obtains x2 = y2∇x1∇y2 = y2 + x1 − x1y2x1 = y2 + x1 − y1.

Lemma 6 shows us that given any pair of cosets Yj ⊂ Y and Xi ⊂ X a
constant c(Yj , Xi) ∈ R exists such that φji(x) = x + c(Yj , Xi) for all x ∈ Xi.
Such constants c(Yj , Xi) are called the coset constants. In a sense the coset
constants “code” the respective coset bijections.

Lemma 7. Let S be a skew lattice and { J > A, B > M } a skew diamond in
S. Given any m ∈ M and j ∈ J there exists b ∈ B such that

AmA = AbA and A∇j∇A = A∇b∇A.

Proof. Let m′ ∈ JmJ be such that m′ < j. By Lemma 4 there exist a ∈ A and
b ∈ B such that m′ = ab and j = a∇b. Hence, AmA = Am′A = AabA = AbA
and A∇j∇A = A∇a∇b∇A = A∇b∇A.

Proposition 8. Given a skew diamond { J > A, B > M } in S, x ∈ A and
y ∈ B,

yxy = y + c(BxB, M∇y∇M),(1)

x∇y∇x = x − c(JxJ, A∇y∇A).(2)

Proof. Let x ∈ A and y ∈ B. One obtains yxy ≤ y and x ≤ x∇y∇x. From here
the assertions follow.

Corollary 9. Given a skew diamond { J > A, B > M } in S, x ∈ A and y ∈ B,

c(BxB, M∇y∇M) = c(JxJ, A∇y∇A),(3)

c(JyJ, B∇x∇B) = c(AyA, M∇x∇M).(4)

Proof. Let x ∈ A and y ∈ B. Proposition 8 yields yxy = y + c(BxB, M∇y∇M)
and x∇y∇x = x − c(JxJ, A∇y∇A). On the other hand,

x∇y∇x = x + y − yxy = x − c(BxB, M∇y∇M)

and (3) follows. (4) is proved by an analogous argument.

Now that we have developed the necessary tools we are ready to state another
set of coset laws for skew lattices in rings.

Theorem 10. Let S be a skew lattice in a ring. The following coset equivalences
hold:
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(i) For all skew diamonds { J > A, B > M } in S and x, x′ ∈ A, M∇x∇M =
M∇x′∇M if and only if B∇x∇B = B∇x′∇B.

(ii) For all skew diamonds { J > A, B > M } in S and x, x′ ∈ A, BxB = Bx′B
if and only if JxJ = Jx′J .

Proof. Suppose that M∇x∇M = M∇x′∇M . Then given b ∈ B,

b∇x∇b = b − c(JbJ, B∇x∇B)

= b − c(AbA, M∇x∇M)

= b − c(AbA, M∇x′∇M)

= b − c(JbJ, B∇x′∇B)

= b∇x′∇b

and B∇x∇B = B∇x′∇B follows.
On the other hand, assume that B∇x∇B = B∇x′∇B and let m ∈ M .

Hence, m∇x∇m = m− c(AmA, M∇x∇M). As AmA = AabA = AbA for some
a ∈ A and b ∈ B it follows that

m − c(AmA, M∇x∇M) = m − c(AbA, M∇x∇M)

= m − c(JbJ, B∇x∇B)

= m − c(JbJ, B∇x′∇B)

= m − c(AbA, M∇x′∇M)

= m − c(AmA, M∇x′∇M)

= m∇x′∇m.

Hence, M∇x∇M = M∇x′∇M . The case (ii) is similar.

Remark 11. Let S be a skew lattice in a ring R such that S/D is countable,
and let C be a given maximal chain in the distributive lattice S/D. Denote
C0 = C. For i ≥ 1 let Ci denote the lattice that is a union of Ci−1 and a
given D-class Di that is not contained in Ci−1 and is such that there exists
D-classes Mi, Ai and Ji in Ci−1, both Mi and Ji adjacent to both Ai and Di in
S/D, and { Ji > Ai, Di > Mi } being a skew diamond. Since S/D is a countable
distributive lattice it follows that any D-class D can be accessed from any
maximal chain C in finitely many steps of the kind just described. Theorem 10
now implies that the coset decompositions of pairs of adjacent D-classes along
some [any] maximal chain in S/D completely determine all coset decompositions
of pairs of adjacent D-classes in S/D.

Based on Lemma 4 we can now state the identities connecting the coset
constants arising in a skew diamond.

Lemma 12. Given m ∈ M and j ∈ J such that m < j there exist a ∈ A and
b ∈ B such that

c(JmJ, M∇j∇M) = c(AmA, M∇a∇M) + c(BmB, M∇b∇M)

= c(JaJ, A∇j∇A) + c(JbJ, B∇j∇B).
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Proof. By Lemma 4 there exist a ∈ A and b ∈ B such that m < a, b < j. Thus
j = a∇b = a + b − m and

jmj − j = m − j
= m − (a + b − m)
= (m − a) + (m − b)
= (ama − a) + (bmb − b).

The second equality can now be derived directly from Corollary 9 using Lemma
7.

Lemma 12 allows us to give an alternative proof of Theorem 5 above.

Proof of Theorem 5. Let m, m′ ∈ M be such that JmJ = Jm′J . As JmJ ⊆
AmA and JmJ ⊆ BmB, both AmA = Am′A and BmB = Bm′B follow.

On the other hand, let m, m′ ∈ M be such that AmA = Am′A and BmB =
Bm′B. Take j ∈ J , j > m and let a ∈ A and b ∈ B be as in Lemma 12. Then

jmj = j + c(JmJ, M∇j∇M)

= j + c(AmA, M∇a∇M) + c(BmB, M∇b∇M)

= j + c(Am′A, M∇a∇M) + c(Bm′B, M∇b∇M)

= j + c(Jm′J, M∇j∇M)

= jm′j.

Within a chain of three components A > B > C each coset constant from A
to C is obtained as the sum of any corresponding coset constants from A to B
and from B to C as follows:

cba − a = (cba − ba) + (ba − a)

This fact hints us for the third and final coset laws presented bellow.

Theorem 13. For all skew diamonds { J > A, B > M } in a skew lattice S the
following hold.

(i) Let m, m′ ∈ M . Then JmJ = Jm′J if and only if given any a ∈ A both
J(m∇a∇m)J = J(m′∇a∇m′)J and AmA = Am′A.

(ii) Let j, j′ ∈ J . Then M∇j∇M = M∇j′∇M if and only if given any a ∈ A
both M∇(jaj)∇M = M∇(j′aj′)∇M and A∇j∇A = A∇j′∇A.

Proof. If JmJ = Jm′J then m′ = jmj for some j ∈ J . Let a ∈ A. Then

m′∇a∇m′ = m′ + a − am′a = jmj + a − ajmja.

Let y ∈ J be such that a < y. Hence y(m′∇a∇m′)y = yjmjy+yay−yajmjay =
y(m + a− ama)y by Lemma 1. On the other hand am′a = ajmja ∈ AmA and
therefore AmA = Am′A.
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To prove the converse, suppose that J(m∇a∇m)J = J(m′∇a∇m′)J and
AmA = Am′A hold. Then there exist a ∈ A and j ∈ J such that m′ = ama
and m∇a∇m = j(m′∇a∇m′)j. Hence m + a − ama = jm′j + jaj − jamaj.
Multiplying the latter by j on both sides yields jmj = jm′j and JmJ = Jm′J
follows.

Again, (ii) is proved by an analogous argument.

3 The coset laws in rings of matrices

Let F be a field with characteristic different from 2, n ∈ N and S a right
handed skew lattice in Mn(F ). If S has two comparable D-classes A > B
then given a ∈ A and b ∈ B, bA = { ba : a ∈ A } is the coset of A in B and
B ◦ a = { b + a − ba : b ∈ B } is the coset of B in A. (Recall that in the right
handed case ∇ reduces to the circle operation.)

The standard form for right handed skew lattices in Mn(F ) was described
in [3], based on the standard form for pure bands in matrix rings that was
developed by Fillmore at al. in [5] and [6]. It is described as follows. Let
E1 < ... < Em be a maximal chain of D-classes of the skew lattice S. Then a
basis for Fn exists such that in this basis:

(i) for any two matrices a ∈ Ei, b ∈ Ej , i > j, a block decomposition exists
such that a and b have block forms

a =





I 0 a13

0 I a23

0 0 0



 and b =





I b12 b13

0 0 0
0 0 0



 ,

(ii) for non-comparable D-classes A and B with the meet class M and the
join class J a block decomposition exists such that we may assume that
m0 ∈ M , a0 ∈ A, b0 ∈ B and j0 ∈ J , where

m0 =









I 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, a0 =









I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0









,

b0 =









I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0









, j0 =









I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0









.

Furthermore, given any matrices m ∈ M , j ∈ J , a ∈ A and b ∈ B they
have block forms

m =









I m12 m13 m14

0 0 0 0
0 0 0 0
0 0 0 0









, a =









I 0 a13 a14

0 I 0 a24

0 0 0 0
0 0 0 0









,



On the coset laws for skew lattices in rings 21

b =









I b12 0 b14

0 0 0 0
0 0 I b34

0 0 0 0









and j =









I 0 0 j14
0 I 0 j24
0 0 I j34
0 0 0 0









.

The corresponding coset constants are then given by

c(mA, M ◦ a) =









0 m12 0 m12a24

0 −I 0 −a24

0 0 0 0
0 0 0 0









,

c(aJ, A ◦ j) =









0 0 a13 a13j34
0 0 0 0
0 0 −I −j34
0 0 0 0









,

c(mB, M ◦ b) =









0 0 m13 m13b34

0 0 0 0
0 0 −I −b34

0 0 0 0









and

c(bJ, B ◦ j) =









0 b12 0 b12j24
0 −I 0 −j24
0 0 0 0
0 0 0 0









.

From this one can clearly observe the identity c(aB, M ◦ b) = c(aJ, A ◦ b)
since

c(aB, M ◦ b) = ab − b =









0 0 a13 a13b34

0 0 0 0
0 0 −I −a13

0 0 0 0









= a − a ◦ y = c(aJ, A ◦ b)

Dually, c(B◦a, bM) = c(M ◦a, yA) is clear, hinting the coset laws of Theorem
10. In the case of the other two coset laws, the coset constant equations are
easily seen from the following calculations,

c(mJ, M ◦ j) = mj − j =









0 m12 m13 m12j24 + m13j34
0 −I 0 −j24
0 0 −I −j34
0 0 0 0









and

c(mA, M ◦ a) + c(mB, M ◦ b) = (ma − a) + (mb − b)

=









0 m12 m13 m12a24 + m13b34

0 −I 0 −a24

0 0 −I −b34

0 0 0 0









.
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If j = a ◦ b then j24 = a24 and j34 = b34. Hence,

c(mJ, M ◦ j) = c(mA, M ◦ a) + c(mB, M ◦ b),

the identity that follows from the property of symmetry.
In what follows we present the computations from which the coset laws of

the previous section were first observed.

Letting m =









I x y z
0 0 0 0
0 0 0 0
0 0 0 0









we get

mj0 =









I x y 0
0 0 0 0
0 0 0 0
0 0 0 0









, ma0 =









I x 0 0
0 0 0 0
0 0 0 0
0 0 0 0









and mb0 =









I 0 y 0
0 0 0 0
0 0 0 0
0 0 0 0









,

where one can observe that mJ depends on x and y whereas mA depends on x
and mB depends on y. Hence it is clear that the following coset law holds for
all m ∈ M ,

mJ = m′J if and only if mA = m′A and mB = m′B.

On the other hand, letting

j =









I 0 0 x
0 I 0 y
0 0 I z
0 0 0 0









we get

m0 ◦ j =









I 0 0 0
0 I 0 y
0 0 I z
0 0 0 0









, a0 ◦ j =









I 0 0 0
0 I 0 0
0 0 I z
0 0 0 0









, and b0 ◦ j =









I 0 0 0
0 I 0 y
0 0 I 0
0 0 0 0









.

Hence for all j ∈ J

M ◦ j = M ◦ j′ if and only if A ◦ j = A ◦ j′ and B ◦ j = B ◦ j′.

In order to observe the Theorem 10 coset laws let

a =









I 0 x y
0 I 0 z
0 0 0 0
0 0 0 0











On the coset laws for skew lattices in rings 23

and notice that

m0 ◦ a =









I 0 0 0
0 I 0 z
0 0 0 0
0 0 0 0









and b0 ◦ a =









I 0 0 0
0 I 0 z
0 0 I 0
0 0 0 0









as well as

ab0 =









I 0 x 0
0 0 0 0
0 0 0 0
0 0 0 0









and aj0 =









I 0 x 0
0 0 0 0
0 0 0 0
0 0 0 0









.

According to these computations, given a, a′ ∈ A one obtains

M ◦ a = M ◦ a′ if and only if B ◦ a = B ◦ a′,

and

aB = a′B if and only if aJ = a′J.

To see that the coset laws that derive from Theorem 13 hold let

m =









I x y z
0 0 0 0
0 0 0 0
0 0 0 0









and a =









I 0 w u
0 I 0 v
0 0 0 0
0 0 0 0









.

Thus

(m∇a)j0 =









I 0 y 0
0 I 0 0
0 0 0 0
0 0 0 0









which is interestingly independent of a. On the other hand,

mj0 =









I x y 0
0 0 0 0
0 0 0 0
0 0 0 0









and ma0 =









I x 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Therefore,

mJ = m′J iff for all a ∈ A, (m∇a)J = (m′∇a)J and mA = m′A.

Dually, we obtain

M∇j = M∇j′ iff for all a ∈ A, M∇(aj) = M∇(aj′) and A∇j = A∇j′.
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4 Counting cosets

Let S be a finite skew lattice with two incomparable D-classes, say X > Y .
Fixing x ∈ X and y ∈ Y the respective image sets are given by

xY x = { y ∈ Y : x ≥ y } and y∇X∇y = { x ∈ X : x ≥ y } .

Due to the fact that the image sets are transversals of the coset partition of
a D-class, |y∇X∇y| is the number of X-cosets in Y and |xY x| is the number of
Y -cosets in X . Therefore, all image sets of elements from one class have equal
size, ie.,

for all y, y′ ∈ Y , |{ x ∈ X : x ≥ y }| = |{ x ∈ X : x ≥ y′ }|

and dually, given x, x′ ∈ X their image sets in Y also have the same power.
Consider the family {Xi : i ≤ |y∇X∇y|} of Y -cosets in X and the family

{Yj : j ≤ |xY x|} of X-cosets in Y . As all cosets Xi have equal cardinality
the number of Y -cosets in X can be expressed by |X |/|Xi|, that is, |X | =
|y∇X∇y||Xi| and, dually, |Y | = |xY x||Yj |. Furthermore, we have |Xi| = |Yj |
for all i, j and therefore

|xY x| =
|y∇X∇y||Y |

|X |
.

Theorem 14. Let S be a finite skew lattice in a ring and { J > A, B > M } a
skew diamond in S. Then

|A||B| = |J ||M |.

Proof. Fix a ∈ A, b ∈ B, j ∈ J and m ∈ M . Theorem 10 yields that the
number of M -cosets in A is equal to the number of B-cosets in J . Thus the
respective image sets are equipotent, ie. |m∇A∇m| = |b∇J∇b|. Dually, we

obtain |aMa| = |jBj|. Therefore
|A|

|M |
=

|m∇A∇m|

|aMa|
,
|B|

|J |
=

|jBj|

|b∇J∇b|
and thus

|A||B|

|J ||M |
=

|m∇A∇m||jBj|

|aMa||b∇J∇b|
= 1.
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