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LATTICE IDENTITIES AND COLORED GRAPHS
CONNECTED BY TEST LATTICES
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Abstract. Czédli [4] has recently given a pictorial approach to several
properties of free lattices. Our goal is to generalize his construction and
use it to prove some additional classical lattice theoretical results in a
new, more visual way.
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1. Introduction

The present paper offers a new approach to the following two theorems.

Theorem 1 (Sachs [11]). The class of finite equivalence lattices generates the
variety of all lattices.

Theorem 2 (Whitman [12]). Free lattices satisfy the Whitman condition.

These theorems are classical fundamental results of lattice theory, of course.
Both theorems are strengthened in many different ways. Indeed, there are many
more results on free lattices in Freese, Ježek and Nation [7]. Nowadays, when
each lattice resp. finite lattice is known to be representable as a sublattice of an
appropriate equivalence lattice resp. finite equivalence lattice, see Whitman [13]
and Pudlák and Tůma [10], we tend to forget Sachs’ result, Theorem 1.

We note that Theorem 2 and specifically Theorem 1 require fairly complex
proofs. The alternative proof for Theorem 2 in [7] is somewhat shorter than
Whitman’s original argument due to Day’s doubling construction, see [6]. Yet
another proof for Theorem 2 is given in Czédli [4], but it uses Jónsson’s deep rep-
resentation theorem of type 3, see [8]. Sachs’ original argument of Theorem 1 is
based on Whitman’s representation theorem [13], which was later strengthened
by Jónsson [8] and Pudlák and Tůma [10].

Our approach is entirely different from and much more elementary than the
previous ones. Even if the underlying idea of applying Mal’cev conditions to the
variety of sets may sound non-elementary, this notion will not occur in the rest
of the paper. This is possible since in a series of papers Czédli has developed
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a graph theoretical technique as a reasonable substitute for Mal’cev conditions,
see [1], [2], [3], [5] and finally [4]. The technique in [4] will be intensively used
here; however, we have to develope it further to reach our goal.

The construction of test lattices in Czédli [4] is based on two steps, see
Section 3. Firstly we define a directed graph colored by lattice terms. Secondly
we define a test lattice that will be the sublattice of the equivalence lattice over
the vertex set of the graph. We will show that the construction works for every
natural number n ≥ 4, and even the statement of Lemma 8 in [4] remains true
for every natural number n ≥ 4, see Lemma 3. The crucial point is that the
lattices corresponding to different natural numbers are the same, see Lemma 4.
We can use this fact to eliminate Jónsson’s deep representation theorem of type
3 from the proof of Lemma 9 in [4]. Then we use the (modified) construction
to prove Theorem 1 and Theorem 2, see Section 4.

2. Preliminaries

First, let us recall the basic concepts used in [4]. For a fixed positive integer
k by a k-pointed lattice we mean a lattice L with k distinguished elements. For
g = (g1, . . . , gk) ∈ Lk, the k-pointed lattice will be denoted by (L;g). If p and
q are lattice terms, then both p = q and p ≤ q are lattice identities. A lattice
identity is said to be trivial, if it holds in all lattices. Let it be denoted by
p =triv q or p ≤triv q. Given a k-ary lattice term p, we will call a k-pointed
lattice (L;g) a p-lattice, if

• {g1, . . . , gk} generates L and

• for any k-ary lattice term q the identity p(g) ≤ q(g) holds in L iff p ≤triv q.

We use the terminology test lattice if we do not want to specify p. That is,
if (L;g) is a p-lattice for some p then it is also called a test lattice. For example,
if L is freely generated by {g1, . . . , gk} then it is obviously a p-lattice for every
k-ary lattice term p.

For the whole paper, we fix a positive integer k and a set of variables V =
{α1, . . . , αk}. We do not differentiate between lattice terms modulo associativity
and idempotency. However, for technical reasons, we do make a distinction
modulo commutativity. We define J = J(α1, . . . , αk), the set of join-irreducible
lattice terms and M = M(α1, . . . , αk), the set of meet-irreducible lattice terms.
Let J and M be the smallest sets that satisfy the following conditions:

1. V ⊆ J,M;

2. if t1, . . . , t` ∈ J (` > 1) are pairwise disjoint elements then t1∨· · ·∨t` ∈ M;

3. if t1, . . . , t` ∈ M (` > 1) are pairwise disjoint elements then t1∧· · ·∧t` ∈ J;

In case 2 and 3, the subterms t1, . . . , t` will be called joinands and meetands,
respectively. The set J and the set M will also be called the set of meet-reducible
and join-reducible lattice terms, respectively. Let T denote the set of join- or
meet-irreducible lattice terms, that is T = J∪M.
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We note that this definition of lattice terms differ from that in Czédli [4]
and in Freese, Ježek and Nation [7], too. We also note that T does not contain
every lattice term, e.g. α1∨α1 6∈ T or (α1∨α2)∨α3 6∈ T. One can easily check,
that for an arbitrary lattice term t there exists a lattice term t′ ∈ T such that
t =triv t′.

For a lattice term t ∈ T we define the length of t (denoted by length(t)) in
the natural way. If t is a variable then length(t) = 1. If t = t1 ∨ · · · ∨ t` or
t = t1 ∧ · · · ∧ t` then length(t) = 1 + length(t1) + · · ·+ length(t`).

For a lattice term t ∈ T we define the color set of t (denoted by C(t)) by
induction on length(t). The terminology will be clear soon.

1. If t ∈ V is a variable then C(t) = {t};

2. if t = t1 ∨ · · · ∨ t` ∈ M \V is join-reducible then C(t) = C(t1)∪ · · · ∪ C(t`);

3. if t = t1 ∧ · · · ∧ t` ∈ J \V is meet-reducible then C(t) = {t} ∪⋃
tj 6∈V C(tj).

We note that t ∈ M \V in case 2 and t ∈ J \V in case 3 implies that ` > 1
in both cases. We also note that C(t) is the subset of J.

3. Graphs and lattices defined by lattice terms

For a lattice term t ∈ T and for every positive integer n we will define a
(finite) colored directed graph Gn(t). It will contain neither loops nor multi-
ple edges. It will have two distinguished vertices, the left and right endpoints,
usually denoted by x0 and x1. In figures the endpoints will be placed on the
left-hand side, resp. right-hand side, and the orientation of edges will not be
indicated based on the convention that all edges are directed from left to right.
We will color the edges of the graph with the elements of C(t). Unless other-
wise stated, all graphs will be understood in the above sense. Note, that this
construction is a generalization of the construction Czédli has given in [4] for
n = 4.

Let V = V(Gn(t)), E = E(Gn(t)) and col : E → C(t) denote the vertex set,
the edge set and the coloring map of Gn(t), respectively. We note that here V is
a (finite) set and E is an irreflexive and antisymmetric relation on V. The map
col defines the colors of the edges. We call an edge (a, b) ∈ E a covering edge
if there is no directed path from a to b except (a, b). For an edge (a, b) ∈ E let
S(a, b) denote the smallest subgraph that contains all directed paths from a to
b. If col(a, b) = s then we will use both notations (a, s, b) and S(a, s, b).

If G and H are graphs and (a, b) is an edge of G then we can replace (a, b) by
H or we can glue H to (a, b). In both cases we suppose that V(G) and V(H) are
disjoint sets. In the first case we erase the edge (a, b) and we identify a and b
with the left and right endpoints of H, respectively. In the second case we keep
(a, b) and identify a and b with the left and right endpoints of H, respectively.
See both cases in Figure 1. Two graphs G1 and G2 are isomorphic iff there is a
bijection ϕ between V(G1) and V(G2) that satisfies:
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• (a, b) ∈ E(G1) iff (ϕ(a), ϕ(b)) ∈ E(G2);

• col1(a, b) = col2(ϕ(a), ϕ(b)) for all (a, b) ∈ E(G1).

a b
G

H

Figure 1: Gluing and replacing

Next, let s, t ∈ T be distinct lattice terms. For a fixed positive integer n the
graph with

V(G) = {x0 = y0, y1, . . . , yn = x1}
and

E(G) = {(yi−1, yi) | i = 1, . . . , n}
is called the (s, t)n-arc, if the color of the edge (yi−1, yi) is s iff i is odd and t iff
i is even. For a meet-irreducible lattice term t = t1 ∨ · · · ∨ t` ∈ M \V we define
a graph the so called tn-arc as follows. See Figure 2 for an illustration.

1. If ` = 2 then the tn-arc is equal to the (t1, t2)n-arc.

2. If ` > 2 and for t0 = t1 ∨ · · · ∨ t`−1 the tn0 -arc is defined then we take the
(t0, t`)n-arc and replace all t0-colored edges by distinct tn0 -arcs.

x0 x1

t1 t1 t1t1 t2 t2 t2 t2t3 t3

Figure 2: The (t1 ∨ t2 ∨ t3)4-arc

Now, for an arbitrary lattice term t ∈ T we define Gn(t) by induction on
length(t).

1. If t ∈ V is a variable then Gn(t) consists of a single edge (x0, t, x1).

2. Let t = t1∨· · ·∨t` ∈ M \V be a join-reducible lattice term. Then we take
the tn-arc and we replace all ti-colored edges by distinct graphs isomorphic
to Gn(ti).
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3. Let t = t1 ∧ · · · ∧ t` ∈ J \V be a meet-reducible lattice term. First, we
take a graph that consists of a single edge (x0, t, x1). Then for each lattice
term ti 6∈ V we glue distinct tni -arcs to (x0, x1). Finally if sij is a joinand
of ti then we replace all sij-colored edges by distinct graphs isomorphic to
Gn(sij).

For a graph Gn(t), let the subgraphs occuring in the definition (isomorphic to
Gn(ti) or Gn(sij)) be called complex subgraphs of Gn(t). In case 3, the subgraph
of Gn(t) that we get from the tni -arc after the replacing will be called the tni -arc
of Gn(t).

Note that for each edge (a, s, b), we have S(a, s, b) ∼= Gn(s), and there exists
exactly one isomorphism between S(a, s, b) and Gn(s).

Let p, q ∈ T be k-ary lattice terms. An edge (a, r, b) of G = Gn(p) is called
an αi-edge if r = αi or αi is a meetand of r. Notice that αi-colored edges are
αi-edges but not conversely. Let X denote the vertex set of G. The small-
est member of Eq(X) generated by the relation {(a, b) | (a, b) is an αi edge}
will be denoted by αi|G. For a k-ary lattice term q ∈ T the equivalence
q(α1|G, . . . , αk|G) ∈ Eq(X) will be denoted by q|G. By an (undirected) q|G-
path we mean an undirected path such that for every undirected edge (a, b) of
the path (a, b) ∈ q|G. Similarly, for any equivalences ϑ1, . . . , ϑ` ∈ Eq(X) by an
(undirected) ϑ1 ∪ · · · ∪ ϑ`-path we mean an undirected path such that for every
undirected edge (a, b) of the path (a, b) ∈ ϑ1 ∪ · · · ∪ ϑ`.

For n = 4, the following lemma is exactly Lemma 8 in Czédli [4].

Lemma 3. Let p, q ∈ T be k-ary lattice terms. For a fixed integer n ≥ 4 let
G = Gn(p) be the graph we defined earlier.

1. Let (a, b) ∈ E(G) be an edge and let y0, y1 ∈ V(S(a, b)) be vertices. Then

(y0, y1) ∈ q|G iff (y0, y1) ∈ q|S(a,b).

2. Let y0, y1 ∈ V(G) be vertices. Then (y0, y1) ∈ q|G iff there is an (undi-
rected) q|G-path from y0 to y1. In other words q|G is the equivalence gen-
erated by q|G ∩ E(G).

Proof. Observe that each color of an arc occurs at least twice in the arc. This
is what the proof in [4] relies on. Hence essentially the same proof works here.
The details are left to the reader.

Note that the previous lemma is not true for n = 3. Indeed, for p = (α1 ∨
α2)∧ (α1 ∨α3) and q = α1 ∨α3 one can see that (y0, y1) ∈ q|G3(p) but (y0, y1) 6∈
q|S(y0,y1), see Figure 3.

Let t ∈ T be a lattice term and X denote the vertex set of Gn(t). The
sublattice of Eq(X) generated by {α1|Gn(t), . . . , αk|Gn(t)} will be denoted by
Ln(t). Note, that this definition is the same Czédli has given in [4] for n = 4,
and the following Lemma shows that for n ≥ 4 we obtain the same lattices.
Also note, that at the end of the paper we will see that Ln(t) is a test lattice
(in fact it is a t-lattice).
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Figure 3: G3(p), p = (α1 ∨ α2) ∧ (α1 ∨ α3)

Lemma 4. For every k-ary lattice term t ∈ T and integers n,m ≥ 4 we have
Ln(t) ∼= Lm(t).

Proof. Using Lemma 3, one can prove by induction on length(p)+length(t) that
for every lattice term p ∈ T

(x0, x1) ∈ p|Gn(t) iff (x0, x1) ∈ p|Gm(t).(1)

Let ϕ : {α1|Gn(t), . . . , αk|Gn(t)} → {α1|Gm(t), . . . , αk|Gm(t)} be the map de-
fined by αi|Gn(t) 7→ αi|Gm(t). We are going to prove that for all lattice terms
p, q ∈ T

p|Gn(t) = q|Gn(t) iff p|Gm(t) = q|Gm(t).(2)

This will clearly imply that ϕ can be extended to an isomorphism from Ln(t)
to Lm(t).

We prove (2) by induction on length(t). If t ∈ V is a variable then Gn(t) =
Gm(t) and (2) holds trivially. Hence we can assume that length(t) > 1.

It suffices to prove the ”only if” part of (2). Let p|Gn(t) = q|Gn(t) and let
(y0, y1) ∈ p|Gm(t). From Lemma 3, we know that there exists a p|Gm(t)-path
from y0 to y1. Let z0 = y0, z1, . . . , z` = y1 be the vertices of this path. If
y0 and y1 are not the two endpoints of Gm(t) then the subgraphs S(zi−1, zi)
are smaller then Gm(t). From Lemma 3, we know that (zi−1, zi) ∈ p|Gm(t) iff
(zi−1, zi) ∈ p|S(zi−1,zi) for all i ∈ {1, . . . , `}. We can use the induction hypothesis
to col(zi−1, zi) and we get (zi−1, zi) ∈ q|S(zi−1,zi). From Lemma 3, we conclude
that (zi−1, zi) ∈ q|Gm(t) for all i ∈ {1, . . . , `}. It implies that (y0, y1) ∈ q|Gm(t).

If y0 and y1 are the endpoints of Gm(t) then we know from (1) that (y0, y1) ∈
q|Gm(t). We got that p|Gm(t) ≤ q|Gm(t). Hence p|Gm(t) = q|Gm(t) by the symmetry
of p and q.

Lemma 5 (Graph lemma). Let p ∈ T be a k-ary lattice term, let Y be a set
and let ϑ1, . . . , ϑk ∈ Eq(Y ) and y0, y1 ∈ Y . A mapping ϕ : V(Gn(p)) → Y is
called a representation mapping if ϕ(xi) = yi holds and for each edge (a, αj , b) ∈
E(Gn(p)) we have (ϕ(a), ϕ(b)) ∈ ϑj. The following conditions are equivalent:



Lattice identities and colored graphs connected by test lattices 115

1. (y0, y1) ∈ p(ϑ1, . . . , ϑk);

2. there exists a natural number n0 such that for each natural number n ≥ n0

there is a representation mapping.

Each representation mapping ϕ satisfies that for all q ∈ T and all a, b ∈
V(Gn(p))

(a, b) ∈ q|Gn(p) implies (ϕ(a), ϕ(b)) ∈ q(ϑ1, . . . , ϑk).(3)

Proof. The equivalence of 1 and 2 can be found in Czédli and Day [5]; it also
follows immediately from the definition by induction on length(p). (3) follows
from Lemma 3.

Let V be the variety of lattices. Let Veq be the variety generated by the
finite equivalence lattices and let p ≤eq q denote that the lattice identity p ≤ q
holds in Veq.

Corollary 6. Let p, q ∈ T be k-ary lattice terms. The following conditions are
eqivalent (for every integer n ≥ n0):

1. p ≤eq q;

2. p(α1|Gn(p), . . . , αk|Gn(p)) ≤ q(α1|Gn(p), . . . , αk|Gn(p)) in Ln(p);

3. (x0, x1) ∈ q(α1|Gn(p), . . . , αk|Gn(p)).

Proof. 1 implies 2 since Ln(p) is a sublattice of Eq(V(Gn(p))). The construction
of Gn(p) implies that (x0, x1) ∈ p|Gn(p), hence 2 implies 3. Now let us assume
3. It is enough to prove that p ≤ q in all finite equivalence lattices. Let Y be
a finite set, let ϑ1, . . . , ϑk ∈ Eq(Y ) and let (y0, y1) ∈ p(ϑ1, . . . , ϑk). We apply
Lemma 5 with the same notation: (y0, y1) = (ϕ(x0), ϕ(x1)) ∈ q(ϑ1, . . . , ϑk),
which completes the proof.

4. Lattice identities in free lattices

Now, we are in the position of proving that the word problem for Veq has
exactly the same solution as it has for V, see Whitman [12] or Freese, Ježek and
Nation [7]. Theorem 1 is a consequence of the following lemma.

Lemma 7. Let p ∈ J be a meet-reducible lattice term with meetands: p1, . . . , pu

and let q ∈ M be a join-reducible lattice term with joinands: q1, . . . , qv.

1. If p ≤eq q then either pi ≤eq q for some i ∈ {1, . . . , u} or p ≤eq qj for
some j ∈ {1, . . . , v}.

2. If α ≤eq q for some variable α ∈ V then α ≤eq qj for some j ∈ {1, . . . , v}.
3. If p ≤eq β for some variable β ∈ V then pi ≤eq β for some i ∈ {1, . . . , u}.
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Proof. 1 Let us assume p ≤eq q. By Corollary 6 we know that (x0, x1) ∈ q|Gn(p)

(for every integer n ≥ 4). Using Lemma 3 we get a q1|Gn(p) ∪ · · · ∪ qv|Gn(p)-path
from x0 to x1. Let (z0 = x0, z1, . . . , z` = x1) be a minimal q1|Gn(p)∪· · ·∪qv|Gn(p)-
path (` is minimal).

If ` = 1 then (x0, x1) = (z0, z1) ∈ qj |Gn(p) for some j ∈ {1, . . . , v} and from
Corollary 6 we get p ≤eq qj .

Let us assume that ` > 1. Since ` is minimal, (z0, z1, . . . , z`) goes entirely in
the pi-arc for some i ∈ {1, . . . , u}, and it connects all endpoints of the complex
subgaphs on the pi-arc. Hence for an arbitrary complex subgraph on the pi-
arc S(a, rij , b) we know that (a, b) ∈ q|Gn(p). Using Lemma 3 we get (a, b) ∈
q|S(a,rij ,b). Since S(a, rij , b) ∼= Gn(rij), we have (x0, x1) ∈ q|Gn(rij). Using
Corollary 6 we get rij ≤eq q. This argument works for all complex subgraphs
of the pi-arc, therefore pi ≤eq q.

2 and 3 are dual statement, hence it is enough to prove 2. By Corollary 6 it
is sufficient to prove that α|Gn(α) ≤ q|Gn(α) implies α|Gn(α) ≤ qj |Gn(α) for some
j ∈ {1, . . . , v}, which is trivial.

Lemma 7 implies an algorithm that decides wether a lattice identity holds
in Veq. We note that it is the same algorithm that Whitman gave for the word
problem in V, see Theorem 1 in [12], but we do not use this fact. All identities
generated by the algorithm trivially hold in V. Therefore Veq = V. It proves
Theorem 1. It also implies that we can replace ≤eq with ≤triv in Corollary 6
and in Lemma 7. Hence Theorem 2 is an easy consequence of Lemma 7.

References

[1] Czédli, G., On properties of rings that can be characterized by infinite lattice
identities. Studia Sci. Math. Hungar. 16 (1981), 45–60.

[2] Czédli, G., Mal’cev conditions for Horn sentences with congruence permutability.
Acta. Math. Hungar. 44 (1984), 115–124.

[3] Czédli, G., On the word problem of lattices with the help of graphs. Periodica
Math. Hungar. 23 (1991), 49–58.

[4] Czédli, G., A visual approach to test lattices. Acta Univ. Palacki. Olomuc., Fac.
rer. nat., Mathematica 48 (2009), 33-52.

[5] Czédli, G., Day, A., Horn sentences with (W) and weak Mal’cev conditions. Al-
gebra Univers. 19 (1984), 217–230.

[6] Day, A., Doubling constructions in lattice theory. Canad. J. Math. 44 (1992),
252–269.
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