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JACOBIAN SMOOTHING INEXACT NEWTON
METHOD FOR NCP WITH A SPECIAL CHOICE OF

FORCING PARAMETERS

Sanja Rapajić1

Abstract. The inexact Newton method with a special choice of forcing
parameters is proposed for solving nonlinear complementarity problems.
This method belongs to the class of Jacobian smoothing methods. Li-
near system is solved approximately in every iteration. The sequence of
forcing terms controls the accuracy level of the approximate solution and
influences the behavior of the method. Globalization strategy is based on
nonmonotone rule.
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1. Introduction

Nonlinear complementarity problems (NCP) are mathematical models of
many engineering, economical, technological and science phenomena. These
problems have also important applications in operations research and equili-
brium models. For this reason, there is a growing interest in finding efficient
and robust algorithms for solving them.

Most algorithms for NCP are based on suitable reformulation to equivalent
nonsmooth system of nonlinear equations. Nonsmoothness complicates the ap-
plication of classical Newton-type methods, so semismooth systems arising from
NCP can be solved by applying generalized derivatives or various smoothing
techniques.

Generalizations of classical Newton method for smooth to nonsmooth case
require solving linear system in each iteration, which can be expensive if the
dimension of the system is large. Therefore, it seems reasonable to use an
iterative method which solves system approximately. The theory for semismooth
methods can be carried over to the inexact case, where iterative solver finds the
approximate solution of a linear system. Hence, the semismooth inexact Newton
methods seem to be reliable algorithms for NCP (see De Luca et al. [6], Dingguo,
Weiwen [7], Facchinei, Kanzow [9], Kanzow [14], Krejić, Mart́ınez [16], Mart́ınez,
Qi [21]). The sequence of forcing parameters controls the accuracy degree and
determines the behavior of the method, in the sense of convergence rate. It also
has a strong influence on the robustness and efficiency of the method. Because of
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that, these parameters have a very important role in inexact Newton methods.
The forcing term connects the norm of residual vector with the norm of function
in the current iteration. An et al. [1] proposed a new way to choose forcing
parameters, in order to improve the efficiency and robustness of the inexact
Newton method in smooth case. That new choice is determined by the ratio
of actual reduction and predicted reduction of the function, so it can reflect
both the agreement between the local linear and nonlinear model and also the
function reduction in some degree.

In this paper we consider globally convergent inexact Newton method for
NCP proposed in Krejić, Rapajić [17], but with special choice of forcing terms
defined in An et al. [1]. This method belongs to the class of Jacobian smoothing
methods, whose main characteristic is solving mixed Newton equation, which
links the semismooth function with the Jacobian of its smooth operator. Jaco-
bian smoothing methods are introduced by many authors (see Chen et al. [3],
Kanzow, Peiper [15], Krejić, Rapajić [17], Krejić et al. [18]).

The paper is organized as follows. In Section 2 we review some definitions
and preliminary results to be used. Convergence analysis is presented in Section
3. Some numerical results are reported in Section 4.

2. Preliminaries

Let F : Rn → Rn be a continuously differentiable function. We consider the
nonlinear complementarity problem, which is to find a vector x ∈ Rn satisfying
conditions

x ≥ 0, F (x) ≥ 0, x>F (x) = 0.

The semismooth equation reformulation of NCP given in Fischer [11] is

(2.1) Φ(x) = 0,

where Φ : Rn → Rn is defined componentwise by

Φi(x) := φ(xi, Fi(x)), i = 1, 2, ..., n,

for Fischer-Burmeister mapping φ : R2 → R given with

φ (a, b) =
√

a2 + b2 − a− b.

One way to deal with the nonsmoothness given in Kanzow [13] is to approximate
the function Φ by the smooth operator Φµ : Rn → Rn, defined componentwise
by

Φi(x, µ) := φµ(xi, Fi(x)), i = 1, 2, ..., n,

where µ > 0 is a smoothing parameter and φµ : R2 → R given with

φµ (a, b) =
√

a2 + b2 + 2µ− a− b

is Kanzow’s smooth approximation of the Fischer-Burmeister function. Func-
tion Φµ is smooth for any µ > 0.
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Some words about notation are necessary. The distance between the given
matrix A ∈ Rn,n and nonempty set of matrices A ⊂ Rn,n is denoted by
dist(A,A) = infB∈A ‖A − B‖. Landau symbol o(·) is defined in usual way.
For smooth function F : Rn → Rn we denote by Fi its ith component function,
Fi : Rn → R. The Jacobian of F at x is denoted by F ′(x).

Let us denote by ∂BΦ(x) the B-subdifferential of Φ at x

∂BΦ(x) = { lim
xk→x

Φ′(xk) : xk ∈ DΦ},

where DΦ is the set where Φ is differentiable. The convex hull of B-subdifferential

∂Φ(x) = conv∂BΦ(x)

is called the generalized Jacobian of Φ at x in the sense of Clarke [4]. Usually,
computing ∂Φ(x) is complicate, so it is common to define the C-subdifferential
of Φ at x by

∂CΦ(x) = ∂Φ1 (x)× ∂Φ2 (x)× . . .× ∂Φn (x) ,

where ∂Φi (x), i = 1, 2, ..., n is the generalized gradient of Φi at x.
It is well known that all elements of the set ∂CΦ(x) have the form

∂CΦ(x) = Da(x) + Db(x)F ′(x),

where Da(x) = diag(a1(x), . . . , an(x)), Db(x) = diag(b1(x), . . . , bn(x)) are dia-
gonal matrices with elements

ai(x) =
xi√

x2
i + F 2

i (x)
− 1, bi(x) =

Fi(x)√
x2

i + F 2
i (x)

− 1,

when (xi, Fi(x)) 6= (0, 0) and

ai(x) = ξi − 1, bi(x) = ρi − 1, (ξi, ρi) ∈ R2, ‖(ξi, ρi)‖ ≤ 1,

for (xi, Fi (x)) = (0, 0) .

We recall some background concepts which are necessary in the subsequent
analysis.

Definition 2.1. A function F : Rn → Rn is a

• P0-function if for every x, y ∈ Rn, with x 6= y, there is an index i such
that

xi 6= yi, (xi − yi)(Fi(x)− Fi(y)) ≥ 0,

• uniform P -function if there exists a positive constant c such that for every
x, y ∈ Rn, there is an index i such that

(xi − yi)(Fi(x)− Fi(y)) ≥ c‖y − x‖2.
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Lemma 2.1. [19] If F from NCP is a P0-function then the Jacobian Φ′µ(x) is
a nonsingular matrix for every µ > 0 and any x ∈ Rn.

Lemma 2.2. [15] Assume that {xk} ⊆ Rn is any convergent sequence with
limit point x∗ ∈ Rn. If the function Φ is semismooth, then

‖Φ(xk)− Φ(x∗)− Vk(xk − x∗)‖ = o(‖xk − x∗‖)
holds for any Vk ∈ ∂CΦ(xk).

Lemma 2.3. [10] Let Φ : Rn → Rn be a semismooth function and let x∗ ∈ Rn be
a solution of Φ(x) = 0 such that all elements of ∂Φ(x∗) are nonsingular. Suppose
that two sequences {xk} and {sk} are given in such a way that {xk} → x∗ and
‖xk + sk − x∗‖ = o(‖xk − x∗‖). Then

‖Φ(xk + sk)‖ = o(‖Φ(xk)‖).
Lemma 2.4. [22] Suppose that x∗ is the solution of (2.1). If Φ is semismooth at
x∗ and all elements of ∂BΦ(x∗) are nonsingular, then there exists a neighborhood
of x∗ such that x∗ is the unique solution of (2.1) in it.

Some basic properties of the smoothing procedure are introduced in Kanzow,
Peiper [15], where for any x ∈ Rn it is proved that

lim
µ→0

dist
(
Φ′µ(x), ∂CΦ(x)

)
= 0,

which means that the function Φµ has the Jacobian consistency property. The
sequence of smoothing parameters leads to the smoothing procedure and the
precise definition of the threshold value for the smoothing parameters is also
given in [15].

3. The algorithm and convergence results

Jacobian smoothing inexact Newton method with nonmonotone line-search
rule is introduced in Krejić, Rapajić [17], where global convergence and local
q-superlinear convergence is analyzed. Since inexact directions are not descent
directions in general, a nonmonotone technique is used for globalization.

In this paper we will consider the same algorithm, but with the special choice
of forcing parameters, proposed in An et al. [1].

Globalization procedure for solving NCP is based on unconstrained mini-
mization of the merit function. Merit function is a function whose global min-
ima are coincident with the solutions of the original NCP. The major advantage
of the Fischer-Burmeister reformulation is that the merit function

(3.1) Ψ(x) =
1
2
‖Φ(x)‖2, Ψ : Rn → R

is smooth although the original operator Φ is nonsmooth. The globalization can
be done in a standard way, using the related merit function

Ψµ(x) =
1
2
‖Φµ(x)‖2, Ψµ : Rn → R.
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It was shown in Facchinei, Soares [10] that if F is a P0-function, then
every stationary point of Ψ is a global minima of the unconstrained problem
minx∈Rn Ψ(x) and hence solves the NCP. Moreover, the level sets of Ψ, defined
by L(α) = {x ∈ Rn, Ψ(x) ≤ α} are bounded, under the assumption that F is
an uniform P -function.

The algorithm is described as follows.

Algorithm JSIN: Jacobian Smoothing Inexact Newton Method

S0: Choose σ, α, ξ̄ ∈ (0, 1), 0 < τmin < τmax < 1, γ > 0, t, θ ∈ [0, 1), such
that t < 1−α

1+α − σ(1 − θ)(1 + α), ε ≥ 0 and x0 ∈ Rn. Let {ηk} > 0
be a sequence such that

∑∞
k=0 ηk ≤ η < ∞ and {tk}, 0 ≤ tk ≤ t. Set

β0 = ‖Φ(x0)‖, µ0 = ( αβ0

2
√

2n
)2 and k = 0.

S1: If ‖Φ(xk)‖ ≤ ε STOP.

S2: Compute sk from the mixed Newton equation

(3.2) Φ′µk
(xk)sk = −Φ(xk) + r̄k,

where

(3.3) ‖r̄k‖ ≤ tk‖Φ(xk)‖.

S3: Set α̃ = 1. If

(3.4) Ψµk
(xk + α̃sk) ≤ (1 + α̃σ(θ − 1))2Ψµk

(xk) + ηk,

set αk = α̃ and xk+1 = xk + αksk.

If (3.4) is not satisfied, choose αnew ∈ [α̃τmin, α̃τmax], set α̃ = αnew and
repeat (3.4).

S4: If

(3.5) ‖Φ(xk+1)‖ ≤ max{ξ̄βk,
1
α
‖Φ(xk+1)− Φµk

(xk+1)‖}

then
βk+1 = ‖Φ(xk+1)‖

and choose µk+1 such that

(3.6) 0 < µk+1 ≤ min{(αβk+1

2
√

2n
)2,

µk

4
,

µ2
k

‖Φµk
(xk+1)‖2 , µ̄(xk+1, γβk+1)}.

If (3.5) does not hold then

βk+1 = βk, µk+1 = µk.

S5: Set k := k + 1 and return to step S1.
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The above algorithm is globally convergent.

Theorem 3.1. [17] Assume that F is a uniform P -function and {xk} is a
sequence generated by Algorithm JSIN. Then every accumulation point of the
sequence {xk} is a stationary point of Ψ.

Since solving the NCP is equivalent to unconstrained minimization of Ψ,
Theorem 3.1 and the fact that any stationary point of Ψ is its global minima,
imply that every accumulation point of the sequence generated by Algorithm
JSIN is a solution of the NCP.

Step S3 of the Algorithm indicates that the forcing parameter tk is used
to control the accuracy of approximate solution obtained by some linear solver
in the kth iteration. As we mentioned before, the sequence of forcing terms
has an important role. It determines the convergence rate and also reflects the
efficiency and robustness of the algorithm. If the current iteration xk is away
from the solution x∗, then choosing tk too small may lead to ”oversolving”
mixed Newton equation. This may result in little or no reduction of the original
function, but requires additional costs. Thus, the main purpose is to choose
forcing parameters that achieve a desirably fast local convergence and also tend
to avoid ”oversolving”. A good choice of forcing terms is of great importance and
it should be related to specific problems. Many researchers have proposed some
promising strategies for practical computing forcing parameters (see Dembo,
Steihaug [5], Eisenstat, Walker [8]) and most of them use some information
about the original function. A new way of choosing forcing terms, proposed in
An et al. [1], reflects not only the agreement between the local linear model
and nonlinear model, but also the reduction rate of ‖Φ(x)‖ in some degree. It is
determined by the ratio of the actual reduction to the predicted reduction. Let

rk =
Aredk(sk)
Predk(sk)

,

where actual reduction Aredk(sk) and predicted reduction Predk(sk) of the
function ‖Φ(x)‖ at xk with step sk are given with

Aredk(sk) = ‖Φ(xk)‖ − ‖Φ(xk + sk)‖,

P redk(sk) = ‖Φ(xk)‖ − ‖Φ(xk) + Φ′µk
(xk)sk‖.

In this choice, forcing parameters tk are defined by rk. If rk ≈ 0, then the
local linear model and nonlinear model disagree and the function ‖Φ(x)‖ will
be reduced very little or will be enlarged, so this case is the worst. If rk ≈ 1,
then the local linear model and nonlinear model will agree well and the function
‖Φ(x)‖ will be reduced obviously, so the case rk ≈ 1 is the best one. According
to this, we choose forcing terms in the following way.

Let t0 be given such that

(3.7) 0 < t0 <
1− α

1 + α
− σ(1− θ)(1 + α),
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where the parameters α, σ and θ are chosen as in step S0 of Algorithm JSIN.
For k = 1, 2, ... define

(3.8) tk =





1− 2p1, rk−1 < p1

tk−1, p1 ≤ rk−1 < p2

0.8tk−1, p2 ≤ rk−1 < p3

0.5tk−1, p3 ≤ rk−1,

where

rk =
Aredk(sk)
Predk(sk)

=
‖Φ(xk)‖ − ‖Φ(xk + sk)‖

‖Φ(xk)‖ − ‖Φ(xk) + Φ′µk
(xk)sk‖ ,

0 < p1 < p2 < p3 <
1− α

1 + α
− σ(1− θ)(1 + α),

and

(3.9) p1 ∈ (
1
2
− 1− α

2(1 + α)
+

σ(1− θ)(1 + α)
2

,
1
2
).

This strategy of choosing forcing parameters determines tk by using rk−1.
If rk−1 < p1, i.e. rk−1 is near 0, then the local linear model and nonlinear
model can not agree well, which means the worst case, and because of that the
accuracy of approximate solution should be relaxed, i.e. tk = 1−2p1 is relatively
large. If rk−1 ≥ p2, i.e. rk−1 is near 1, then the local linear model and nonlinear
model agree well and ‖Φ(x)‖ will be reduced, which means the best case, and
because of that the mixed Newton equation should be solved more accurately,
i.e. tk should be smaller. Otherwise, tk remains the same.

The previous value rk−1 determines the current forcing parameter tk, while
tk determines the current value rk through approximate solving mixed Newton
equation. In this way, the sequences {tk} and {rk} are interrelated.

Now, we are going to prove that JSIN method with this choice of forcing
terms is globally convergent.

Theorem 3.2. Assume that F is a uniform P -function and {xk} is a sequence
generated by Algorithm JSIN with the forcing terms defined by (3.7) and (3.8).
Then every accumulation point of the sequence {xk} is a stationary point of Ψ.

Proof. It suffices to show that the sequence tk defined by (3.7) and (3.8)
satisfies the conditions given in step S0 of Algorithm JSIN, i.e.

(3.10) 0 ≤ tk ≤ t <
1− α

1 + α
− σ(1− θ)(1 + α), k = 0, 1, 2, ...

Choose t = max{t0, 1− 2p1}. First, we show that

(3.11) t <
1− α

1 + α
− σ(1− θ)(1 + α).
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If t = t0, then (3.11) is true because of (3.7). If t = 1− 2p1, then (3.11) follows
from (3.9). We are going to prove by the induction

(3.12) 0 ≤ tk ≤ t, k = 0, 1, 2, ...

Obviously, it is true for k = 0. As an inductive hypothesis, suppose that

0 ≤ tk−1 ≤ t

for some k ≥ 1. If tk = 1 − 2p1, then (3.12) follows trivially from (3.7) and
(3.9). If tk = tk−1 or tk = 0.8tk−1 or tk = 0.5tk−1, then induction hypothesis
implies (3.12). Thus, (3.10) is satisfied, which means that the Algorithm JSIN
can be applied with this choice of tk and Theorem 3.1 holds for it. 2

To obtain superlinear convergence of Jacobian smoothing inexact Newton
method with the given choice of forcing terms and the special choice of sequence
{ηk} we need some results from [15].

Let us define the set

K = {0} ∪
{

k, k ∈ N ; ‖Φ(xk)‖ ≤ max{ξ̄βk−1,
1
α
‖Φ(xk)− Φµk−1(x

k)‖}
}

.

Lemma 3.1. [15] Let {xk} be a sequence generated by Algorithm JSIN. Then
the following statements hold

‖Φ(xk)− Φµk
(xk)‖ ≤ α‖Φ(xk)‖, for k ≥ 0,

dist
(
Φ′µk

(xk), ∂CΦ(xk)
) ≤ γ‖Φ(xk)‖, for k ≥ 1, k ∈ K.

Lemma 3.2. [15] Let {xk} be a sequence generated by Algorithm JSIN. Assume
that {xk} has an accumulation point x∗ which is a solution of NCP. Then the
index set K is infinite and {µk} → 0.

Using the same idea as in Krejić, Rapajić [17] the next theorem can be
proved.

Theorem 3.3. Assume that F is a uniform P -function. Let x∗ be an accu-
mulation point of a sequence {xk} generated by Algorithm JSIN with a special
choice of forcing terms defined by (3.7), (3.8) and with the sequence {ηk},

ηk = (2 + σ(θ − 1))2nµk + (2 + σ(θ − 1))
√

2nµk(1 + σ(θ − 1))‖Φµk
(xk)‖.

Assume that all elements of ∂CΦ(x∗) are nonsingular. Then x∗ is a solution of
NCP and the sequence {xk} converges q-superlinearly to x∗.

Proof. From the statement of Theorem 3.2, it follows that every accumu-
lation point of the sequence {xk} generated by JSIN with the forcing terms tk
given with (3.7) and (3.8) is a stationary point of Ψ, so it is clear that x∗ is
a solution of NCP. The fact that ∂BΦ(x∗) ⊆ ∂CΦ(x∗) and Lemma 2.4 imply
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that there is a neighborhood of the solution such that x∗ is a unique solution in
it. Since x∗ is an accumulation point and also a solution of NCP, there follows
from Lemma 3.2 that K is an infinite set. Thus, there is a subsequence K0 of
K such that {xk}K0 → x∗.

The sequence {ηk} satisfies
∑∞

k=0 ηk ≤ η < ∞, which is proved in Krejić,
Rapajić [17]. Using the same technique as in Chen et al. [3] with the fact that
Φ′µk

(xk) is nonsingular matrix because of Lemma 2.1, it is easy to prove that

(3.13) ‖Φ′µk
(xk)−1‖ ≤ M,

for all k ∈ K0 large enough and some positive constant M . Since ∂CΦ(xk) is
nonempty and compact set, there exists Vk ∈ ∂CΦ(xk) such that

(3.14) dist(Φ′µk
(xk), ∂CΦ(xk)) = ‖Φ′µk

(xk)− Vk‖.

Second statement of Lemma 3.1 implies

(3.15) ‖Φ′µk
(xk)− Vk‖ ≤ γβk, k ∈ K0.

By inexact Newton conditions (3.2) and (3.3), there follows

(3.16) ‖sk‖ ≤ (1 + tk)‖Φ′µk
(xk)−1‖‖Φ(xk)‖,

(3.17) ‖Φ(xk)‖ − ‖Φ′µk
(xk)sk + Φ(xk)‖ ≥ (1− tk)‖Φ(xk)‖,

and Lemma 2.2 implies

(3.18) ‖Φ(xk)− Φ(xk + sk) + Vksk‖ = o(‖sk‖), Vk ∈ ∂CΦ(xk).

We are going to prove that limk→∞ tk = 0. It suffices to show that rk ≥ p3 for
all sufficiently large k > k̄ ∈ K0.

Since βk → 0, it follows

(3.19) βk ≤ 1
2γM

for k ∈ K0 large enough, because of the algorithm construction and the fact
that K is an infinite set. Choosing δ < 1 such that

(3.20) δ +
1

2M
=

(1− p3)(1− t)
M(1 + t)

,
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Vk ∈ ∂CΦ(xk) such that (3.14) holds and using (3.16)-(3.20) there follows

rk =
‖Φ(xk)‖ − ‖Φ(xk + sk)‖

‖Φ(xk)‖ − ‖Φ(xk) + Φ′µk
(xk)sk‖

=
‖Φ(xk)‖ − ‖ − Φ(xk + sk)± Φ′µk

(xk)sk ± Φ(xk)± Vksk‖
‖Φ(xk)‖ − ‖Φ(xk) + Φ′µk

(xk)sk‖

≥ 1− ‖Φ(xk)− Φ(xk + sk) + Vksk‖+ ‖(Vk − Φ′µk
(xk))sk‖

‖Φ(xk)‖ − ‖Φ(xk) + Φ′µk
(xk)sk‖

≥ 1− ‖Φ(xk)− Φ(xk + sk) + Vksk‖+ ‖Vk − Φ′µk
(xk)‖‖sk‖

(1− tk)‖Φ(xk)‖

≥ 1− (δ + γβk)‖sk‖
(1− tk)‖Φ(xk)‖

≥ 1− (δ + γβk)M(1 + t)
1− t

≥ p3

for every k > k̄ ∈ K0 sufficiently large. Thus, the definition of forcing terms
shows that limk→∞ tk = 0. This fact with Lipschitz continuity of Φ, Lemma 2.2,
(3.13), (3.15) and the construction of Algorithm JSIN imply

‖xk + sk − x∗‖ = ‖xk − x∗ − Φ′µk
(xk)−1(Φ(xk)− r̄k)‖

≤ ‖Φ′µk
(xk)−1‖(‖Φ(xk)− Φ(x∗)− Vk(xk − x∗)‖

+‖Vk − Φ′µk
(xk)‖‖xk − x∗‖+ ‖r̄k‖)

≤ ‖Φ′µk
(xk)−1‖(‖Φ(xk)− Φ(x∗)− Vk(xk − x∗)‖

+‖Vk − Φ′µk
(xk)‖‖xk − x∗‖+ tk‖Φ(xk)‖)

≤ M(o(‖xk − x∗‖) + γβk‖xk − x∗‖+ tk‖Φ(xk)− Φ(x∗)‖)
= o(‖xk − x∗‖)(3.21)

for k ∈ K0 sufficiently large, since βk → 0, where Vk ∈ ∂CΦ(xk) is chosen such
that (3.14) holds. Hence by (3.21) and Lemma 2.3 there follows

(3.22) ‖Φ(xk + sk)‖ = o(‖Φ(xk)‖)
for k ∈ K0, k →∞. In the same way as in [17], it can be proved that there exists
an index k̆ ∈ K0 such that for every k ≥ k̆, k ∈ K0 the index k + 1 belongs
to the set K0 and xk+1 = xk + sk. This fact and (3.21) imply q-superlinear
convergence. 2

4. Numerical results

Some numerical experiments are reported in this section. We compared Jaco-
bian Smoothing Inexact Newton methods with four different choices of forcing
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terms. The following notation is used.

• JSIN1 - Jacobian Smoothing Inexact Newton method with tk = 0.5

• JSIN2 - Jacobian Smoothing Inexact Newton method with tk = 2−k

• JSIN3 - Jacobian Smoothing Inexact Newton method with special choice
of tk defined by (3.7) and (3.8)

• JSIN4 - Jacobian Smoothing Inexact Newton method with tk = ‖Φ(xk)‖.
The main stopping criterion was

‖Φ(xk)‖ ≤ 10−5
√

n.

Algorithms were stopped after kmax = 200 iterations if the stopping criterion
was not satisfied. Test problems are generated in the usual way, proposed by
Gomes-Ruggiero et al. [12].

Let x∗ = (1, 0, 1, 0, ...)> ∈ Rn. For i = 1, 2, ..., n set

Fi(x) =
{

fi(x)− fi(x∗), if i odd or i > r
fi(x)− fi(x∗) + 1, otherwise

where r ≥ 0 is an integer and f(x) = (f1(x), f2(x), ..., fn(x))> is a smooth
nonlinear mapping from Rn to Rn, given with all test problems proposed in
Lukšan [20], problems 2, 4, 6, 7, 12, 13, 25 and 27 from Spedicato, Huang [23]
and problems 1.1, 1.2, 1.3 and 1.5 from Bus [2]. Vector x∗ is a solution of the
NCP defined with this function F , but not necessarily its unique solution. If
r < n, x∗ is a degenerate solution of NCP, while for r = n it is a nondegenerate
one. All examples are tested in three dimensions n = 10, n = 100, n = 1000,
with two different starting points. The first one, denoted by x0, is suggested in
Bus [2], Lukšan [20], Spedicato, Huang [23] and the second one denoted by x̃0

is defined by

x̃0
i =

{
10x0

i , if x0
i 6= 0

10, otherwise.

We consider the degenerate solution (r = n/2) and the nondegenerate one
(r = n) for each dimension of the problem. In our implementation we used
GMRES as linear solver and the following parameters σ = 10−4, α = 0.1,
ξ̄ = 0.5, γ = 20, θ = 0.8, τmin = 0.3, τmax = 0.8 in all methods and p1 = 0.1,
p2 = 0.4, p3 = 0.7 in JSIN3 method. The obtained results are compared using
three indices: the index of robustness, the efficiency index and the combined
robustness and efficiency index. The robustness index is defined by

Rj =
tj
nj

,

the efficiency index is

Ej =
m∑

i=1,rij 6=0

(
rib

rij
)/tj ,
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and the combined index is

Ej ×Rj =
m∑

i=1,rij 6=0

(
rib

rij
)/nj ,

where rij is the number of iterations required to solve the problem i by the
method j, rib = minj rij , tj is the number of successes by method j and nj is
the number of problems attempted by method j.

The results of all tested methods are given in the following tables.

JSIN1 JSIN2 JSIN3 JSIN4
R 0.6956 0.8116 0.7826 0.6956
E 0.7895 0.8860 0.8550 0.8009

E × R 0.5492 0.7191 0.6691 0.5572

Table 1. NONDEGENERATE CASE (r = n) WITH STARTING POINT x0

JSIN1 JSIN2 JSIN3 JSIN4
R 0.7027 0.8243 0.7838 0.6351
E 0.7143 0.9032 0.8388 0.5704

E × R 0.5020 0.7445 0.6574 0.3623

Table 2. NONDEGENERATE CASE (r = n) WITH STARTING POINT x̃0

JSIN1 JSIN2 JSIN3 JSIN4
R 0.6805 0.7639 0.7639 0.6389
E 0.5870 0.8299 0.7851 0.7646

E × R 0.3994 0.6340 0.5997 0.4885

Table 3. DEGENERATE CASE (r = n/2) WITH STARTING POINT x0

JSIN1 JSIN2 JSIN3 JSIN4
R 0.6479 0.7746 0.7183 0.5211
E 0.5620 0.8570 0.7459 0.6493

E × R 0.3641 0.6638 0.5358 0.3384

Table 4. DEGENERATE CASE (r = n/2) WITH STARTING POINT x̃0

Jacobian smoothing inexact Newton method with a special choice of forcing
parameters and the sequence {ηk} is q-superlinearly convergent. Numerical
results show that the JSIN3 has better performance than JSIN1 and JSIN4 on
this collection of test problems. The JSIN3 is close to JSIN2, which is the best
method among all tested inexact methods. These results confirm theoretical
expectations in the sense of convergence rate. In the case of degenerate solution,
the JSIN2 and JSIN3 have the same robustness index, which can be seen from
Table 3.
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The special choice of forcing parameters results in a desirably fast local con-
vergence and tends to avoid ”oversolving”. Choosing a very small forcing term
may risk needless expenses in obtaining an unnecessarily accurate approximate
solution of mixed Newton equation. The disagreement between the local linear
model and nonlinear model when ”oversolving” occurs, may require significant
work from globalization process and even cause it to fail. In addition, a very
small forcing term may require more residual reduction than the linear iterative
solver such as GMRES can accurately provide. This is the reason for many fail-
ures of JSIN4, which should be the best method from the theoretical point of
view. On the other hand, choosing a larger forcing term may reduce ”oversolv-
ing” and avoid inaccuracy in the linear iterative solver, but increase the number
of inexact Newton steps necessary for convergence.
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