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A NEW CHARACTERIZATION OF PSL2(7)1

Rulin Shen2

Abstract. Let G be a group and τe(G) the set of numbers of elements of
G of the same order. In this note it is proved that a group G is isomorphic
to PSL2(7) if and only if τe(G) = {1, 21, 56, 42, 48}.
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1. Introduction

Let G be a group. The set of orders of elements of G and one of numbers of
elements of G of the same order are denoted by πe(G) and τe(G), respectively.
Let π(G) be the set of prime divisors of |G| if G is finite. In 1980s, J.G.
Thompson posed a very interesting problem related to algebraic number fields
as follows (see Problem 12.37 of [1]),

Problem. Let T (G) = {(n, sn) | n ∈ πe(G) and sn ∈ τe(G)}, where sn is the
number of elements with order n. Suppose that T (G) = T (H). If G is solvable,
is it true that H is also necessarily solvable?

In the paper [2], W. Shi studied the case of the simple group PSL2(7) of
above Thompson Problem. Even if the restricted condition τe(G) is removed,
he also proves a strong result that a finite group G is isomorphic to PSL2(7)
if and only if πe(G) = {1, 2, 3, 4, 7}. Can the word ‘finite’ of this result be
removed? But it still remains an open research problem (see Problem 16.57 of
[1]). As this motivation, we will study on the influence of the condition τe(G)
on the group structure. In this note we also get a parallel result as Shi’s for the
case of PSL2(7). Also, the word ‘finite’ can be left out. Our main result is the
following.

Theorem. A group G is isomorphic to PSL2(7) if and only if τe(G) = {1, 21,
56, 42, 48}.

Before starting the proof of theorem, we will mention a well-known result of
Frobenius (see [3]), which is quoted frequently in the sequel.

Lemma. Let G be a finite group and m be a positive integer dividing |G|. If
Lm(G) = {g ∈ G | gm = 1}, then m | |Lm(G)|.
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2. Proof of Theorem

Let τe(G) be the set {1, 21, 56, 42, 48} and sm number of elements of order
m. We divide it into seven assertions to complete the proof.

1. G is finite.

G is obvious a periodic group. Since each prime divisor p of |G| is less than
56, we have |π(G)| < 56. Also, if ps ∈ πe(G), then the number of elements of
order ps is a multiple of φ(ps), so we have φ(ps) < 56 (where φ(n) Euler totient
function), this can lead to |πe(G)| < ∞. Therefore, |G| < 56|πe(G)|.

2. π(G) ⊆ {2, 3, 7}.

Note that sm = kφ(m), where k is the number of cyclic subgroups of order
m and φ(m) Euler totient function. If m > 2, then φ(m) is always even, so we
have s2 = 21 and 2 ∈ π(G). Obviously, 5 does not belong to π(G). Otherwise, 5
divides 1+s5 for some s5 ∈ {56, 42, 48} by the Lemma, it is impossible. Suppose
that there is a prime p > 7 and p ∈ π(G). Use the same result of the Lemma,
and we will get p | 1+ sp for some sp ∈ {56, 42, 48}, thus a possible value of p is
43. On the other hand, if 43 ∈ π(G), then G has no order 86 element. In fact,
if 86 ∈ πe(G), then 86 | 1 + s2 + s43 + s86. Also s86 = 42 since φ(86) | s86, thus
86 | 106, contradicts. Now we consider the subgroup N of order 43. Clearly, it is
normal in G. Let t be an element of order 2, then the group N〈t〉 is Frobenius,
which has 43 elements of order 2 exactly. It contradicts the fact that s2 = 21.
Also, if 3 or 7 is in π(G), again by the Lemma it is easy to see s3 = 56 and
s7 = 48.

3. 21 is not in πe(G), and if 3 | |G|, then 3‖ |G|.

If 21 ∈ πe(G), then s21 = 48 since φ(21) = 12. By the Lemma, we have
21 | 1 + s3 + s7 + s21 = 156, it is impossible. Now, consider Sylow 3-subgroup
P3 acts fixed point freely on the set of elements of order 7, and we will get
|P3| | s7(= 48). Hence we must have |P3| = 3. If 7 is not in π(G), then there
does not exist an element of order 27 since φ(27) = 18, which does not di-
vide one of 56, 42 and 48. If 9 ∈ πe(G), again by the Lemma, then we have
9 | 1 + s3 + s9 = 57 + s9, so s9 = 42. This can imply that the number of
3-elements of G is 1 + s3 + s9 = 99. Clearly, the Sylow 3-subgroup P3 of G
is not normal. Denote by k the number of Sylow 3-subgroups, and we will get
k ≡ 1(mod3). Let |P3| = 3n. Then the number of 3-elements l of G is not
less than 3n + (k − 1)(3n − 3n−1). Also if n ≥ 4, or n ≥ 3 and k > 4, then
l > 99, which is not possible. If n = 2 and k = 4, then l ≤ k(3n − 1) + 1 < 99,
which is also impossible. For the remaining case n = 3 and k = 4, we combine
4 Sylow 3-subgroups subject to l = 99, and then the only possibility is that
the order of intersection of every two Sylow 3-subgroup is 3. Since 9 ∈ πe(G)
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and 27 is not in, we must have P3
∼= Z3 × Z9, so the number of elements of

order 9 in every Sylow 3-subgroup P3 is 18. Thus the number of elements of
order 9 of G is 18 · 4 = 72, it contradicts the fact that s9 = 42. Therefore, 9 is
not in πe(G). Now, using the Lemma we will get |P3| | 1+s3 = 57, then |P3| = 3.

4. 4 ∈ πe(G) and s4 = 42.

If G has no order 4 element, then G has an element of order 6 or order 14.
Otherwise, |πe(G)| ≤ 4, it contradicts the facts that |πe(G)| ≥ 5. We consider
three cases.

(i) If 6 ∈ πe(G) and 14 is not in πe(G), since 6 | 1 + s2 + s3 + s6 = 78 + s6

for some s6 ∈ {56, 42, 48}, then s6 = 48. Also, since |πe(G)| ≥ 5, we must have
πe(G) = {1, 2, 3, 6, 7}, and hence |G| = 1+21+56+42+48 = 168. But 24 | |G|,
by the Lemma we have 24 | 1 + s2 + s3 + s6 = 126, it is a contradiction.

(ii) If 14 ∈ πe(G) and 6 is not in, since φ(14) = 6, then we have s14 = 42
or 48. In addition, since 14 | 1 + s2 + s7 + s14 = 70 + s14, we have s14 = 42.
Similarly, πe(G) = {1, 2, 3, 14, 7} and |G| = 168, then 24 | 1 + s2 + s3 = 78, a
contradiction.

(iii) If 6 and 14 are both in πe(G), then s6 = 48 and s14 = 42 by the above.
Similarly, we have πe(G) = {1, 2, 3, 6, 14, 7} and |G| = 216. But 9 | 216, it
contradicts the fact that 3‖ |G| in the assertion 3.

On collecting the results of (i) − (iii), we can draw a conclusion that 4 ∈
πe(G). Finally, using the Lemma, we get 4 | 1 + s2 + s4 = 22 + s4 for some
s4 ∈ {56, 42, 48}, hence s4 = 42.

5. 14 is not in πe(G).

If 14 ∈ πe(G), then we have s14 = 42 by above (ii) of assertion 4. More-
over, we claim that 28 does not belong to πe(G). In fact, if 28 ∈ πe(G),
then s28 = 48 since φ(28) = 12. By the result of Lemma we have 28 |
1 + s2 + s4 + s7 + s14 + s28 = 202, a contradiction. Also, since 28 | |G|, then by
the Lemma we have 28 | 1+s2+s4+s7+s14 = 154, which is also a contradiction.

6. |G| = 168 or 336.

Firstly, one claims that G is not a 2-group. Otherwise, if |G| = 2m, then
we can assume πe(G) = {1, 2, 22, · · · , 2t}. Since |πe(G)| ≥ 5, we have t ≥ 4. In
addition, since φ(2t) | s2t for s2t ∈ {56, 42, 48}, then we must have t ≤ 5. If t =
4, then the order of G is just 168, which contradicts the fact that |G| is a power
of 2. Also, if t = 5, then we have |G| = 360 + s2i for some s2i ∈ {56, 42, 48},
which also contradicts the fact that G is a 2-group.

Secondly, one claims that π(G) 6= {2, 7}. If not, assume that |G| = 2m7n

7 | |G|, then we consider the Sylow 7-subgroup P7 acts fixed point freely on
the set of elements of order 2, and thus we get |P7| | s2 = 21, then |P7| = 7.
Similarly, the Sylow 2-subgroup P2 acts fixed point freely on the set of the ones
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of order 7, then |P2| | s7 = 48, besides |G| ≥ 168, so we have |P2| = 24 or
23. On the other hand, since G has no element of order 14, we must have G
is a Frobenius group. But both the cases m = 3 and m = 4 do not lead to a
Frobenius group.

Finally, if π(G) = {2, 3} and |G| = 2m3n, then we can assume that πe(G) =
{1, 2, 22, · · · , 2t} ∪ {3, 2 · 3, 22 · 3, · · · , 2t · 3}, where 2 ≤ t ≤ 5 and m ≥ 2. Also,
since φ(25 · 3) does not divide one of 56, 42 and 48, we must have 5 ≤ |πe(G)| ≤
11. Next we assume that

|G| = 168 + 56k1 + 42k2 + 48k3

where 0 ≤ k1 + k2 + k3 ≤ 6. Then we get an equation

84 + 28k1 + 21k2 + 24k3 = 2m−13n.

It is easy to see 3 | k1 and 2 | k2. In addition, if i ≥ 3, then s2i and s2i−1·3 are
not equal to 42 since both φ(2i) and φ(2i−1 · 3) are divided by 4, so we have
k2 ≤ 1, and hence this leads to k2 = 0. It is not hard to work out that the
solutions of this equation are





k1 = 3
k3 = 2
m = 4
n = 3 .

Thus |G| = 2433 and |πe(G)| = 10. From the solution, we know that there
are 4 elements of πe(G) such that their number is 56. Assume that these orders
are m1, m2, m3 and m4, and we will get {m1,m2,m3,m4} ⊆ {6, 8, 12, 16, 24}
since 24‖ |G| and φ(mi) | 56 for 1 ≤ i ≤ 4. But if 16 ∈ πe(G), then the
Sylow 2-subgroup of G is cyclic, and hence the number of Sylow 2-subgroup n2

is s16/φ(16) = 7 or 6, which contradicts the facts that 7 is not in π(G) and
(2, n2) = 1. Hence {m1,m2, m3, m4} = {6, 8, 12, 24}, and then |πe(G)| = 8,
which contradicts the fact |πe(G)| = 10.

Therefore, by the above arguments we have |G| = 168 or 336.

7. G is isomorphic to PSL2(7).

Since G has no elements of order 14 and 21, these groups were described well,
which is close to so-called prime graph on π(G) with the following adjacency
relation: vertices p and q in π(G) are joined by edge if and only if pq ∈ πe(G)
(see [4]). The structure of groups with disconnected prime is due to Gruenberg
and Kegel, which is stated that if G is solvable with more than one prime graph
components, then G is either Frobenius or 2-Frobenius, i.e., G = ABC, where
A and AB are normal subgroups of G, AB and BC are Frobenius group with
kernel A, B and complements B, C respectively (see the Corollary of [4]). Now
we come back to our question. Clearly, G has a disconnected prime graph. It is
not hard to see that G is not Frobenius. Also, if G is a 2-Frobenius group, then
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G = ABC, where A,B and C are the same to the above. In [5], it is shown that
B is cyclic of odd order and C is cyclic (see Theorem 2 of [5]). Since AB and
BC are both Frobenius groups, we have |A| = 23, |B| = 7 and |C| = 3. Thus
A must be the unique Sylow 2-group of G since A is normal in G, and then the
number of 2-elements of G is 8, which contradicts the fact that s2 = 21.

If G is non-solvable and |G| = 336, suppose that N is a minimal normal
subgroup of G, then N is isomorphic to Z2 or PSL2(7). At the first case N must
be included in the central subgroup Z(G), this can imply that there is an element
of order 14, that is a contradiction. If N ∼= PSL2(7), note that CG(N) = 1
since the prime graph of G is disconnected, then G = G/CG(N) ≤ Aut(N).
But |Aut(PSL2(7))| = 336, so we have G ∼= Aut(PSL2(7)). Finally, we refer
to page 3 of Atlas [6], and find that Aut(PSL2(7)) has two conjugacy classes of
involutions, which contradicts the fact that s2 = 21. If G is non-solvable and
|G| = 168, then G is isomorphic to PSL2(7).
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