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INCOMPLETE SAMPLES AND TAIL ESTIMATION
FOR STATIONARY SEQUENCES 1

Ivana Ilić2, Pavle Mladenović3

Abstract. Let (Xn) be a strictly stationary sequence with a marginal
distribution function F such that 1 − F (x) = x−αL(x), x > 0, where
α > 0 and L(x) is a slowly varying function. We assume that only ob-
servations of (Xn) are available at certain points. Under assumption of
weak dependency we proved the consistency of Hill’s estimator of the tail
index α based on an incomplete sample from {X1, X2 . . . , Xn}. This is an
extension of the results of Hsing [15] and Mladenović and Piterbarg [19].
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1. Introduction

Let F be a distribution function with regularly varying uper tail, that is

(1.1) 1− F (x) = x−αL(x), x > 0,

where α > 0 and L is slowly varying at infinity. Without loss of generality
we may assume that F (0) = 0. The problem of estimating the tail index α
has attracted a great attention among statisticians. There is a huge number
of papers concerning this problem in i.i.d. settings, i.e. when the estimator is
defined using a sample of independent random variables X1, . . . , Xn distributed
according to F . Probably, the most popular is the Hill estimator defined as
follows [see Hill (1975)]: Let X(1) > X(2) > . . . > X(n) be a sequence of order
statistics. Based on k + 1 largest of them, Hill’s estimator is

(1.2) Hk,n =
1
k

k∑

i=1

ln X(i) − ln X(k+1).

Asymptotic behavior of Hill’s estimator was studied by many authors under
different conditions. Here the number k = k(n) should also increase together
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with n. Mason [18] (1982) proved weak consistency under conditions k →∞ and
k/n → 0 as n → ∞. Deheuvels, Haeusler and Mason [7] (1988) proved strong
consistency for any sequence k = k(n) such that k/ ln ln n → ∞ and k/n → 0
as n → ∞. For results concerning asymptotic normality of Hill’s estimator
see, for example, Davis and Resnick [4] (1984), Csörgó and Mason [3] (1985),
Haeusler and Teugels [12] (1985), Goldie and Smith [9] (1987), Hall [13] (1982),
Hill [14](1975) and Beirlant and Teugels [1] (1989). Dekkers, Einmahl and de
Haan [5] (1989) extended Hill’s estimator for the index of regular variation to
an estimate for the index of an extreme-value distribution. Also see Dekkers
and de Haan [6] (1989), Gnedenko [10](1943) and de Haan [11] (1970).

Some other estimators for extreme value index in i.i.d. settings were also
proposed and studied: see Pickands [20] (1975), Chörgó, Deheuvels and Mason
[3] (1985), Dekkers and de Haan [5] (1989) and Drees [8](1998). There are also
relatively small number of papers devoted to estimation of the tail index using
dependent data, see Hsing (1991) [15], Resnick and Starica [22, 23, 24] (1995,
1997, 1998), where asymptotic behavior of Hill’s estimator was considered. Also
see Seneta [25](1976) and Smith [26](1987).

2. Some preliminaries and notation

Let (Xn)n>1 be a strictly stationary sequence of random variables with
”short range” dependence, that is to say that the finite dimensional distributions
of (Xn) are invariant under shifts and the dependence between observations from
(Xn) becomes weaker as time separation becomes larger. Moreover, we assume
that only observations at certain points are available. Denote observed random
variables among {X1, . . . , Xn} by X̃1, ..., X̃Sn . Here the random variable Sn

represents the number of observed rv’s among the first n terms of the sequence
(Sn). Incomplete sample can be obtained, for example, if every term of (Xn) is
observed with probability p, independently of other terms, and in this case Sn is
binomial random variable. But we shall assume that observed random variables
are determined by a general point process, and only conditions on Sn will be
imposed. See Leadbetter, Lindgren and Rootzén [17] (1983) and Resnick [21]
(1987).

Assumption. X1, X2, ... does not depend on Sn and there exists a sequence
of real numbers (γn) such that:

Sn

γn
→p c0 > 0 as n → +∞

and
lim

n→+∞
γn = ∞.

Suppose βn is a sequence of real numbers such that

lim
n→∞

βn = ∞
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and
lim

n→∞
βn

γn
= 0

Let

Mn =
[
Sn

βn

]
and Bn =

{
0, Sn = 0
Mn

Sn
, Sn ≥ 1

We are interested in estimation of α, using some portion of a sample. Let
X1,Sn

≥ X2,Sn
≥ ... ≥ XSn,Sn

be the order statistics defined by Sn observed
variables. Define

F−1(y) = inf{x : F (x) ≥ y}, 0 < y < 1.

Let us also denote, for every x ∈ R, x+ is max(x, 0). Hill’s estimator is given
by:

HSn
=





1
Mn

Mn∑
j=1

ln Xj,Sn
− ln XMn+1,Sn

, Sn ≥ βn

0, Sn < βn

Let us also define:

H̃Sn =





1
Mn

Mn∑
j=1

ln Xj,Sn − ln F−1(1−Bn), Sn ≥ βn,

0, Sn < βn,

H+
Sn

=





1
Mn

Sn∑
j=1

(ln X̃j − ln F−1(1−Bn))+, Sn ≥ βn,

0, Sn < βn.

Suppose Ỹi (Yi) is a functional of X̃i (Xi), for example, Ỹi may be:

(ln X̃i − ln F−1(1−Bn))+,

or:
I{ln X̃i > lnF−1(1−Bn) + ε}.

Let F b
a{Yi} be the σ-field; σ{Yi : a ≤ i ≤ b} and for 1 ≤ l ≤ n− 1 let:

β(l, {Yi}) = sup{|P (A ∩B)− P (A)P (B)| :
A ∈ F k

1 {Yi}, B ∈ Fn
k+l{Yi}, 1 ≤ k ≤ n− l}.

3. Results

Theorem 3.1. Suppose (rn) is a sequence of positive integers and rn

γn
→ 0,

when n → ∞ . Let S̃nk be a random variable measurable with respect to
F krn

(k−1)rn+1
{Ỹi}, where Ỹi is a functional of X̃i and 1 ≤ k ≤ Kn, where Kn =

[Sn

rn
]. Assume that:
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(a)
n

rn
β(rn, {Yi}) → 0,

(b) I{Sn ≥ βn} 1
Mn

Kn∑

k=1

E|S̃nk|I{|S̃nk| > Mn} →p 0,

(c) I{Sn ≥ βn} 1
M2

n

Kn∑

k=1

E(S̃nk)2I{|S̃nk| ≤ Mn} →p 0.

Then:

I{Sn ≥ βn} 1
Mn

Kn∑

k=1

(S̃nk − ES̃nk) →p 0.

Proof. Write:

I{Sn ≥ βn} 1
Mn

Kn∑
k=1

(S̃nk − ES̃nk) = I{Sn ≥ βn} 1
Mn

Kn∑
k=1, k odd

(S̃nk − ES̃nk)

+I{Sn ≥ βn} 1
Mn

Kn∑
k=2, k even

(S̃nk − ES̃nk).

Let us denote the set of all odd numbers in {1, 2, ..., Kn} by OSn. It was proven
in Hsing [15], using results of Ibragimov and Linnik [16], and condition (a) that,
in the case when all the data are present, the variables S̃nk for the set of all odd
k ∈ {1, 2....n} were treated as independent.

From above, we can proceed by assuming that S̃nk are independent for every
k ∈ OSn. Define:

S∗nk = S̃nkI(|S̃nk| ≤ Mn), 1 ≤ k ≤ Kn.

For every ε > 0,
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I{Sn ≥ βn}P
{

1
Mn

∣∣∣∣
∑

k∈Osn

(S̃nk − ES∗nk)
∣∣∣∣> ε

}

≤ I{Sn ≥ βn}P{S̃nk 6= S∗nk, for some k ∈ OSn}
+I{Sn ≥ βn}P

{
1

Mn

∣∣∣∣
∑

k∈OSn

(S∗nk − ES∗nk)
∣∣∣∣> ε

}

≤ I{Sn ≥ βn}
∑

k∈OSn

P{|S̃nk| > Mn}+ I{Sn ≥ βn} 1
M2

n

1
ε2

V ar(
∑

k∈OSn

S∗nk))

≤ I{Sn ≥ βn} 1
Mn

∑

k∈OSn

E|S̃nk|+ I{Sn ≥ βn} 1
M2

n

1
ε2

∑

k∈OSn

V ar(S∗nk)

≤ I{Sn ≥ βn} 1
Mn

∑

k∈OSn

E|S̃nk|+ I{Sn ≥ βn} 1
M2

n

1
ε2

∑

k∈OSn

E(S∗nk)2

≤ I{Sn ≥ βn} 1
Mn

∑

k∈OSn

E|S̃nk|

+I{Sn ≥ βn} 1
M2

n

1
ε2

∑

k∈OSn

E(S̃nk)2I(|S̃nk| ≤ Mn) →p 0.

We used the fact that I2{|S̃nk| ≤ Mn} = I{|S̃nk| ≤ Mn}.
Since the following equality holds

S̃nk = S̃nkI{|S̃nk| > Mn}+ S̃nkI{|S̃nk| ≤ Mn}
= S̃nkI{|S̃nk| > Mn}+ S∗nk

we have that

I{Sn ≥ βn} 1
Mn

∣∣∣∣
∑

k∈OSn

(ES̃nk − ES∗nk)
∣∣∣∣

= I{Sn ≥ βn} 1
Mn

∣∣∣∣
∑

k∈OSn

ES̃nkI{|S̃nk| > Mn}
∣∣∣∣

≤ I{Sn ≥ βn} 1
Mn

∑

k∈OSn

E|S̃nk|I{|S̃nk| > Mn} →p 0.

Finally, we have that

I{Sn ≥ βn} 1
Mn

∑

k∈OSn

(S̃nk − ES∗nk − (ES̃nk − ES∗nk))

= I{Sn ≥ βn} 1
Mn

∑

k∈OSn

(S̃nk − ES̃nk) →p 0.
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We have similar deduction for even numbers k from the set {1, 2, ..., Kn}. 2

Theorem 3.2. All three quantities HSn , H+
Sn

, and H̃Sn converge to α−1 in
probability under the following conditions.

(i) There exists a sequence (rn) of positive integers such that rn

γn
→ 0, and

that n
rn

β(rn, {Ỹi}) → 0. Let us denote Ỹi = (ln X̃i − ln F−1(1 − Bn))+ and

suppose that (b) and (c) from Theorem 3.1 hold for S̃nk =
∑krn

i=(k−1)rn+1 Ỹi.

(ii) For each ε ∈ R and ρ in some interval containing 1 there exists a
sequence (rn) of positive constants for which rn

γn
→ 0, such that n

rn
β(rn, {Ĩi}) →

0, where Ĩi = I{ln X̃i > ln F−1(1 − ρBn) + ε}. Suppose that (b) and (c) from
Theorem 3.1 hold for S̃nk =

∑krn

i=(k−1)rn+1 Ĩi, where Kn =
[

Sn

rn

]
.

(iii) rnE
(
I{Sn ≥ β} 1

Mn

)
→ 0.

Proof. It follows from Theorem 3.1 and the condition (i) that the following
relations hold:

I{Sn ≥ βn} 1
Mn

Kn∑
k=1

krn∑
i=(k−1)rn+1

(Ỹi − EỸi) →p 0,

I{Sn ≥ βn} 1
Mn

Knrn∑
i=(k−1)rn+1

(Ỹi − EỸi) →p 0.

It follows from (iii) that the positive quantity

I{Sn ≥ βn} 1
Mn

Sn∑

i=Knrn+1

Ỹi

has the expectation tending to 0. Consequently we conclude that:

I{Sn ≥ βn} 1
Mn

Sn∑

i=1

(Ỹi − EỸi) →p 0.

Condition (ii) implies that:

I{Sn ≥ βn} 1
Mn

Sn∑

i=1

(Ii − EIi) →p 0.

Finally, the conclusion of the theorem is a consequence of Theorem 1 from
Mladenović and Piterbarg [19]. 2
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