NOVI SAD J. MATH. Vol. 39, No. 1, 2009, 65-68

A NOTE ON RADICALS OF SEMINEAR-RINGS

Muhammad Zulfiqar¹

Abstract. We generalize a few results of [2, 6, 8] for radical classes of rings for radical classes of seminear-rings by using the construction for radical classes of seminear-rings.

AMS Mathematics Subject Classification (2000): 16Y60, 16W50

Key words and phrases: Seminear-ring, universal class, radical classes, semisimple classes, regular class, hereditary, upper radical, semisimple closure, k-ideal

1. Introduction and Preliminaries

V. G. Van Hoorn and B. Van Rootselaar [7] discussed general theory of seminearrings. The theory was further enriched by many authors (see [1,3,4,9,10]).

The construction of upper radicals classes was investigate in [8] for radical classes of rings. Here we generalize a few results of (see [2,6,8]) in the framework of seminearring which is quite different from ring theoretical approach discussed in (see [2,6,8]). In the following we shall be working within the class of all seminear-rings.

A set S, together with two binary operations '+' and '.', is called a seminear-ring if

(i) (S, +) is a semigroup;

(ii) (S, .) is a semigroup;

(iii) $(s+s')s'' = ss'' + s's'', \forall s, s', s'' \in S.$

Upper radical classes for seminear-rings can be constructed similar to the construction of upper radicals for rings (see [2,6,8]). If S is a seminear-ring then H(S), K(S)denote the set of all homomorphic images of S and the set of all k-semi-ideals of S respectively. If I is an k-semi-ideals of S, then we denote I $\leq_k S$. Throughout this we used the k-semi-ideal, we generalized a many results of R. Wiegandt ([8], see also [2,6]).

A radical class is defined as follows:

A non-empty subclass ρ of universal class of seminear-rings ω is called a radical class if;

 $(R_1) \rho$ is homomorphically closed.

 (R_2) If $S \notin \rho$, then, there exists $K \in K(S)$ such that $K(S/K) \cap \rho = 0$ and $K \neq S$.

Henceforth, whenever ρ is used, it represents a radical class of seminear-rings, unless mentioned otherwise. For undefined terms of seminear-rings we may refer to [1,3,4,5,6,7,9,10,11].

¹Current address: Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan Permanent address: Department of Mathematics, Govt. College University Lahore, Pakistan e-mail: mzulfiqarshafi@hotmail.com

2. Radical and Semisimple Classes

The following definition is taken from D. M. Olson and T. L. Jenksins [5]. The maximal ρ -semi-ideal of a seminear-ring will be called the ρ -radical of S and designated $\rho(S)$. If $\rho(S) = 0$, S is called semisimple.

The semisimple class $S\rho$ of a radical class ρ is defined as the class of all seminearrings having zero ρ -radical.

Definition 2.1. Let $S \subseteq \omega$; S is said to be a semisimple class of seminear-ring, if the following two axioms are satisfied

 (S_1) S \in S \Rightarrow HI \cap S \neq 0, \forall (0 \neq I) \in K(S)

 (S_2) Let $S \in \omega$ such that $HI \cap S \neq 0, \forall (I \neq 0) \leq_k S$, then $S \in S$.

A subclass of seminear-rings ω satisfying the condition (S_1) is called a regular class.

Definition 2.2. A radical class ρ of seminear-ring is called hereditary if ρ is closed under semi-ideals, i.e. if $K(S) \subseteq \rho$, for all $S \in \rho$.

Observation 2.3. ρ is hereditary if and only if $K(S) \subseteq \rho$, for all $S \in \rho$.

In the case of seminear-rings one can easily prove all the standard results concerning radical classes, upper radicals, semisimple classes and semisimple closure. Here we mention only a few of them, which can be obtained on the lines of rings theoretical approach.

Proposition 2.4. Let ρ be a radical class of seminear-ring and $S\rho = \{S \in \omega : \rho(S) = 0\}$. Then $S\rho$ is a semisimple class of seminear-ring.

Theorem 2.5. Let M be a regular class of seminear-ring. Define

 $\bar{M} = \{ S \in \omega : HI \cap M \neq 0, \forall (I \neq 0) \leq_k S \}$

Then class \overline{M} is a semisimple class.

Theorem 2.6. Let M of seminear-rings be a regular class of seminear-ring, If

$$UM = \{ S \in \omega : H(S) \cap M = 0 \},\$$

then the class UM is a radical class and is called the upper radical class determined by the class M.

Theorem 2.7. Every semisimple class S is the semisimple class of its upper radical class, i.e. S = S(US).

Colorallary 2.8. Every semisimple class of seminear-rings is hereditary.

Colorallary 2.9. Let M be a regular class of seminear-rings, then $SUM = SU\overline{M} = \overline{M}$.

Colorallary 2.10. Let M be a regular class of seminear-ring. Then

$$UM = \{S \in \omega : H(S) \cap M = 0\}$$

is hereditary if and only if M satisfies the condition:

(**) Let $(I \neq 0) \in K(S)$ such that $HI \cap M \neq 0$, then $H(S) \cap M \neq 0$.

The ring theoretical version of the following theorem was proved by N. Divinsky [2]. Here we generalize it in the framework of seminear-rings. The proof of the following theorem is quite different from [2].

Theorem 2.11. A class S is a semisimple class of seminear-ring if and only if it satisfies (S^*) If $S \in S$, then $HI \cap S \neq 0, \forall (I \neq 0) \in K(S)$

(S**) Let $S \in \omega$, if $HI \cap S \neq 0$, $\forall (I \neq 0) \in K(S)$, then $S \in S$.

Proof. Assume that S is a semisimple class of seminear-ring, we have to establish (S^*) and (S^{**}) .

(S*) Let $S \in S$. As S is hereditary, therefore $K(S) \subseteq S$ (by definition 2.2). Let $(I \neq 0) \in K(S)$, then $I \in S$. Since $I \in HI$ (by identity mapping). This shows that $(0 \neq I) \in HI \cap S$ and hence $HI \cap S \neq 0$, for all $(0 \neq I) \in K(S)$. This established the (S*).

(S**) Let $S \in \omega$, $\operatorname{HI} \cap S \neq 0$, $\forall (I \neq 0) \in K(S)$. Since $K_1(S) \subseteq K(S)$. This shows that $\operatorname{HI} \cap S \neq 0$, $\forall (I \neq 0) \in K(S)$. As S is semisimple, therefore by S_2 , we have $S \in S$.

Conversely, assume that (S^*) and (S^{**}) are valid for S.

 (S_1) Let $S \in S$, $(I \neq 0) \in K_1(S)$. Since $K_1(S) \subseteq K(S)$. By (S*), we have HI $\cap S \neq 0, \forall (I \neq 0) \in K(S)$. Therefore S_1 is satisfied.

 $(S_2) \quad \text{Let } S \in \omega, \text{HI} \cap S \neq 0, \forall (I \neq 0) \in K(S)$ (*)

We will show that $S \in S$. Suppose on the contrary $S \notin S = S(US) = S\rho$ where $\rho = US$ and hence $S \notin S\rho$. Therefore, $\rho(S) \neq 0$. Let $I = \rho(S)$. Now $I \in K(S)$, $I \in \rho$ imply that $HI \subseteq \rho$ (ρ is homorphically closed) $HI \cap S \subseteq \rho \cap S\rho = 0$ ($\therefore S = S(US) = S\rho$ (by Theorem 2.7)). This implies that $H(\rho(S)) \cap S = 0$ ($\rho(S) \neq 0$) $\in K(S)$. This contradicts (*) and hence $S \in S$. Thus (S_2) is satisfied. Consequently, S is a semisimple class (c.f. Definition 2.1). This completes the proof. \Box

The following theorem provides a necessary and sufficient condition for the given radical class ρ of seminear-ring to satisfy the upper radicals associated to a certain class of seminear-rings, which is indeed an extension of [8].

Theorem 2.12. Let M be a regular class of seminear-ring. The radical class UM hereditary if and only if the following condition is satisfied.

$$(***) S \in UM \Leftrightarrow HI \cap \overline{M} = 0, \forall (I \neq 0) \in K(S).$$

Proof. Suppose the upper radical class UM is hereditary. Let $S \in UM$, $(I \neq 0) \subseteq K(S)$. Since $U\overline{M}$ is hereditary, therefore $K(S) \subseteq UM$ (by Observation 2.3). This implies that $(I \neq 0) \in K(S)$ and hence $I \in UM = U\overline{M}$. Consequently, we have $HI \cap \overline{M} = 0$. Conversely, assume that UM satisfies the condition (***), we will show that UM is hereditary. Let $I \leq_k S$. If I = 0, then $I \in UM$. Suppose $I \neq 0$, $I \in K_1(S) \subseteq K(S)$, then by condition (***), we have $HI \cap \overline{M} = 0$. This implies that $I \in U\overline{M}$ and hence $I \in UM$. This shows that UM is hereditary.

Acknowledgement

The author thank the referee for his useful comments and suggestions for the improvement of the paper.

References

- [1] Birkenmeier, G. F., Seminear-rings and nearrings, induced by the circle operation. preprint, 1989.
- [2] Divinsky, N., Duality between radical and semisimple classes of associative rings. Scripta Math. 29 (1973), 409-416.
- [3] Golan, J. S., The Theory of Semirings With Applications in Mathematics and Theoretical Computer Science, Pitman Monographs and Surveys in Pure and Applied Maths. 54, New York: Longman, 1986.
- [4] Hebisch, U., and Weinert, H. J., Semirings Algebraic Theory and Applications in Computer Science, volume 5. Singapore, 1998.
- [5] Olson, D. M., Jenksins, T. L., Radical theory for hemirings. J. of Nat. Sciences and Math. 23 (1983), 23-32.
- [6] Szasz, F. A., Radicals of Rings. Mathematical Institute Hungarian Academy of Sciences, 1981.
- [7] Van Hoorn, V. G., Van Rootselaar, B., Fundamental notions in the theory of seminerarings. Compositio Math. 18 (1966), 65-78.
- [8] Wiegandt, R., Radical and Semisimple Classes of Rings, Queens University, Ontarto, Canada, 1974.
- [9] Weinert, H. J., Seminear-rings, seminearfield and their semigroup-theoretical background. Semigroup Forum 24 (1982), 231-254.
- [10] Weinert, H. J., Extensions of seminear-rings by semigroups of right quotients. Lect. Notes Math. 998 (1983), 412-486.
- [11] Yusuf, S. M., Shabir, M., Radical classes and semisimple classes for hemiring. Studia Sci. Mathematicarum Hungarica 23 (1988), 231-235.

Received by the editors July 12, 2008

68