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A CLASS OF Z-METACYCLIC GROUPS INVOLVING
THE LUCAS NUMBERS

H. Doostidl, K. Ahmadidelir®

Abstract. The sequence {g;};2; is the sequence of Lucas numbers
g1 =2,92 =1,gi42 = gi+1 + gi, (1 > 1), and £ > 2 is an integer. In this
paper we consider the group G(¢) with an efficient presentation (z,y |

2t =yt = xyx[é]y[%]) where, [z] is used for the integer part of a real z,

and prove that G(¢) is finite of order

U2) (1 433),  £=0 or +2(mod 6),
IG(O)| = q 20(t+1)ge1, £=3 (mod 6),
L+ 1)geyr, £ = +1(mod 6).
Moreover, if £ = £4 or 8 or £12 or 20(mod 40), or £ = £1(mod 6)

then, G(¢) is Z-metacyclic ( G'(¢) and % are cyclic).
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1. Introduction

A finitely presented group G is said to have deficiency k if k is the largest
integer such that G can be presented by m generators and m — k relations.
The deficiency zero groups are interesting to be considered for their finiteness
and their structures. A considerable effort has, over the years, been put into
presenting infinite classes of finite groups. For a short survey on these groups one
may consider the articles [B] [16], 20] 2] 22] (for the cyclic, metacyclic and some
related groups), the articles [4], [IT] 19, 24] (for the linear groups), the articles
[7, 8, @ 12}, 14} [15] (for the soluble groups) and the articles [3], [6l 10} 13} 17, 18]
for some other classes of deficiency zero groups of interesting orders and various
structures. In particular, Wiegold ([23]) considers the deficiency zero groups

G=(z,ylz' =y™ =w(z,y))

where, w is a word on the generators z and y. Since the subgroup (z*) is
a central subgroup of G then G is finite if and only if the groups G/G’ and
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G/(x*) are finite. In this paper we consider the case when w(z,y) = zyz"y*+tm™
where ¢, m,n and k are integers > 2, that is, the groups

G(t,m,n, k) = (z,y | 2" = y™ = zyz"y"*™), ((,m,n, k> 2).

It follows readily that the group G(¢,m,n,k) is finite if and only if the group
G(t,m,n, k) = G,m,n,k)/{z") is finite, for, the commutator quotient of
G(€,m,n, k) is finite.

A simple calculation shows that the group G(¢,m,n, k) is cyclic if at least
three of the four parameters £, m,n and k, are equal, so we suppose that at most

two parameters are equal and then there are the following cases:
G, l,n,k),Gl,m, L k),Gl,m,m k), G,m,n,L),G(l,m,n,m),GL,m,n,n).

The aim of this paper is to study two subclasses of the groups G(¢,¢,n, k).
Some of them are Z-metacyclic groups (the groups with the cyclic commutator
subgroup and cyclic commutator quotient group). Sections 2 and 3 are devoted
to the study of the groups

AERE

for every integer ¢ > 2.

Our notations are fairly standard, [z] is used for the integer part of a real z,
we denote 'y~ lzy by [r,y] and y~lzy by 2¥, for elements x and y of a group.
The main tools used in this investigation are the Todd-Coxeter coset enumer-
ation algorithm (see [3] for example) and the modification to this algorithm
described in [I] and [2].

2. The groups G((,/, £, %), (¢ is even)

1272

For every even integer ¢ > 2 let G1(¢) = G(¢,¢, g, g), then the subgroup
Hy = (z"tyx=t:i=0,1,...,20 — 1) of G1(¥) is of index 2/, for, we may define
20 cosets as 1 = Hy, and iz =i+ 1, (¢ = 1,2,...,2¢ — 1) and a simple coset
enumeration yields | G1(¢) : Hy |= 2¢. We now give the main results of this

section:

Lemma 2.1. For every even value of £ > 2 the group Hy has a presentation
isomorphic to
(a1,a2 | a1, a0] = 1,af = ag, a5 = aj),

4 £ £
__ 1432 __ 043432 _ 3447432
where, o = 2=, 3 = == and y = ==

Proposition 2.2. For every even integer £ > 2, G1({) is finite of order @(lJr

33) Moreover, it is a Z-metacyclic group only if £ = +4 or 8 or £12 or 20(mod
40).

Proof of Lemma 2.1. Consider

G1(0) = (z,yla’ = ¢, ayziy?)
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where, £ > 2. Rename the generators of H; as a; = 2y, as = 22y~ ", ..., a9 =
x?yx=2*1. By the above comments H; is of index 2¢ in G;(¢) and for using
the Modified Todd-Coxeter algorithm (in the form given in [1]) we identify the
number of a coset of H; and its representative. So, by defining the 2¢ cosets as

l=H, la=2 22=3,...,(20— 1)z = 2,

ley =a;.1 =2y=a;.1

lz2yz~! = as.1 = 3y = ag.2

L2 lys =242 = 4901 = (20)y = age.(20 — 1).

lzfy=t =1 = 1y = a;hagly . azt, .(20).

Since then, the relation 1z2¢yz—2¢+1

=1 yields
<2€)$ = a2¢—1G2¢—-3 ..-0p_1 d.

We may now summarize our calculations in the following monitor table, for
more clarity:

cosets x Y

1 2 ae_-&laz_-&z . a;el_l .(20)
2 3 ai.l

3 4 (12.2

20 —1 20 (12[,1.(21€ — 2)

20 ag¢—102¢—3 ...0Ap—_1 1 ay.(?f — 1)

Considering all of the relations

L

ixe = iz/,ixyg;ﬁy% =i, 1i=1,2,...,2¢

will give us a presentation for H;. In details, the relations iz = iy¢, i =2,...,¢
yield
aeyj =aj, (j=1,2,....,0-1),

and using these results and the relations iz’ = iy*, (i =/£¢+1,...,2¢), give us
the new relations

R;=[A,a;a;-1...a20q] =1, (1=1,2,...,0—1),

where, A = agag_1 ...azaza;. To get the other relations of the subgroup Hj,
consider z'a:yx%yg =1, for every i =1,2,...,f — 1. Then we get the relations:
S; = afai+%_1ai+%_2...ai+1 =1, i=1,2,...,0-1),

and finally, the relation Ko:yzgyg = { gives us the relation

Sy = a?agfla%d...agal =1
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for the subgroup H; (the other derived relations by the relations ixyx%yg =
i, i=£+1,...,2¢ are, indeed, the redundant or the trivial relations in H;. So,
H, has a preliminary presentation isomorphic to

H1:<a1,...,ag‘Sg:Ri:Si:]., Z':].,Q,...,ff].f

To simplify this presentation we show first that [a;, as] = 1 holds in H;. The
. . -1
relations Sgﬂ =1 and Sy = 1 may be rewritten as apas_1 . .. Agip0L g = a%+1

and agas ;... aza3 respectively. So

-1
:aZ
ERES

2
1---0a305.

Lo
This relation together with the relation S; = 1 yields agap_1 . .. agyy = afzag,
a fairly simple calculation now gives us the relation [a1, as] = 1, by considering
Ry =1

By adding this relation to those of H; we are now able to calculate the
generators as, a4,...,a¢ in terms of a; and as, and then we can eliminate
them. Indeed, a fairly tedious calculation yields

3_3k71 _l+3k71
ak—af 2 ay * 2, k_374a 7%7
3, 3k—t 13kt
ak+§:af Poay? P, k=1,2,...,3,
and we get the desired presentation for H;. ]

A
2

£ £

5—, B = e+3z-3§ and v = W. For
every even integer ¢ there are two cases: £ — 2 is not divisible by 8 or £ — 2 is
divisible by 8. In the first case «, § and -y are pairwise co-primes, however the
highest common factor of every pair of them is 2 in the second case. In the first
case H; is a cyclic group (one may consider the subgroup K7 = (a;) of H; to
show that | Hy : K |= 1) and then, | Hy |= (1 + £)(1 + 32. For the second
case we consider the subgroup Ly = (a1, a%) of H; which is of index 2 in H; and
will be presented as follows, by letting X = a; and Y = a3:

Proof of Proposition 2.2. Let a = 1£3

Li=(X,Y|[X,Y]=1,X*=Y% X" =Y?).

Since ¢ = 2 (mod 8) then hcef(%,g) = h.c.f.(’y,g) =1 aend L, is a cyclic
group of order (14 £)(1+3%), i.e;; | Hy |= (1 + £)(1+ 32). Consequently,
| G1(0) |= 20 x 1(1 + £)(1 4 3%), as desired.

To complete the proof let ¢ = 40g £ 4. Then by the above results | G} (¢) |=

£
1432

== and also

Gl(g) _ { Zg X Zz(z+2), (=2 (Il’lOd 4),
G (0) Zo(e+2)5 ¢ =0 (mod 4),
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and G (0) = Zs x Z; where, t = 95~1 — 952 4 953 ... _ 9 4 1. However,
h.c.f(t,5) = h.c.f.(£,5) = h.c.f.(10g£1,5) = 1 shows that G (¢) is cyclic. The
same proof carries over the cases ¢ = 40q + 8, ¢ = 40g + 12 and ¢ = 40qg + 20. O

3. The groups G(/,/, K_Tl, £1) (¢ is odd)

2

For every odd integer ¢ > 3 let Ga(£) = G((,¢, 5%, 552). The sequences of

Fibonacci and Lucas numbers {f;}32, and {g;}5°, will be used in this section,
which are defined as follows:

fo=1, fixo = fix1 + fi, (1>1),
G =2,92=1,gi42 = giy1 +gi, (i >1),
and the main result of this section is:

Proposition 3.1. For every odd integer £ > 3, the group Go(¢) is finite and

| Ga(0) |= 20004+ 1)ger1, £=3 (mod6),
2TV 04 Dgeyr,  €==+1(mod 6),

Moreover, this group is Z-metacyclic only if £ = +1(mod 6).
To prove this proposition we first prove some preliminaries.

Lemma 3.2. For every odd value of £ > 3, the relation z**‘“t1) = 1 holds in
Ga(0).

Proof. The second relation of
Go(t) = (z,y | 2’ =yl ayz =y T =1)

is equivalent to (%) = y%xy and squaring both sides yields y% xy% TY =
=1 or
)
xya:_l = y_(HTl)x_ly_(%)x_z.
This may be reduced to

-1 —(), 120, 0, —(52)

€ Ty 2
for, z* and y* are central elements (because of the relation 2 = y*.) The last
relation will be reduced to

-1 7(“71):57172@”71
(by substituting y* for z¢.)

Raising both sides of the last relation to the power £ and considering z¢ = y*
once again, we get ¢ = x ¢ or 22+ = 1 as desired. O

Finding the order of G3(¢) is possible by getting a suitable quotient group
of Go({). To do this we proceed as follows:
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First we show that z¢, as an element of G(¢) has order £+ 1 or 2(¢ + 1), if
£ = +1(mod 6) or £ = 3(mod 6), respectively. Let £ = £1(mod 6) and consider

the subgroup (z,z’yx="! : 4 = 1,2,...,£ —1). An easy coset enumeration
shows that this subgroup is of index ¢ in Go(¢) and by letting ¢; = ziyx ="+,
(i=1,2,...,£ —1) and ¢, = 2*, we can get a presentation for this subgroup.

Simplifying the relations of this subgroup gives us two interesting relations:

£41
2 )9¢ . .
cg 70900 — 1 and ¢ = ¢{"". On the other hand a numerical result concerning

the Lucas numbers shows that h.c.f.(¢ + 1,g¢+1) = 1 and then the relation

41
A9 _ 4 161ds in this subgroup. Consequently, the equation z/¢+1) = 1

1
holds in G2(¢). When ¢ = 3(mod 6) we may proceed in a similar way to prove
that the equation z2(“+1) =1 holds in Ga(¥).

Secondly, since (z') is a central subgroup of Gy (¥) then adding the relation
2’ =1 to those of Gy(¥) gives the group

£—1 £—1

Hy(l) = (z,y | zt = ye = 1,xyx%yT =1)

which is Go(¢) factored by the cyclic group Zyy1 or Zy4q) if £ = £1(mod 6)
either £ = 3(mod 6). We are now going to identify the group Hy(¢) as follows:

Lemma 3.3. For cvery odd value of £ > 3, the group Hy({) is a metabelian
group of order £ X gpy1.

Proof. Abelianising the relations of Hs(¢) shows that zy € H}({), so, the sub-
group Ko ({) = (wy, v?yx~", ..., 2" tyz =2 yx) is contained in H,(¢). Showing
that | Ha(¢) : K2(£) |= £ is easy by defining £ cosets as 1 = Ky(¢), iz =i+ 1, (
i=1,2,...,£—1). Consequently, H5(¢) = K2(¢). We now use the Modified al-
gorithm to find a presentation for Ko(¢). Let a; = z'yxz~"*!, (i=1,2,...,4—1)
and ay = yz. For every i, (i = 1,2,...,¢), the relations iy* = i yield only one
relation for the group Ks(¢), and this is indeed, the relation:

= apay_1...0201 =1,
and the relations ixyx% yk;‘z1 = ¢ yield the following relations for Ks(¢):

= a%al—l Qe3 ...a4a3a9 =1,

N
)

Sg = a%amazgl ...asaga3 =1,

2
S3 = a%a%a% ...agasay =1,

Seys a%gamg,l LGt Qe Gers = 1,
2 == 2 2 2

Se45 a%ﬂalag Qet11Qetro Gerr = 1,
2 5 2 2 2

Se+7 = a%HaQalag A e+13 A e+11 A 49 = 1,
2 = 2 2 2

_ 2 _
Sp_1 = azflaegsae;7 ...acaiap =1,

Sp = afaegsae? ...agasa; = 1.
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So, K2(¢) = {(a1,a9,...,a¢ |7 =8,=1, i =1,2,...,¢). Two classes of the new
relations are acceptable by the relations of K3(¢), and they are:

— 2 _ ;o
Qi = Qip1Gq o1, Q7 = Qi1 et (i=1,2,...,0),

where, indices are reduced modulo ¢ (the proofs are easy, for, rewriting the

relation r = 1 as (a;_1a;_2...aza1a¢a7_1 . .. aHe%l)(aHe—Tl ...Gi41)a; = 1 and

using s;41 = Sjptr1 = 1 give us a; = Qit1G;, 1, and the second relation may
2 2

be derived by considering s; = s;41 = 1, for every i.) We use now these new

relations to prove that K5 () is abelian. By the relations

a1 = agaers = (A3Ge4s )Aets =+ = Qey1 QpQg—q - .. Qets Qeys
2 2

ae-1...azaza1 = aj ,
2

and using r = 1 we get [aHTl,al] = 1. Since a? = 20641 then [a1, az] = 1 holds,
and we will get the relation [a;, a; 1] = 1, for every i. This proves that K»(¢) is
abelian, and a hand calculation yields:

AQets = ala;l7
2

a; = a;fw_g) . agw_l), i=3,4,..., “‘Tl,

Oyt = a{”’?’ . a;f”’l, 1= 2,3,...,‘3_71

Showing that K2(¢) can be generated by a; and As. If £ = 3, Ky(¥) is of order

4, and if £ > 4,

K2(€) _ <a1,a2 | a171+f272 _ age’a?+fi,73 _ a?rfea7 [a1,ag] _ 1>.

Then, the order of this group is equal to (=14 fr—2)(14 fo—1) — fe(2+ fe—3) =
get1- So, | Ha(l) |= € X get1. o

Proof of Proposition 3.1. By Lemma 3.3 and the comments after Lemma 3.2
we conclude that

| Gall) |= 2000+ 1)ger1, £ =3 (mod 6),
2TV 0+ 1)geyr, €= +1(mod 6).

To complete the proof let us consider the result of Lemma 3.3, concerning the
derived subgroup of Ha(¢), i.e.; if £ = +1(mod 6) then h.c.f.(—=1 + fr—2,2 +
fe—3) = 1 and HL({) is cyclic of order g1, however, if £ = 3(mod 6), H5(¥) is

not cyclic (because g1 is divisible by 4 in this case). On the other hand, g?gg is
2

a cyclic group of order £(¢+1), for every odd values of £ and then, | G5(¢) |= get1-
Consequently, Go(¢) is a Z-metacyclic group only if £ = +1(mod 6), for, Ha(¢)
is a central homomorphic image of Ga(¥). O
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