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SOME CHARACTERIZATIONS OF INCLINED
CURVES IN EUCLIDEAN E" SPACE

Ahmad T. AlfY, Rafael LépeZ?

Abstract. We consider a unit speed curve « in the Euclidean n-
dimensional space E™ and denote the Frenet frame of o by {V1,..., V,}.
We say that « is a cylindrical helix if its tangent vector Vi makes a
constant angle with a fixed direction U. In this work we give different
characterizations of such curves in terms of their curvatures.
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1. Introduction and statement of results

An helix in the Euclidean 3-space E® is a curve where the tangent lines
make a constant angle with a fixed direction. An helix curve is characterized by
the fact that the ratio x/7 is constant along the curve, where x and 7 are the
curvature and the torsion of «, respectively. Helices are well known curves in
classical differential geometry of space curves [4] and we refer to the reader for
recent works on this type of curves [2][7]. Recently, Magden [3] have introduced
the concept of cylindrical helix in the Euclidean 4-space E*, saying that the
tangent lines make a constant angle with a fixed directions. He characterizes a
cylindrical helix in E* if and only if the function

K12 1 /k1\"\2
o &) (&)
K2 K3 \R2
is constant along the curve, where k3 and k4 are the third and the fourth
curvature of the the curve. See also [5].
In this work we consider the generalization of the concept of general helices

in the Euclidean n-space E". Let o : I C R — E” be an arbitrary curve in
E". Recall that the curve « is said to be of unit speed (or parameterized by
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the arc-length function s) if (a/(s),a/(s)) = 1, where {,) is the standard scalar
product in the Euclidean space E" given by

(X, V)= ziy,
=1

for each X = (z1,...,2,), Y = (y1,...,yn) € E"™.

Let {V1(s),..., V,(s)} be the moving frame along «, where the vectors V;
are mutually orthogonal vectors satisfying (V;, V;) = 1. The Frenet equations
for a are given by ([2])

Vll 0 K1 0 0 0 0 V1

VIQ —K1 0 Ko 0 0 0 V2

( ) Vé 0 —k2 0 R3 - 0 0 V3
2 : = : . o : : .

Vi, 0 0 o o -- 0 Kn—1 V.1

L VL, ] Lo 0 0 0 - =k 0 || V,

Recall that the functions k;(s) are called the i-th curvatures of . If ,,—1(s) =
0 for any s € I, then V,(s) is a constant vector V' and the curve « lies in an
(n — 1)-dimensional affine subspace orthogonal to V', which is isometric to the
Euclidean (n — 1)-space E"~!. We will assume throughout this work that all
the curvatures satisty k;(s) Z0 forany s€ I, 1 <i<n-—1.

Definition 1.1. A unit speed curve o : I — E" is called cylindrical heliz if its
tangent vector V1 makes a constant angle with o fixed direction U.

Our main result in this work is the following characterization of cylindrical
helices in the Euclidean n-space E".

Theorem 1.2. Let o : I — E™ be a unit speed curve in E". Define the functions

(3 Gi=1 G=0, Gi= —[maCiat @] 3<i<n

Ri—1

Then « is a cylindrical helix if and only if the function
n

4) Y Gi=cC

i=3
is constant. Moreover, the constant C = tan®0, 0 being the angle that makes
V1 with the fized direction U that determines «.

This theorem generalizes in arbitrary dimensions what happens for n = 3

and n = 4, namely: if n = 3, @) writes G2 = k1/k2 = r/7 and for n = 4, @)
agrees with ().
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2. Proof of Theorem

Let « be a unit speed curve in E™. Assume that « is a cylindrical helix curve.
Let U be the direction with which V1 makes a constant angle 8 and, without loss
of generality, we suppose that (U,U) = 1. Consider the differentiable functions
Qs 1<:< n,

(5) U=

%

a;(s) Vi(s), sel,
1

n

that is,

Then the function aq(s) = (V1(s),U) is constant, and it agrees with cos6:
(6) ay(s) = (V1,U) = cos b

for any s. By differentiating (@] with respect to s and using the Frenet formula
@) we have
ai(s) = k1 (Va,U) = k1 as = 0.

Then as = 0 and therefore U lies in the subspace Sp(V1, Vs, ..., V,). Because
the vector field U is constant, a differentiation in (@), together with ([2)) gives
the following ordinary differential equation system

K1G1 — K203 =0
aly — Kaay =
a) + K3az — Kaas =0
(7)
/ - -0
Ay 1 + Rn—20n—2 Rp—1Qn =
ay, + Kp—10n-1 =0

Define the functions G; = G;(s) as follows
(8) a;(s) = Gi(s)ar, 3<i<n.

We point out that a; # 0: on the contrary, (@) gives a; = 0, for 3 < i < n and
so, U = 0: contradiction. The first (n — 2)-equations in (@) lead to

K1
Gy="L
3 Hf
Gy = —G
f<013
G5 = — [ raGs + G
9) , i
' 1
anl = Fon—2 |:/€n73Gn73 + G/n—2:|
1
Gn - P |:"3n72Gn72 + G/n_l]
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The last equation of (@) leads to the following condition;
(10) G;z 4+ Kkn_1Gn_1 = 0.
We do the change of variables:

1) = [ wnrldn, =)

In particular, from the last equation of (@), we have

Kn—2 (t)
Rnp—1 (t)

() = Galt) = (2228 ) Gaa().

As a consequence, if « is a cylindrical helix, substituting the equation ([I0) in
the last equation yields

G (1) + G (1) = Tn=2()Cna()

anl(t)
The general solution of this equation is
nn—Q(t)Gn—Q(t) .
11 ) =A— | ——————~ tdt t
(11) G (1) ( / o1 (D sin )cos
'%an(t)anQ(t) .
B _ tdt t
+ ( +/ o1 (6) cos ) sint,

where A and B are arbitrary constants. Then (1) takes the following form
(12)

Gn(s) :(A —f {/{n,g(s)Gn,g(s) sinf/fn,l(s)ds] ds) cos [ fin_1(s)ds
+(B + [ [Hn_Q(S)Gn_Q(S) cosfnn_l(s)ds} ds) sin [ Kp—1(s)ds.

From (I0), the function G,,_; is given by
(13)

Gn_1(s) :(A —f [nn,z(s)Gn,g(s) sinfffn,l(s)ds} ds) sin [ Kkn_1(s)ds
—(B + [ [Kn_Q(S)Gn_Q(S) cosff@n_l(s)ds} ds) cos [ Kn—1(s)ds.

From equation (@), we have
n—2
Z GG, = G3r3Gs+ Gy (%46'5 - HsG?,) +...
i=3

+ Gas (nn_gc;n_z _ Iin_4Gn_4) F oG,

= Gp_9 (G/n_g + Kn—3Gn—3)

= Kn—QGn—2G7L—1
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Substituting ([I3]) in the above equation and integrate it, we have

U Z;:; G? =C- (A —f [Hn_Q(S)Gn_Q(S) sin [ nn_ldsl ds)2
(14) —(B + [ [mn_Q(s)Gn_Q(s) COSfIin_ldS:| ds) ,

where C' is a constant of integration. From Equations (I2)) and (I3]), we have
2
G2+ G2, = (A —f |:K,n_2(8)Gn_2(S) sinfﬁn_lds} ds)
2
—|—(B + [ {Fan,g(s)Gn,g(s) cosfmn,lds} ds) ,

It follows from (I4)) and (3] that

(15)

=C.
i=3
Moreover, the constant C' is calculated as follows. From (8], together with the
(n — 2)-equations (@), we have
n 2

1« l—a
— 2 _ 2_+701 2
C= G3 =z E a; = = tan” 0,
3 =3

2
ay

1=
where we have used ([2) and the fact that U is a unit vector field.

We do the converse of Theorem. Assume that the condition (0 is satisfied
for a curve a. Let § € R be so that C' = tan?#. Define the unit vector U by

UZCOSH[Vl—i—i GiVi]
i=3

au
By taking into account (@), a differentiation of U gives that — = 0, which

S
means that U is a constant vector field. On the other hand, the scalar product
between the unit tangent vector field Vi with U is

(Vi(s),U) = cos 0.

Thus « is a cylindrical helix curve. This finishes the proof of Theorem
As a direct consequence of the proof, we generalize Theorem [[.2in Minkowski
space and for timelike curves.

Theorem 2.1. Let EY be the Minkowski n-dimensional space and let o« : [ —
ET be a unit speed timelike curve. Then « is a cylindrical helix if and only if
the function Y. o G? is constant, where the functions G; are defined as in (3).

Proof. The proof is carried the same steps as above, and we omit the details.
We only point out that the fact that « is timelike means that V1(s) = o/(s) is
a timelike vector field. The other V; in the Frenet frame, 2 < i < n, are unit
spacelike vectors, and the second equation in (2)) changes to Vj, = k1 V1 + k2 V3
(I ). O
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3. Further characterizations of cylindrical helices

In this section we present new characterizations of a cylindrical helix in E".
The first one is a consequence of Theorem

Theorem 3.1. Let « : I C R — E" be a unit speed curve in the Euclidean

space E™. Then o is a cylindrical heliz if and only if there exists a C2-function
G (8) such that

(16) G, = ! Kn—2Gn_o + G;zfl] ,

Rn—1

dG,
ds

—tin—1(8)Gn-1(s),
where

G1=1,G2=0,G; =

|:Hi72Gi72 +G,_q],3<i<n-1.
Ri—1

Proof. Let now assume that « is a cylindrical helix. By using Theorem and
by the differentiation of the (constant) function given in (), we obtain

0 = zn:Gi a
=3

= (G3k3Gy+ Gy (H4G5 — HgGg) + ...

et G (Kn_lan - mn_QGn_Q) + GG,

G (G; + nn,lGn,l).

This shows ([I6). Conversely, if ([IG]) holds, we define a vector field U by
U= COSQ|:V1 +Z G1V1i|
i=3

By the Frenet equations (2), % =0, and so, U is constant. On the other hand,
(V1(s),U) = cosf is constant, and this means that « is a cylindrical helix. O

At the end, we give an integral characterization of a cylindrical helix.

Theorem 3.2. Let a : I C R — E" be a unit speed curve in the Euclidean
space E". Then a is a cylindrical helix if and only if the following condition is
satisfied

Gn_1(s) = (A —f [nn,an,g Sinfmn,lds} ds) sin [* k-1 (u)du

(17) —(B +f [Iin_an—2 cosffﬂn_1d5} ds) cos fs K1 (u)du.

for some constants A and B.
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Proof. Suppose that « is a cylindrical helix. By using Theorem Bl let define
m(s) and n(s) by

66) = [ ramaw)d

m(s) = Gn(s)cosd+ Gp_1(s)sing + [ kp_2Gp_asingds,

(18) n(s) = Gp(s)sing — Gp_1(s) cos ¢ — [ kp_2Gy_2cos ¢ ds.

If we differentiate equations (I8]) with respect to s, and taking into account of

dm dn
([I7) and (I8), we obtain e =0 and 7= = 0. Therefore, there exist constants

A and B such that m(s) = A and n(s) = B. By substituting into ([I8) and
solving the resulting equations for G, _1(s), we get

Gn-1(s) = (A—/ Kn—2Gn_o sinqzﬁds) sin ¢p— (B+/ Kn—2Gn_o cosquS) cos @.

Conversely, suppose that () holds. In order to apply Theorem Bl we
define G,,(s) by

Gn(s) = (A —/ Kn—2Gp_o Sin¢ds> cos ¢ + (B —|—/ Kn—2Grn_o cosd)ds) sin ¢.

with ¢(s) = [ kn_1(u)du. A direct differentiation of (I7) gives
an_l = K:n—lGn - K:n—2Gn—2-

This shows the left condition in ([IG]). Moreover, a straightforward computation
leads to G!,(s) = —kp—1G,—1, which finishes the proof. O

We end this section with a characterization of cylindrical helices only in
terms of the curvatures of a. From the definitions of G; in (3], one can express
the functions G; in terms of GG3 and the curvatures of « as follows:

(19) G =Y 4G, 3<j<n,
where »

ay) = dd?3, G =Gy = %
Then

Gy = ngng = A41Gg + A40Gs, Ay = I€3_1,A40 =0
Gs = AsaGY + As1 Gl + A5G, Asa = kg " Agr, Asy = kg P Aly, Aso = Ky Pk

and so on. Define the functions Aj; = A;j(s), 3 < j, 0 <4 < j—3 as the
following:
Azg=1,A40=0

AjO = K;}lKj_QA(j,Q)Q + ’4’3’_71114/(_7’—1)07 5 S] S n
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Ajimg) = R R gk Ry 7f01"/4 <jsmn )
Aj(j,4) = mjill (ﬁjEQHjES c Ry 1,‘@3 1) + 5]111/1;12 (/1;13 ... Ii;llﬁgl)
+ ...+ /@;_11/@;_12/@;_13 .. /@Zl (Iig_l),,
for5<j5<n
Aji = KRj-2 A ay K (AI(] i T A(j,l)(i,l))

f0r1§2§]—5,6§]§n

and Aj; = 0 otherwise.
The second equation of (I6]) leads the following condition:

(20) +Z [A —|—An(l 1) + Kp— 1A(n 1 }G(z
+<An0 + KznflA(n—l)O)G:S = 0, n > 3.
As a consequence of (20)) and Theorem [[L2] we have the following corollary.

Corollary 3.3. Let o : I — E" be a unit speed curve in E". The next state-
ments are equivalent:

1. « is a cylindrical heliz.

0 :An<n—3>(%)(n_2)+ (An(n 3) T Anin- 4>) Hl)(n ’

R2
n— @
+Z 4|:Al +‘An(l 1) + Kn— 1A(n 1)](}{, )
2
K1
Al n-1A(n_ — ), > 3.
+( no T Kn—14( 1)0)(;{2) n =z

2.

3. The function

S S S () () =0

K2

is constant, j —i >3, j —k > 3.
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