
Novi Sad J. Math.
Vol. 38, No. 3, 2008, 209-217

WELL-SUITED MULTIPROCESSOR TOPOLOGIES
WITH SMALL NUMBER OF PROCESSORS1

Dragoš Cvetković2, Tatjana Davidović3

Abstract. Homogeneous multiprocessor systems are usually modelled
by undirected graphs. Vertices of these graphs represent the processors,
while edges denote the connection links between adjacent processors. Let
G be a graph with diameter D, maximum vertex degree ∆, the largest
eigenvalue λ1 and m distinct eigenvalues. The products m∆ and (D+1)λ1

are called the tightness of G of the first and second type, respectively. In
the recent literature it was suggested that graphs with a small tightness
of the first type are good models for the multiprocessor interconnection
networks. We extended analysis to four types of tightness and found all
graphs with tightness values at most eight.
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1. Introduction

Multiprocessor interconnection networks [7] are usually modelled by undi-
rected, connected graphs [9, 10]. Vertices of these graphs represent the pro-
cessors, while edges denote the connection links between adjacent processors.
Weights on vertices can be introduced to ensure modelling of heterogeneous
multiprocessor systems (vertex weight represents, for example, the speed of a
corresponding processor). One can also introduce weights on edges in order to
model communication links with different speed and/or capacity. In this pa-
per we deal with homogeneous multiprocessor systems, and therefore we do not
consider weighted graphs.

To avoid the main drawback of multiprocessor systems (communication over-
head) interconnection networks have to satisfy two contradictory properties: to
minimize the ”number of wires” and to maximize the data exchange rate. This
means that the paths connecting each two processors have to be as short as
possible while the average number of connections per processor has to be as
small as possible.
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Recently, the link between the design of multiprocessor topologies and the
theory of graph spectra [4] has been recognized [6]. The main conclusion of
[6] regarding the multiprocessor design and, particularly the load balancing
within given multiprocessor systems was the following: if the product m∆ of the
number m of distinct eigenvalues of a graph adjacency matrix and the maximum
vertex degree ∆ is small for a given graph G, the corresponding multiprocessor
topology was expected to have good communication properties and has been
called well-suited. It has been pointed out that there exists an efficient algorithm
which provides optimal load balancing within m− 1 computational steps. This
algorithm is summarized in [5]. The graphs with large m∆ were called ill-suited
in [6] and are not considered suitable for design multiprocessor networks.

The clustering of multiprocessor topologies into well-suited and ill-suited
classes as proposed in [6] raised very natural question: are all of the widely used
multiprocessor architectures well-suited according to this classification? Let us
point out the classes for some of the widely used multiprocessor architectures:

well-suited ill-suited
hypercubes; stars;
butterflies; meshes;
some trees; processor arrays;
(complete) bipartite graphs; circuits.

According to the authors’ opinion, not all of these architectures should be
considered ill-suited. For example, 2-dimensional processor arrays (also known
as mesh architectures) have nice properties as multiprocessor topologies. Stars
are always used to model the well known master-slave multiprocessor architec-
ture which has been used in the bulk of the parallel applications [8]. A survey
of frequently used interconnection networks is given in [5].

In order to extend the application of the theory of graph spectra to the design
of multiprocessor topologies, in [2] we have considered also some other related
types of graph invariants under common name tightness, and investigated their
suitability for describing the corresponding interconnection networks.

In this paper we provide detailed algorithms on how to determine graphs
with the value of tightness less than or equal to a given number. We determine
all graphs for which tightness value does not exceed 8. In [3], we pass to the next
step and identify all graphs for which tightness value (all four types) does not
exceed 9. These graphs happen to be of small order (not exceeding 10 vertices)
and there are 69 such graphs. In this way we made a catalogue of models for
small well-suited (according to each tightness) multiprocessor networks. Addi-
tional result provided in [3] was the catalogue of extremal graphs with up to
n = 10 vertices. For each n, we have identify graphs with minimum value of
each tightness, and obtain usually star graphs and circuits.
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2. Preliminaries

In [2], we introduced the following definitions. (To avoid trivial technical
discussions, here and in the whole paper we shall assume that the graphs have
at least two vertices. Moreover, we deal with connected graphs only.)

Definition 1. The type one mixed tightness t1 of a graph G is defined as the
product of the number of distinct eigenvalues m and the maximum vertex degree
∆ of G, i.e. t1(G) = m∆.

Definition 2. Structural tightness stt(G) is the product (D + 1)∆, where D is
diameter and ∆ is the maximum vertex degree of a graph G.

Definition 3. Spectral tightness spt(G) is a product of the number of distinct
eigenvalues m and the largest eigenvalue λ1 of a graph G.

Definition 4. Type two mixed tightness t2(G) is defined as a function of the
diameter D of G and the largest eigenvalue λ1, i.e. t2(G) = (D + 1)λ1.

In [2], it has been noted that the four tightness values are partially ordered
by the relation ≤ in the following way

t2(G) ≤ spt(G) ≤ t1(G)

and
t2(G) ≤ stt(G) ≤ t1(G).

Therefore, replacing t1 with stt in the criterion for a good interconnection
network (i.e. replacing the number of distinct eigenvalues m with the quantity
D + 1 where D is the diameter) captures graphs with small values for diameter
and maximum vertex degree as good models for multiprocessor topologies.

On the other hand, introducing spt instead of t1 (i.e. replacing maximal
vertex degree ∆ with the largest eigenvalue λ1, a kind of average vertex degree
[2]) causes the acceptance of star graphs as good models.

If we finally pass to t2, we get additional graphs that are characterized by
a suitable combination of small values for the diameter D and for the largest
eigenvalue λ1.

Let Gc be the set of connected graphs with at least two vertices. Let us
introduce the following notation:

T a
1 = {G : G ∈ Gc, t1(G) ≤ a}, T a

stt = {G : G ∈ Gc, stt(G) ≤ a},

T a
spt = {G : G ∈ Gc, spt(G) ≤ a} , T a

2 = {G : G ∈ Gc, t2(G) ≤ a}.
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It is obvious that T a
1 ⊆ T a

stt ⊆ T a
2 and T a

1 ⊆ T a
spt ⊆ T a

2 because of the partial
order between tightness values. Having in mind the inclusions between these
sets we can represent them in the form

T a
1 = A,

T a
stt = A ∪B, T a

spt = A ∪ C,

T a
2 = A ∪B ∪ C ∪D,

where A, B,C, D are sets of graphs illustrating the influence of each particular
tightness definition. Moreover, according to Theorem 1 from [2], each of these
sets is finite.

3. Graphs with Small Type 1 Mixed Tightness

Let us consider the case T 6
1 . More precisely, we are looking for graphs G ∈ Gc

such that t1(G) = m∆ ≤ 6 = a. Since both values (m and ∆) are integers, we
can distinguish the following cases:

a◦ m = 1. This is trivial case satisfied only for K1 which is excluded from
considerations.

b◦ m = 2, ∆ ≤ 3. Two distinct eigenvalues appear only in complete graphs,
Kn, n = 2, 3, . . .. On the other hand, ∆ ≤ 3 defines the upper bound on
the number of vertices to n = 4 since each vertex has to be connected to
all the others. Consequently, this case involves K2, K3 and K4.

c◦ m = 3, ∆ ≤ 2. Graphs with m = 3 are well studied in the literature (cf.
[4], p. 108). For example, stars Sn, containing central vertex connected to
all the others by n − 1 edges belong to this class. Having the conditions
m = 3, ∆ ≤ 2 in mind, we can consider only graphs where each vertex
has at most 2 neighbors. Therefore, the only star that we can take into
account is S3 = P3. Graphs with ∆ ≤ 2 are also circuits Cn, n = 2, 3, . . ..
They have m = bn

2 c+1 distinct eigenvalues. Among all circuits, m = 3
have C4 and C5. Consequently, graphs satisfying these conditions are two
circuits and 3-vertex path, namely, C4, C5 and P3.

d◦ m = 4, 5, 6, ∆ ≤ 1. This case involves only disconnected graphs which are
excluded from consideration.

Now, it is easy to see that T 6
1 = {K2,K3, P3,K4, C4, C5}.

If we analyze T 8
1 , the following cases are of interest:

a◦ m = 2, ∆ ≤ 4. Here we have complete graphs K2, K3, K4, K5 with the
same reasoning as in the case b◦ for T 6

1 .
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b◦ m = 3, ∆ ≤ 2. This case is the same as c◦ for T 6
1 , and we get again the

graphs C4, C5 and P3.

c◦ m = 4, ∆ ≤ 2. Several classes of regular graphs with four distinct eigenvalues
are described in [11], but the whole set is not determined yet. In this case
we are limited to the circuits and paths by the condition ∆ ≤ 2, and
therefore we have only C6, C7 and P4.

Finally, we conclude with the following theorem.

Theorem 1.

T 8
1 = {K2,K3,K4, K5, P3, P4, C4, C5, C6, C7} = T 6

1 ∪ {P4,K5, C6, C7}.

4. Graphs with Small Structural Tightness

This type of tightness also takes integer values, since stt = (D + 1)∆.

If we analyze the set T 6
stt, we can distinguish several cases (quite similar to

those considered when looking for T 6
1 ):

a◦ D = 0, ∆ ≤ 6. There are no non-trivial graphs satisfying these conditions.

b◦ D = 1, ∆ ≤ 3. First condition implies that graphs must be complete, i.e.
only Kn are involved while the second one in that case limits the number
of vertices, i.e. n ≤ 4. Therefore, we can include only the graphs K2, K3

and K4.

c◦ D = 2, ∆ ≤ 2. This case involves paths and circuits, namely P3, C4 and C5.

d◦ D = 3, 4, 5, ∆ ≤ 1 are contradictory conditions.

Therefore, we can conclude that T 6
stt = {K2,K3, P3,K4, C4, C5} = T 6

1 .

The analysis for T 8
stt involves the following cases

a◦ D = 1, ∆ ≤ 4. Here again only Kn are involved with the limit on the
number of vertices n ≤ 5. Therefore, we can include only the graphs K2,
K3, K4 and K5.

b◦ D = 2, ∆ ≤ 2. This case is the same as c◦ for T 6
stt and we have P3, C4 and

C5.

c◦ D = 3, ∆ ≤ 2. This case also involves paths and circuits, but with D = 3
and we get P4, C6 and C7.

d◦ D = 4, 5, 6, 7, ∆ ≤ 1 are contradictory conditions.

Therefore, we obtain the next theorem.

Theorem 2.

T 8
stt = {K2,K3,K4,K5, P3, P4, C4, C5, C6, C7} = T 8

1 .
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5. Graphs with Small Spectral Tightness

As for the definition of spt, we have to analyze product of two positive
numbers, one of them not always being integer. This may cause our analysis
to be more difficult, but we can use the well known theoretical results from the
theory of graph spectra.

Within this analysis an important role play the graphs with λ1 ≤ 2 (Smith
graphs and their subgraphs). All relevant parameters for Smith graphs and
their subgraphs have been calculated and summarized in Table 1 in [3]. As a
useful tool for this study we explored newGRAPH programming package [1] to
calculate values of m and λ1 of obtained subgraphs. It is interesting to note
that for Cn we always have D = bn

2 c, ∆ = 2, m = bn
2 c+1, λ1 = 2. Therefore, it

holds t1(Cn) = stt(Cn) = spt(Cn) = t2(Cn). Also for S5 = K1,4 we have D = 2,
∆ = 4, m = 3 and λ1 = 2. Stars are only the special case in more general class
of bipartite graphs. The main representative of this class is complete bipartite
graph Kn1,n2 having vertices divided into two sets and edges connecting each
vertex from one set to all the vertices in the other set. For Kn1,n2 we have
m = 3, ∆ = max{n1, n2}, D = 2, λ1 =

√
n1n2.

Let us start with a = 6, i.e. T 6
spt. The following cases can be recognized:

a◦ m = 1, λ1 ≤ 6 includes no non-trivial connected graphs because it has to
be D ≤ 0 according to the well known relation m ≥ 1 + D (see Theorem
3.13. from [4]).

b◦ m = 2, λ1 ≤ 3. Similarly to the previous case we have D = 1 and conse-
quently, this case involves only complete graphs. Since for Kn, λ1 = n−1,
here we have K2, K3, and K4.

c◦ m = 3, λ1 ≤ 2. For this particular case, we have C4 and C5 as strongly
regular graphs and K1,2 = P3, K1,3 = S4, and K1,4 = S5, which are
complete bipartite graphs [11].

d◦ m ≥ 4. Here λ1 ≤ 1.5 and these cases do not give any new graphs (as can
be verified in Table 1 from [3]).

Hence we have T 6
spt = {K2,K3, K4, C4, C5, P3, S4, S5}

Considering T 8
spt the following cases are of interest:

a◦ m = 2, λ1 ≤ 4. These conditions give us K2, K3, K4, K5.

b◦ m = 3, λ1 ≤ 2.667. C4, C5, K1,2 = P3, K1,3 = S4, K1,4 = S5, K1,5 = S6,
K1,6 = S7, K1,7 = S8, K2,3 appear in this case.

c◦ m = 4, λ1 ≤ 2. We have C6, C7, for λ1 = 2 and P4 for λ1 < 2 according to
Table 1 from [3].

d◦ m ≥ 5. Now λ1 ≤ 1.6 and there are no graphs satisfying these conditions.
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Hence, the following theorem holds.

Theorem 3.

T 8
spt = T 6

spt ∪ {C6, C7,K5, S6, S7, S8,K2,3} = T 8
1 ∪ {S4, S5, S6, S7, S8,K2,3}.

6. Graphs with Small Type 2 Mixed Tightness

Considering t2 = (D + 1)λ1 we also perform case analysis in a similar way.

For T 6
2 we distinguish the following cases:

a◦ D = 1, λ1 ≤ 3. This case involves only complete graphs and since for Kn,
λ1 = n− 1, here we have K2, K3, and K4.

b◦ D = 2, λ1 ≤ 2. Again we have to consider Smith graphs and their subgraphs.
Smith graphs with D = 2 are S5, C4, and C5. By deleting their vertices
we obtain also S4 and S3 = P3.

c◦ D = 3, 4, 5. This implies λ1 ≤ 1.5 and checking in Table 1 from [3] we can
see that no graphs satisfying these conditions exist.

Therefore, we conclude that T 6
2 = {K2,K3,K4, S3, S4, S5, C4, C5}.

The analysis of T 8
2 involves the following cases:

a◦ D = 1, λ1 ≤ 4. We obtain K2, K3, K4, K5.

b◦ D = 2, λ1 ≤ 2.667. Denote the set of graphs satisfying these conditions by
Q1. The restriction on λ1 combined with the relation λ1 ≥

√
∆ (cf. [4],

p. 112) implies ∆ ≤ λ2
1 < 8, hence ∆ ≤ 7. Therefore, from the inequality

n ≤ 1 + ∆ + ∆(∆ − 1) + ∆(∆ − 1)2 + · · · + ∆(∆ − 1)D−1 we have n ≤
1 + 7 + 7 · 6 = 50. The set Q1 is completed by Lemma 1.

c◦ D = 3, λ1 ≤ 2. For λ1 = 2 we get C6, C7 and W6, while λ1 < 2 leads to the
graph Z5 (see Fig. 1).

d◦ D ≥ 4, λ1 ≤ 1.6. There are no graphs satisfying these conditions.

Figure 1 contains some examples of graphs with t2 ≤ 8.

Lemma 1. The set Q1 consists of 17 graphs listed below.

n = 3 : P3;
n = 4 : G5, G6, C4, S4;
n = 5 : G20, G21, G23,K2,3, C5, S5;
n = 6 : CP (93), CP (94), S6;
n = 7 : S7, N(7, 337);
n = 8; S8.



216 D. Cvetković, T. Davidović

G5

s
s

s
s

@@ ¡¡

¡¡ @@

G6

s
s

s
s

¡¡

@@

G20

s
s

s

s

s

¡¡

@@

@@

¡¡

G21

s s

s s
s

´
´́

Q
QQ

G23

s s
s s s

¶
¶

S
S

s
ss

s
s@

¡
Z5

s
s

s s
s
s

@
¡

¡
@

W6

s s
s s

s s
@
¡

¡
@

CP (93)
s s s

s
s s

´́QQ
JJ

CP (94)

s
s
s
s

s
s

s

Z
Z

½
½

JJ
N(7, 337)

Figure 1: Some graphs from the set T 8
2

A proof of this Lemma is given in [3].

Summarizing these results we get the following theorem.

Theorem 4.

T 8
2 = T 6

2 ∪Q1 ∪ {K5, C6, C7, Z5,W6}
= T 8

1 ∪ {S4, S5, S6, S7, S8, G5, G6, G20, G21, G23,K2,3,

CP (93), CP (94), Z5,W6, N(7, 337)}.
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