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PROCESSES
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Abstract. In this paper we consider a Caputo fractional derivative
of a Colombeau generalized stochastic process G. In general, with some
restrictions given on G, it is a Colombeau generalized stochastic process
itself. Here we explore some other possible approaches in defining algebras
of generalized fractional derivatives.
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1. Introduction

The past few decades have witnessed an increasing interest in fractional
derivatives, mainly due to many applications. Fractional processes defined by
using fractional calculus are convenient for describing a number of problems
appearing very often in applications, especially in physics, meteorology, clima-
tology, hydrology, geophysics, economy. For more about fractional processes we
refer, for instance, to [1], [3] and [8].

Fractional derivatives of Colombeau generalized stochastic processes are in-
troduced in [13], where it is proved that a Caputo fractional derivative of a
Colombeau generalized stochastic process G is a Colombeau generalized stochas-
tic process itself only if G satisfies certain conditions. One of the possible
approaches to get rid of these restrictions is to make a regularization of the
fractional derivative, as done in [13]. Here we explore some other approaches in
studying fractional derivatives.

The paper is organized as follows. After the introductory part, in the second
section we give some basic preliminaries such as notation and definitions of the
objects we shall work with. We also introduce different spaces of Colombeau
generalized stochastic processes.

In the third section we define the Caputo αth fractional derivative and
the regularized Caputo αth fractional derivative of a Colombeau generalized
stochastic process, for α > 0. In this section we repeat some basic results
from [13] in order to make the motivation for exploring some other possible
approaches more deeply. The fourth section is devoted to a certain modification
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of the Colombeau space of fractional derivatives. Finally, in the fifth section
we introduce a Colombeau fractional derivative stochastic process as one of the
interesting possible approaches in studying fractional derivatives in Colombeau
algebras.

2. Preliminaries

Let (Ω, Σ, µ) be a probability space. Generalized stochastic process on R
is a weakly measurable mapping X : Ω → D′(R). We denote by D′Ω(R) the
space of generalized stochastic processes. For each fixed function ϕ ∈ D(R), the
mapping Ω → R defined by ω 7→ 〈X(ω), ϕ〉 is a random variable.

White noise Ẇ : Ω → D′(R) is the identity mapping Ẇ (ω) = ω, i.e.,

〈Ẇ (ω), ϕ〉 = 〈ω, ϕ〉, ϕ ∈ D(R).

It is a generalized Gaussian process with mean zero and variance

V (Ẇ (ϕ)) = E(Ẇ (ϕ)2) = ‖ϕ‖2L2(R),

where E denotes expectation. Its covariance is the bilinear functional

E
(
Ẇ (ϕ)Ẇ (ψ)

)
=

∫

R
ϕ(y)ψ(y) dy

represented by Dirac’s measure on the diagonal R × R, showing the singular
nature of white noise.

It we denote by W the (generalized) Brownian motion, it is well known that

Ẇ (t) =
d

dt
W (t), almost surely in D′Ω(R),

i.e., the white noise in R can be viewed as the derivative of the (generalized)
Brownian motion.

A net ϕε of mollifiers given by

ϕε(t) =
1
ε
ϕ

(
t

ε

)
, ϕ ∈ D(R),

∫
ϕ(t)dt = 1,

is called a model delta net.
Smoothed white noise process on R is defined as

(2.1) Ẇε(t) = 〈Ẇ (t), ϕε(s− t)〉,

where Ẇ is the white noise process on R and ϕε is a model delta net.
In the sequel we introduce Colombeau generalized stochastic processes as

done in [10] and [11]. (For some other possible approaches in working with
generalized stochastic processes see, e.g. [12] and [5]). We confine ourselves to
the one-dimensional case.
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Denote by EΩ([0,∞)) the space of nets (Xε)ε∈(0,1) = (Xε)ε, of stochastic
processes Xε with almost surely continuous paths, i.e., the space of nets of
processes

Xε : (0, 1)× [0,∞)× Ω → R

such that

(t, ω) 7→ Xε(t, ω) is jointly measurable, for all ε ∈ (0, 1);
t 7→ Xε(t, ω) belongs to C∞([0,∞)), for all ε ∈ (0, 1) and almost all ω ∈ Ω.

By EΩ
M ([0,∞)) we denote the space of nets of processes (Xε)ε ∈ EΩ([0,∞)),

with the property that for almost all ω ∈ Ω, for all T > 0 and α ∈ N0, there
exist constants N, C > 0 and ε0 ∈ (0, 1) such that supt∈[0,T ] |∂αXε(t, ω)| has a
moderate bound, i.e.,

sup
t∈[0,T ]

|∂αXε(t, ω)| ≤ C ε−N , ε ≤ ε0.

NΩ([0,∞)) is the space of nets of processes (Xε)ε ∈ EΩ
M ([0,∞)), with the

property that for almost all ω ∈ Ω, for all T > 0 and α ∈ N0 and all b ∈ R,
there exist constants C > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T ]

|∂αXε(t, ω)| ≤ C εb, ε ≤ ε0.

Then we say that supt∈[0,T ] |∂αXε(t, ω)| is negligible.
Then

GΩ([0,∞)) = EΩ
M ([0,∞))/NΩ([0,∞))

is a differential algebra (differentiation with respect to t and pointwise mul-
tiplication) called algebra of Colombeau generalized stochastic processes. The
elements of GΩ([0,∞)) will be denoted by X = [Xε], where (Xε)ε is a represen-
tative of the class.

Both Brownian motion and white noise process can be viewed as Colombeau
generalized stochastic processes. It follows from the usual imbedding arguments
of Colombeau theory (see [9]). For instance, the Colombeau generalized white
noise process has the representative given by (2.1).

Finally, we introduce Ck-Colombeau generalized stochastic processes in the
following way.

Denote by EΩ
M,Ck([0,∞)) the space of nets of continuous processes (Xε)ε on

[0,∞), with the property that for almost all ω ∈ Ω and for all T > 0, there
exist constants N, C > 0 and ε0 ∈ (0, 1) such that supt∈[0,T ] |∂mXε(t, ω)| has a
moderate bound for m ∈ {0, . . . , k}, k ∈ N, i.e.,

sup
t∈[0,T ]

|∂mXε(t, ω)| ≤ C ε−N , m ∈ {0, . . . , k}, k ∈ N, ε ≤ ε0.

ByNΩ
Ck([0,∞)) we denote the space of nets of processes (Xε)ε ∈ EΩ

M,Ck([0,∞)),
with the property that for almost all ω ∈ Ω and for all T > 0 and all b ∈ R,
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there exist constants C > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T ]

|∂mXε(t, ω)| ≤ C εb, m ∈ {0, . . . , k}, k ∈ N, ε ≤ ε0.

Then we say that supt∈[0,T ] |∂mXε(t, ω)| is negligible for m ∈ {0, . . . , k}, k ∈ N.
Then

GΩ
Ck([0,∞)) = EΩ

M,Ck([0,∞))/NΩ
Ck([0,∞))

is an algebra, and it is called algebra of Ck-Colombeau generalized stochastic
processes.

3. Fractional derivatives of Colombeau generalized
stochastic processes

In [13] the Caputo αth fractional derivative and the regularized Caputo αth
fractional derivative of a Colombeau generalized stochastic process are intro-
duced. Here we recall definitions and some basic properties.

Let (Gε(t))ε be a representative of a Colombeau generalized stochastic pro-
cess G(t) ∈ GΩ([0,∞)). The Caputo αth fractional derivative of (Gε(t))ε, α > 0,
is defined by

(3.1) c
0D

α
t Gε(t) =





1
Γ(m− α)

∫ t

0

G
(m)
ε (τ)

(t− τ)α+1−m
dτ, m− 1 < α < m

G
(m)
ε (t) =

dm

dtm
Gε(t), α = m

,

for m ∈ N and ε ∈ (0, 1).
For m − 1 < α < m, m ∈ N, by using a simple change of variables one

obtains

c
0D

α
t Gε(t) =

1
Γ(m− α)

∫ t

0

G
(m)
ε (τ)

(t− τ)α+1−m
dτ =

1
Γ(m− α)

∫ t

0

G
(m)
ε (t− s)
sα+1−m

ds.

The following proposition holds.

Proposition 3.1. Let (Gε(t))ε be a representative of a Colombeau general-
ized stochastic process G(t) ∈ GΩ([0,∞)) and let the Caputo αth fractional
derivative of (Gε(t))ε, α > 0, be given by (3.1). Then, for every α > 0,
supt∈[0,T ] | c

0D
α
t Gε(t)| has a moderate bound.

Let (G1ε(t))ε and (G2ε(t))ε be two different representatives of a Colombeau
generalized stochastic process G(t) ∈ GΩ([0,∞)). Then, for every α > 0,
supt∈[0,T ] | c

0D
α
t G1ε(t)− c

0D
α
t G2ε(t)| is negligible.

Proof. Fix ω ∈ Ω and ε ∈ (0, 1). First, note that for α ∈ N, c
0D

α
t Gε(t)

is the usual derivative of order α of Gε(t) and since (Gε(t))ε ∈ EΩ
M ([0,∞)) the

assertion immediately follows.
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Now, consider the case when m− 1 < α < m, m ∈ N. Then, we have

sup
t∈[0,T ]

| c
0D

α
t Gε(t)|

≤ 1
Γ(m− α)

sup
t∈[0,T ]

∫ t

0

∣∣∣∣∣
G

(m)
ε (τ)

(t− τ)α+1−m
dτ

∣∣∣∣∣

≤ 1
Γ(m− α)

sup
τ∈[0,T ]

|G(m)
ε (τ)| sup

t∈[0,T ]

∫ t

0

1
(t− τ)α+1−m

dτ

=
1

Γ(m− α)
sup

τ∈[0,T ]

|G(m)
ε (τ)| sup

t∈[0,T ]

tm−α

m− α
, since m− 1 < α < m

≤ 1
Γ(m− α)

Tm−α

m− α
sup

τ∈[0,T ]

|G(m)
ε (τ)|.

Since G(t) ∈ GΩ([0,∞)), it follows that supτ∈[0,T ] |G(m)
ε (τ)| has a moderate

bound. Therefore, supt∈[0,T ] |DαGε(t)| has a moderate bound, for every α > 0,
as claimed.

In order to prove the second assertion, first, note that for α ∈ N, c
0D

α
t G1ε(t)

and c
0D

α
t G2ε(t) are the usual derivatives of order α and since they represent

the same Colombeau generalized stochastic process G(t) ∈ GΩ([0,∞)) it follows
that ( c

0D
α
t G1ε(t))ε−( c

0D
α
t G2ε(t))ε ∈ NΩ([0,∞)) and the assertion immediately

follows.
Now, consider the case when m− 1 < α < m, m ∈ N. Then, we have

sup
t∈[0,T ]

| c
0D

α
t G1ε(t)− c

0D
α
t G2ε(t)|

≤ 1
Γ(m− α)

sup
t∈[0,T ]

∫ t

0

∣∣∣∣∣
G

(m)
1ε (τ)−G

(m)
2ε (τ)

(t− τ)α+1−m
dτ

∣∣∣∣∣

≤ 1
Γ(m− α)

sup
τ∈[0,T ]

|G(m)
1ε (τ)−G

(m)
2ε (τ)| sup

t∈[0,T ]

∫ t

0

dτ

(t− τ)α+1−m

≤ 1
Γ(m− α)

Tm−α

m− α
sup

τ∈[0,T ]

|G(m)
1ε (τ)−G

(m)
2ε (τ)|.

Since (G1ε(t)ε and (G2ε(t))ε are both the representatives of G(t) ∈ GΩ([0,∞))
then (G(m)

1ε (t))ε − (G(m)
2ε (t))ε ∈ NΩ([0,∞)), i.e., supτ∈[0,T ] |G(m)

1ε (τ)−G
(m)
2ε (τ)|

is negligible. Therefore, supt∈[0,T ] | c
0D

α
t G1ε(t)− c

0D
α
t G2ε(t)| is negligible. 2

According to Proposition 3.1 the Caputo αth fractional derivative of a Colom-
beau generalized stochastic process on [0,∞) can be defined as an element of
GΩ
C0([0,∞)).

Definition 3.1. Let G(t) ∈ GΩ([0,∞)) be a Colombeau generalized stochastic
process on [0,∞). The Caputo αth fractional derivative of G(t), in notation
c
0D

α
t G(t) = [( c

0D
α
t Gε(t))ε], α > 0, is an element of GΩ

C0([0,∞)) satisfying (3.1).
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Note that, in general, the first order derivative of c
0D

α
t Gε(t),

d

dt
c
0D

α
t Gε(t),

for m− 1 < α < m, m ∈ N, is not defined at the point t = 0. Indeed,

d

dt
c
0D

α
t Gε(t) =

d

dt

[
1

Γ(m− α)

∫ t

0

G
(m)
ε (t− s)
sα+1−m

ds

]

=
1

Γ(m− α)

[∫ t

0

G
(m+1)
ε (t− s)
sα+1−m

ds +
G

(m)
ε (0)

tα+1−m

]

which is not defined in zero, unless G
(m)
ε (0) = 0. In order to have the second

order derivative
d2

dt2
c
0D

α
t Gε(t), m − 1 < α < m, m ∈ N, defined on the whole

interval [0,∞), one additionally needs the condition G
(m+1)
ε (0) = 0. In general,

the kth order derivative
dk

dtk
c
0D

α
t Gε(t), m− 1 < α < m, m, k ∈ N, is defined on

the whole interval [0,∞), if G
(m+l)
ε (0) = 0, for all l = 0, . . . , k − 1.

The following assertion holds (for the details of the proof, see [13]).

Theorem 3.1. Let G(t) ∈ GΩ([0,∞)) be a Colombeau generalized stochas-
tic process on [0,∞). The Caputo αth fractional derivative c

0D
α
t G(t) is a

Colombeau generalized stochastic process (an element of GΩ([0,∞))) for m−1 <

α < m, m ∈ N, if G
(m)
ε (0) = G

(m+1)
ε (0) = G

(m+2)
ε (0) = · · · = 0.

Moreover, if G
(m)
ε (0) = 0, for every m = 1, 2, . . . , then, for every α > 0, the

Caputo αth fractional derivative c
0D

α
t G(t) is a Colombeau generalized stochastic

process, i.e., an element of GΩ([0,∞)).

The previous theorem illustrates that a Caputo fractional derivative of a
Colombeau generalized stochastic process G(t) ∈ GΩ([0,∞)) is a Colombeau
generalized stochastic process itself only if G satisfies certain conditions. If one
wants this to be satisfied for an arbitrary G(t) ∈ GΩ([0,∞)), one of the possible
approaches is to make a regularization of the fractional derivative, as done in
[13].

Definition 3.2. Let (Gε(t))ε be a representative of a Colombeau generalized
stochastic process G(t) ∈ GΩ([0,∞)). The regularized Caputo αth fractional
derivative of (Gε(t))ε, α > 0, is defined by

(3.2) c
0D̃

α
t Gε(t) =

{
( c

0D
α
t Gε ∗ ϕε)(t), m− 1 < α < m

G
(m)
ε (t) =

dm

dtm
Gε(t), α = m

,

for m ∈ N and ε ∈ (0, 1), where c
0D

α
t Gε(t) is given by (3.1) and ϕε is a model

delta net. The convolution in (3.2) is

( c
0D

α
t Gε ∗ ϕε)(t) =

∫ ∞

0

c
0D

α
t Gε(s) ϕε(t− s) ds.
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Proposition 3.2. ([13]) Let (Gε(t))ε be a representative of a Colombeau gen-
eralized stochastic process G(t) ∈ GΩ([0,∞)) and let the regularized Caputo αth
fractional derivative of (Gε(t))ε, α > 0, be given by (3.2). Then, for every α > 0

and every k ∈ {0, 1, 2, . . . }, supt∈[0,T ]

∣∣∣∣
dk

dtk
c
0D̃

α
t Gε(t)

∣∣∣∣ has a moderate bound.

Let (G1ε(t))ε and (G2ε(t))ε be two different representatives of a Colombeau
generalized stochastic process G(t) ∈ GΩ([0,∞)). Then, for every α > 0 and
every k ∈ {0, 1, 2, . . . },

sup
t∈[0,T ]

∣∣∣∣
dk

dtk

(
c
0D̃

α
t G1ε(t)− c

0D̃
α
t G2ε(t)

)∣∣∣∣ is negligible.

Definition 3.3. Let G(t) ∈ GΩ([0,∞)) be a Colombeau generalized stochastic
process. The regularized Caputo αth fractional derivative of G(t), in the notation
c
0D̃

α
t G(t) =

[(
c
0D̃

α
t Gε(t)

)
ε

]
, α > 0, is an element of GΩ([0,∞)) satisfying

(3.2).

Unlike the nonreglarized case, the regularized Caputo αth fractional deriva-
tive of a Colombeau generalized stochastic process is a Colombeau generalized
stochastic process itself.

4. Modification of Colombeau space of fractional
derivatives

According to Theorem 3.1, a Caputo αth fractional derivative of a Colombeau
generalized stochastic process G(t) ∈ GΩ([0,∞)) is, for α > 0, a Colombeau gen-
eralized stochastic process itself, if all (usual) derivatives of Gε(t) are equal to
zero at the point t = 0. As we have seen, one of the possible ways to get
rid of this restriction is to make the regularization of the fractional derivative.
The other possible way is to make a modification of the Colombeau space of
fractional derivatives and this will be done here.

First, note that the following assertion holds.

Lemma 4.1. Let (Gε(t))ε be a representative of a Colombeau generalized
stochastic process G(t) ∈ GΩ([0,∞)). Then, for every fixed α > 0,

(4.1) sup
t∈[0,T ]

∣∣ c
0D

α+α0
t Gε(t)

∣∣ has a moderate bound, for every α0 ∈ N.

If (G1ε(t))ε and (G2ε(t))ε are two different representatives of a Colombeau
generalized stochastic process G(t) ∈ GΩ([0,∞)), then
(4.2)

sup
t∈[0,T ]

∣∣ c
0D

α+α0
t G1ε(t)− c

0D
α+α0
t G2ε(t)

∣∣ is negligible, for every α0 ∈ N.

Proof. Fix ω ∈ Ω and ε ∈ (0, 1). If α ∈ N then α + α0 ∈ N and the assertion
immediately follows.
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For m−1 < α < m, m ∈ N, and arbitrary α0 ∈ N, one has that m−1+α0 <
α + α0 < m + α0, m ∈ N, and

sup
t∈[0,T ]

| c
0D

α+α0
t Gε(t)|

≤ 1
Γ(m + α0 − α− α0)

sup
t∈[0,T ]

∫ t

0

∣∣∣∣∣
G

(m)
ε (τ)

(t− τ)α+α0+1−m−α0
dτ

∣∣∣∣∣

≤ 1
Γ(m− α)

sup
τ∈[0,T ]

|G(m)
ε (τ)| sup

t∈[0,T ]

∫ t

0

1
(t− τ)α+1−m

dτ

=
1

Γ(m− α)
sup

τ∈[0,T ]

|G(m)
ε (τ)| sup

t∈[0,T ]

tm−α

m− α
, since m− 1 < α < m

≤ 1
Γ(m− α)

Tm−α

m− α
sup

τ∈[0,T ]

|G(m)
ε (τ)|.

Thus, (4.1) is satisfied. The assertion (4.2) follows from

sup
t∈[0,T ]

∣∣ c
0D

α+α0
t G1ε(t)− c

0D
α+α0
t G2ε(t)

∣∣

≤ 1
Γ(m− α)

sup
τ∈[0,T ]

|G(m)
1ε (τ)−G

(m)
2ε (τ)| · Tm−α

m− α
,

since, according to the assertion in Proposition 3.1, supτ∈[0,T ] |G(m)
ε (τ)| has a

moderate bound and supτ∈[0,T ] |G(m)
1ε (τ)−G

(m)
2ε (τ)| is negligible. 2

Definition 4.1. Let (G(t))ε be a representative of a Colombeau generalized
stochastic process G(t) ∈ GΩ([0,∞)). The Caputo αth fractional derivative of
G(t), denoted by c

0D
α
t G(t), is of Colombeau type if it satisfies (4.1).

The assertion from Lemma 4.1 now can be written in the following way:

Theorem 4.1. Let G(t) ∈ GΩ([0,∞)) be a Colombeau generalized stochastic
process. Then, for every α > 0, the Caputo αth fractional derivative of G(t),
c
0D

α
t G(t), is of Colombeau type.

5. Colombeau fractional derivative stochastic
processes

One of the possible approaches in studying fractional derivatives in
Colombeau algebras is to define Colomebau fractional derivatives stochastic
processes. We start with an appropriate definition for representatives. Namely,
first we define a fractional derivative stochastic process.

Definition 5.1. Let (G(t))ε be a representative of a Colombeau generalized
stochastic process G(t) ∈ GΩ([0,∞)). The Caputo αth fractional derivative
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c
0D

α
t Gε(t) is a fractional derivative stochastic process if, for almost all ω ∈ Ω,

for all T > 0 and for every β ≥ 0, there exist constants N, C > 0 and ε0 ∈ (0, 1)
such that supt∈[0,T ]

∣∣∣ c
0D

β
t ( c

0D
α
t Gε(t))

∣∣∣ has a moderate bound, i.e.,

(5.1) sup
t∈[0,T ]

∣∣∣ c
0D

β
t ( c

0D
α
t Gε(t))

∣∣∣ ≤ C ε−N , ε ≤ ε0.

Theorem 5.1. Let (G(t))ε be a representative of a Colombeau generalized
stochastic process G(t) ∈ GΩ([0,∞)) and let α > 0. If α /∈ N then c

0D
α
t Gε is the

fractional derivative stochastic process only if G
(j)
ε (0) = 0, for all j = 1, 2, . . . .

For α ∈ N this is true for any stochastic process G.

Proof. Fix ω ∈ Ω and ε ∈ (0, 1). In case when α ∈ N, the estimate (5.1)
holds for every G(t) ∈ GΩ([0,∞)). This follows from the first part of Proposition
3.1 and the fact that, for a natural number α, the derivative c

0D
α
t G(t) = ∂α

t G(t)
is a Colombeau generalized stochastic process.

If α ∈ R+ \ N and β ∈ N, then

c
0D

β
t ( c

0D
α
t Gε(t)) = ( c

0D
α
t Gε)

(β) (t).

If α ∈ R+ \ N and k − 1 < β < k, k ∈ N, one has

c
0D

β
t ( c

0D
α
t Gε(t)) =

1
Γ(k − β)

∫ t

0

( c
0D

α
t Gε)

(k) (τ)
(t− τ)β+1−k

dτ.

Therefore, for k− 1 < β ≤ k, k ∈ N, supt∈[0,T ]

∣∣∣ c
0D

β
t ( c

0D
α
t Gε(t))

∣∣∣ has a moder-

ate bound if supτ∈[0,T ]

∣∣∣( c
0D

α
t Gε)

(k) (τ)
∣∣∣ has a moderate bound.

This means that, in case when α ∈ R+ \ N, one needs to put the same
restrictions on G as in Theorem 3.1 in order to provide that (5.1) holds, i.e.,
that c

0D
α
t Gε(t) is a fractional derivative stochastic process. More precisely, the

condition G
(j)
ε (0) = 0, for all j = 1, 2, . . . , has to be satisfied. 2

Lemma 5.1. Let G(t) ∈ GΩ([0,∞)) be a Colombeau generalized stochastic pro-
cess satisfying G

(j)
ε (0) = 0, for all j = 1, 2, . . . and let (G1ε(t))ε and (G2ε(t))ε

be two different representatives of G. Then, for every α, β > 0,

sup
t∈[0,T ]

| c
0D

β
t ( c

0D
α
t G1ε(t))− c

0D
β
t ( c

0D
α
t G2ε(t)) | is negligible.

Proof. Fix ω ∈ Ω and ε ∈ (0, 1). First, note that for α ∈ N, c
0D

α
t G1ε(t) and

c
0D

α
t G2ε(t) are the usual derivatives of order α and thus, elements of EΩ

M ([0,∞)).
According to the second part of Proposition 3.1, the assertion immediately fol-
lows.

If α ∈ R \ N and β ∈ N then

c
0D

β
t ( c

0D
α
t G1ε(t))=∂β

t ( c
0D

α
t G1ε(t)) and c

0D
β
t ( c

0D
α
t G2ε(t))=∂β

t ( c
0D

α
t G1ε(t)) ,
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and, since G
(j)
ε (0) = 0, for all j = 1, 2, . . . , the derivatives from the right-hand

sides are defined and have moderate for every β ∈ N. Now it is not difficult to
prove the assertion.

Finally, if m− 1 < α < m and k − 1 < β < k, m, k ∈ N, then

sup
t∈[0,T ]

| c
0D

β
t ( c

0D
α
t G1ε(t))− c

0D
β
t ( c

0D
α
t G2ε(t)) |

=
1

Γ(k − β)
sup

t∈[0,T ]

∫ t

0

( c
0D

α
t G1ε)

(k) (τ)− ( c
0D

α
t G2ε)

(k) (τ)
(t− τ)β+1−k

dτ

≤ 1
Γ(k − β)

T k−β

k − β
sup

τ∈[0,T ]

∣∣∣( c
0D

α
t G1ε)

(k) (τ)− ( c
0D

α
t G2ε)

(k) (τ)
∣∣∣ .

Since G
(j)
ε (0) = 0, for j = 1, 2, . . . ,

sup
τ∈[0,T ]

∣∣∣( c
0D

α
t G1ε)

(k) (τ)− ( c
0D

α
t G2ε)

(k) (τ)
∣∣∣

is negligible and the assertion immediately follows. 2

Now, we can define the Colombeau αth fractional derivative stochastic pro-
cess, as follows.

Definition 5.2. Let G(t) ∈ GΩ([0,∞)) and α > 0. We say that the Caputo αth
fractional derivative c

0D
α
t G is the Colombeau αth fractional derivative stochastic

process if it satisfies (5.1).

Thus, the following assertion holds:

Theorem 5.2. Let G(t) ∈ GΩ([0,∞)) be a Colombeau generalized stochas-
tic process and let α > 0. If α /∈ N, the Caputo αth fractional derivative
c
0D

α
t G(t) is the Colombeau αth fractional derivative stochastic process in case

when G
(j)
ε (0) = 0, for all j = 1, 2, . . . . For α ∈ N this is satisfied for any

stochastic process G(t).
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